
Computing a Self–Confirming Equilibrium in Two–Player
Extensive–Form Games

Nicola Gatti
Politecnico di Milano

Piazza Leonardo da Vinci 32
Milano, Italy

ngatti@elet.polimi.it

Fabio Panozzo
Politecnico di Milano

Piazza Leonardo da Vinci 32
Milano, Italy

panozzo@elet.polimi.it

Sofia Ceppi
Politecnico di Milano

Piazza Leonardo da Vinci 32
Milano, Italy

ceppi@elet.polimi.it

ABSTRACT
The Nash equilibrium is the most commonly adopted so-
lution concept for non–cooperative interaction situations.
However, it underlays on the assumption of common in-
formation that is hardly verified in many practical situa-
tions. When information is not common, the appropriate
game theoretic solution concept is the self–confirming equi-
librium. It requires that every agent plays the best response
to her beliefs and that the beliefs are correct on the equilib-
rium path. We present, to the best of our knowledge, the
first study on the computation of a self–confirming equilib-
rium for two–player extensive–form games. We provide al-
gorithms, we analyze the computational complexity, and we
experimentally evaluate the performance of our algorithms
in terms of computational time.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Distributed Artifi-
cial Intelligence

General Terms
Algorithms, Economics

Keywords
Game Theory (cooperative and non-cooperative)

1. INTRODUCTION
Non–cooperative game theory provides elegant models and

solution concepts for situations wherein rational agents can
strategically interact [5]. The central solution concept is the
Nash equilibrium: it defines how agents should act in set-
tings where an agent’s best strategy may depend on what
the others do. One of the main drawbacks of employing the
Nash equilibrium concept in many practical situations is the
assumption of common information. That is, when informa-
tion is complete, common information means that each agent
knows the private utility values of her opponents and knows
that her opponents know her private utility values and so
on. When information is uncertain, the constraint of com-
mon information is harder: each agent must have a Bayesian

Cite as: Computing a Self–Confirming Equilibrium in Two–Player
Extensive–Form Games, Gatti, Panozzo, Ceppi,Proc. of 10th Int.
Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011,
Taipei, Taiwan, pp. 981-988.
Copyright © 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

prior over her opponents that must be common for all the
agents. This assumption seems to be unrealistic in a large
number of practical situations (e.g., negotiations).

Basically, a Nash equilibrium provides some prescriptions
to the agents without explaining how agents can have formed
a common prior. This prior formation process is customar-
ily studied in the literature as a learning process in which
each agent has some (generally incorrect) beliefs over the be-
haviors of her opponents and, by repeatedly observing the
moves of the opponents, adjusts her beliefs by means of a
learning algorithm. The crucial point is that, when we study
the problem of finding the agents’ optimal strategies incor-
porating the problem of prior formation, some steady states
may not be Nash equilibria. Game theory provides a solu-
tion concept, called self–confirming equilibrium [3, 4], that
is appropriate for these situations (regardless of the specific
learning algorithm adopted by the agents). The basic idea
behind the concept of self–confirming equilibrium (from here
on SCE) is that the agents’ beliefs need to be correct only at
the information sets reached on the equilibrium path. Since
the agents do not observe the behavior of their opponents off
the equilibrium path, their beliefs can be incorrect at those
information sets. The set of SCEs contains the set of the
Nash equilibria, a Nash equilibrium being a SCE in which
the beliefs are correct at every information set. While in
strategic–form games, all the SCEs are also Nash equilibria
(all the information sets being on the equilibrium path), this
is not the case for extensive–form games. In these games,
a SCE may not be a Nash equilibrium. The game theory
literature provides also several refinements of SCEs to cap-
ture different situations (e.g., when a agent is drawn from a
population of individuals).

In this work, we focus on two–player extensive–form games
and we study the problem of computing a SCE and its refine-
ments regardless of the specific learning algorithms adopted
by the agents. SCEs have been already considered in some
previous works both on learning algorithms [13, 19] and
practical applications (e.g., auctions) [14], but, to the best of
our knowledge, no work discusses how a SCE and its refine-
ments can be computed. We extend the algorithms for find-
ing a Nash equilibrium [17] to compute a SCE and we study
their properties and computational complexity. Further-
more, we experimentally evaluate the computational time
of our algorithms to compare their performances and to find
the size of the game instances solvable within a reasonable
time (10 minutes). We developed a game instance generator
and we generated the game instances that are inspired to
those used in [8, 18].

981



In our mind, the applications of our algorithms are two.
They can be used to compute an equilibrium for a given non–
cooperative problem (as it happens for Nash equilibrium),
or they can be used within learning algorithms to guide the
converge to an equilibrium or to evaluate their performance.

The rest of the paper is organized as follows. Section 2 in-
troduces extensive–form games and algorithms to compute
a Nash equilibrium. Section 3 presents the core of our re-
sults, discussing the algorithms for computing SCEs, while
Section 4 provides experimental evaluations. Section 5 con-
cludes the paper. Appendix A discusses how linear comple-
mentarity formulations can be solved.

2. EXTENSIVE–FORM GAMES AND SOLV-
ING ALGORITHMS

2.1 Definitions
A finite perfect–information extensive–form game [17] is a

tuple (N,A,V,T, ι, ρ,χ,u), where: N is the set of n agents,
A is a set of actions, V is the set of decision nodes of the game
tree, T is the set of terminal nodes of the game tree, ι ∶ V →
N is the agent function that specifies the agent that acts at a
given decision node, ρ ∶ V → ℘(A) returns the actions avail-
able to agent ι(w) at decision node w, χ ∶ V × A → V ∪ T
assigns the next (decision or terminal) node to each pair
composed of a decision node w and an action a available at
w, and u = (u1, . . . , un) is the set of agents’ utility functions
where ui ∶ T → R. An extensive–form game is with imper-
fect information when some action of some agent is not per-
fectly observable by the agent’s opponents. Formally, it is a
tuple (N,A,V,T, ι, ρ,χ,u, I) where (N,A,V,T, ι, ρ,χ,u) is a
perfect–information extensive–form game and I = (I1, . . . , In)
with Ii = (Ii,1, . . . , Ii,ki) is a partition of set Vi = {w ∈ V ∶
ι(w) = i} with the property that ρ(w) = ρ(w′) whenever
there exists a j for which w,w′ ∈ Ii,j . The sets Ii,j are
called information sets. We focus on games with perfect re-
call, where every agent recalls all the actions undertaken by
her and by the opponents (this assumption induces some
constraints over I , omitted here for reason of space).

A pure strategy σi is a plan of actions specifying one action
for each information set of agent i. A mixed strategy σi is a
randomization over pure strategies (plans). An alternative
representation is given by behavioral strategies. They are the
strategies in which each agent’s (potentially probabilistic)
choice at each information set is made independently of the
choices at other nodes. Essentially, a behavioral strategy σi

assigns each information set h ∈ Ii a probability distribution
over the actions available at h. With perfect recall, the two
representations (plans and behavioral) are equivalent.

Each agent has a system of belief providing her beliefs
over the behavior of the opponents. We call µj

i the sys-
tem of belief of agent i over strategy σj of agent j. The
beliefs are correct if µj

i = σj for every i and j. We call

µi = {µ
j
i ∶ for all j ≠ i }. A pair (σ,µ), where σ is the

agents’ strategy profile and µ is the set of all the agents’
µi, is called assessment.

Under the assumption that information is complete and
common we can define the concepts of Nash equilibrium as
an assessment (σ,µ) such that for all i ∈ N : strategy σi is a
best response to µi, and beliefs µ are correct.

It is well known that in extensive–form games some Nash
equilibria may be not reasonable with respect to the sequen-

tial structure of the game. The concept of sequential equi-
librium refines the concept of Nash equilibrium removing
these equilibria [9]. A sequential equilibrium is an assess-
ment (σ,µ) such that for all i ∈ N : strategy σi is sequentially
optimal with respect to µi (in the sense of backward induc-
tion), and there exists a sequence of fully mixed strategies
σ̃i,m such that for all agents i limm→+∞ σ̃i,m = σi and the
limit of the sequence of beliefs derived from the fully mixed
strategies by using the Bayes rule converges to µ. The sec-
ond condition is called Kreps and Wilson consistency and
entails that the beliefs are correct. (The use of fully mixed
strategies is accomplished to characterize beliefs off the equi-
librium path where the Bayes rule cannot be applied.)

2.2 The sequence form
The computation of a Nash equilibrium in an extensive–

form game can be easily accomplished by transforming the
game in normal form and then by computing a Nash equilib-
rium. We recall that the normal-form of an extensive–form
game is a matrix–based representation where the agents’
actions are plans of actions in the extensive–form game.
However, the normal–form is exponential in the size of the
extensive–form game, making the computation of a Nash
equilibrium hard. One way to avoid this problem is to
work directly on the extensive–form representation by em-
ploying behavioral strategies. This can be efficiently ac-
complished by using an alternative representation called se-
quence form [7]. This is a sparse matrix based representa-
tion where: (i) each agent’s actions are (terminal and non–
terminal) sequences q of her actions in the game tree (con-
sider Fig. 1, q = R is a non–terminal sequence of agent 1,
while q = RL1 is terminal); (ii) given a profile of sequences
q = (q1, . . . , qn) where qi is the sequence of agent i, if q leads
to a terminal node, then the agents’ payoffs are their utilities
over such a node, otherwise the payoffs are null; and (iii),
called q′ = q∣a the sequence obtained by extending q with ac-
tion a (e.g., q′ = RL1 with q = R and a = L1), the probability
of a sequence q is equal to the sum of the probabilities of the
sequences that extend it. Once a game is solved in sequence
form, the behavioral strategies can be easily computed.

We report the sequence form constraints for two–player
games in a mathematical programming fashion. We explic-
itly consider the agents’ beliefs (even if they can be omitted,
being correct in a Nash equilibrium) because we shall use
them in the next section. We denote the probabilities with
which agents make their sequences (i.e., σ) by pi(q), and we
denote the agents’ systems of beliefs (i.e., µ) by p̂i(q), where
p̂i(q) is the belief of agent −i over the strategy of agent i.
We denote by Qi the set of sequences of agent i, by Iq the set
of the information sets of agent i reachable from sequence
q ∈ Qi (consider Fig. 1, IR = {1.2}), and by hq a generic
information set belonging to Iq. Strategies pi(⋅) and beliefs
p̂i(⋅) are subject to the following constraints (∅ is the empty
sequence):

p̂i(∅) = 1 ∀i ∈ N (1)

p̂i(q) = ∑
a at hq

p̂i(q∣a) ∀i ∈ N, q ∈ Qi, hq ∈ Iq (2)

p̂i(q) ≥ 0 ∀i ∈ N, q ∈Qi (3)

pi(∅) = 1 ∀i ∈ N (4)

pi(q) = ∑
a at hq

pi(q∣a) ∀i ∈ N, q ∈ Qi, hq ∈ Iq (5)

pi(q) ≥ 0 ∀i ∈ N, q ∈Qi (6)

982



We introduce two further constraints that we shall use in
what follows. We denote by vi(q) the utility agent i receives
from taking sequence q and by vh the utility an agent expects
to gain when it plays at information set h (i.e., the largest
expected utility among those of the sequences q∣a where a is
available at h).

vi(q) = ∑
q′∈Q−i

p̂−i(q
′)Ui(q, q

′) + ∑
h∈Iq

vh ∀i ∈N, q ∈ Qi (7)

vi(q∣a) ≤ vh

∀i ∈ N, q∣a ∈ Qi,

a at h, h ∈ Iq

(8)

Constraints (7) state that the agent i’s expected utility from
sequence q is equal to the sum of the expected utility over the
terminal outcomes (if reached) and of the expected utilities
of the information sets reachable by performing q (if exist).
Constraints (8) state that the utility at h is not smaller than
the utility of all the sequences q∣a where a is available at h.

2.3 Computing an equilibrium
The computation of a Nash equilibrium is essentially a

feasibility mathematical programming problem [17] that al-
ways admits at least a solution in mixed strategies. It is
known to be PPAD–complete [2]. We recall that it is gen-
erally believed that PPAD≠P and that computing a Nash
equilibrium requires exponential time in the worst case. For
a two–player game there are three main exact solving algo-
rithms. LH provides a linear complementarity mathemat-
ical programming formulation and an algorithm based on
pivoting techniques [11]. While LH is applicable to solve an
extensive–form game in normal form, it cannot be applied
to solve it in sequence form. In this case, a generalization of
LH, called Lemke’s algorithm is commonly used [10]. SGC
provides a mixed integer linear mathematical programming
formulation [16]. PNS provides an algorithm based on sup-
port enumeration [15]. SGC and PNS have been never used
for extensive–form games. Below we discuss how they can be
extended to these games because they play a crucial role for
the computation of a SCE (precisely, a subclass of SCE can-
not be computed by linear complementarity programming).

We report the mathematical programming formulations
of the above algorithms for the extensive–form. At first, we
require that the beliefs are correct:

p̂i(q) = pi(q) ∀i ∈ N, q ∈ Qi (9)

The extensive–form linear complementarity mathematical
programming formulation (called ELC) is:

constraints (1), (2), (3), (4), (5), (6), (7), (8), (9)

(vh − vi(q∣a))pi(q∣a) = 0
∀i ∈ N, q∣a ∈ Qi,

a at h, h ∈ Iq

(10)

Constraints (10) state that, if sequence q∣a is played with
strictly positive probability, then its utility vi(q∣a) must be
equal to the utility vh of the information set h at which a is
played (i.e., at every h ∈ I agent ι(h) plays her best actions).

The mixed integer linear problem (called ESCG) is based
on binary variables si(q) ∈ {0,1} such that, when sequence
q is in the support of agent i (i.e., pi(q) > 0), si(q) = 1. We
notice that, by the sequence form constraints, we can have
that pi(q) > 0 even when q is played off the equilibrium path
(e.g., consider Fig. 1, when (p1(L) = 1, p2(r) = 1), r is off
the equilibrium path). The ESCG formulation is:

constraints (1), (2), (3), (4), (5), (6), (7), (8), (9)

vh ≤ vi(q∣a) +M(1 − si(q)) ∀i ∈ N, q∣a ∈Qi, a at h, h ∈ Iq (11)

pi(q) ≤ si(q) ∀i ∈ N, q ∈ Qi (12)

where M is an arbitrarily large constant. Constraints (11),
with constraints (8), state that, if si(q) = 1, then vh =

vi(q∣a); constraints (12) state that, if si(q) = 0, then q is
played with a probability of zero.

While in ESGC the check of whether an equilibrium ex-
ists with a given support and the scan of the supports are
solved together in a mathematical programming fashion, in
EPNS they are separated. The first problem is solved by
enumeration and heuristics and the second one is formulated
as a linear mathematical programming problem that is ex-
actly the ESCG formulation in which the values of si(q) are
fixed. Essentially, every problem instance that can be for-
mulated as an ESCG problem can be also formulated as an
EPNS problem. For reasons of space, we limit our discussion
to mixed–integer formulations (i.e., ESGC), it being always
possible to provide a corresponding EPNS formulation.

The unique known algorithm to compute a sequential equi-
librium is a variation of the Lemke’s algorithm [12]. Basi-
cally, a perturbation ǫ ≥ 0 is introduced into the ELC formu-
lation and a strategy satisfying the problem both for ǫ = 0
and for an arbitrarily small strictly positive value ǫ > 0 is
found. The formulation is:

constraints (1), (2), (3), (4), (5), (6), (7), (8), (9)

(vh − vi(q∣a))(pi(q∣a) − ǫ
∣q∣) = 0

∀i ∈ N, q∣a ∈ Qi,

a at h, h ∈ Iq

(13)

pi(q) ≥ ǫ
∣q∣ ∀i ∈ N, q ∈ Qi (14)

where ∣q∣ is the length of q. The perturbation given by
constraints (14) assures that the solution is a quasi–perfect
equilibrium that is a concept stronger than the sequential
equilibrium. The solving algorithm is described in [12] (the
perturbation is used during the pivoting exclusively in the
lexicographic minimum ratio test to select the variable to be
dropped from the basis). Finding a sequential equilibrium
is believed to be PPAD–hard.

3. SELF–CONFIRMING EQUILIBRIA AND
THEIR COMPUTATION

3.1 Equilibrium concepts
The basic self–confirming equilibrium solution concept cap-

tures the situation in which agents have no a–priori infor-
mation about opponents’ strategies or payoffs and learn (in
some way) from their observations over the actions played
by the opponents. The aim is the study of assessments
(σ,µ) that are steady states. Essentially, they generalize
the concept of Nash equilibrium to the case in which in-
formation is not common. Indeed, while Nash equilibrium
provides a prescription on how rational agents should play,
self–confirming equilibrium provides a prescription on what
are the beliefs of rational agents and on how they should
play. A self–confirming equilibrium requires that agents cor-
rectly forecast the actions that the opponents will take only
on the equilibrium path, an agent deriving information on

983



her opponents’ behavior only from her observations. Off the
equilibrium path the agents’ beliefs can be arbitrary.

Fudenberg and Levine provide some concepts of self–confir-
ming equilibrium [3, 4]. They distinguish between unitary
and heterogeneous self–confirming equilibria. The idea is
that each agent can be characterized by a population of in-
dividuals and, every time the game is repeated, a specific
individual plays. Potentially, different individuals can have
different beliefs and different optimal strategies. In unitary
SCEs (from here on USCEs), the population is composed of
a single individual (therefore each agent has exactly one be-
lief and one optimal strategy). In heterogeneous SCEs (from
here on HSCEs), the population is composed of multiple in-
dividuals. We notice that this last model perfectly apply to
practical economic situations, such as, e.g., bargaining and
auctions, where different sellers are continuously matched
with different buyers.

Fudenberg and Levine show that SEs ⊆ NEs ⊆ USCEs ⊆
HSCEs (where SE and NE mean sequential and Nash equi-
librium respectively). They provided also two refinements
(applicable to both USCEs and HSCEs).

Consistent SCE captures situations in which agents are
occasionally matched with “crazy” opponents, so that even
if they stick to their equilibrium strategy themselves, they
eventually learn the strategy at all information sets that can
be reached if their opponents deviate. It requires that each
agent correctly predicts the strategy at all the information
sets that can be reached when the agents’ opponents, but
not the agents themselves, deviate from their equilibrium
strategies. In each two–player game, every SCE is consis-
tent. For the sake of presentation, we shall omit the adjec-
tive ‘consistent’ in what follows, our algorithms being only
for two–player games.

Rationalizable SCE captures the situations in which the
agents have some information about the payoffs of their op-
ponents and use it in the sense of rationalizability. Tech-
nically speaking, it requires that the agents’ strategies are
sequentially rational with respect to the beliefs (as in se-
quential equilibria) and beliefs are correct on the equilib-
rium path and on the reachable information sets (i.e., the
information sets that an agent can reach by perturbing its
own strategy and keeping fixed the opponents’ strategy).

In [4], the authors show that: an USCE may not be a
Nash, SEs ⊆ rationalizable USCEs, there can be rationaliz-
able USCEs that are not NEs, and there can be NEs that
are not rationalizable USCEs.

3.2 Unitary SCE
Formally, an USCE is an assessment (σ,µ) such that for

every agent i ∈ N :

● strategy σi is optimal with respect to some µi,

● all the beliefs prescribed by µi are correct on the equi-
librium path.

That is, we need to relax constraints (9), forcing p̂i(q) =
pi(q) only if q is on the equilibrium path. In order to check
whether or not a sequence q is on the equilibrium path we
need to consider the strategies of both agents. Indeed, as
discussed in Section 2.3, in the sequence form a sequence q
can present p(q) > 0 even if it is played off the equilibrium
path. Basically, a sequence q of agent i is played on the
equilibrium path if and only if q is played with strictly pos-
itive probability and, called q = q′∣a, there exists a sequence

f(q) of agent −i played with strictly positive probability that
leads to the information set where agent i plays a. Formally,
p̂i(q) = pi(q) if pi(q) > 0 and p−i(f(q)) > 0 for at least a f(q)
(given a q there can be multiple f(q)), e.g., consider Fig. 1,
q = RL1 is on the path if p1(RL1) > 0 and p2(f(RL1)) > 0
with f(RL1) ∈ {l}, and q = l is on the path if p2(l) > 0 and
p1(f(l)) > 0 with f(l) ∈ {M,R}.

We extend the mathematical programming formulations
provided in Section 2.3 to find a USCE. At first, we consider
the ELC formulation. This formulation cannot be extended
to find a USCE by introducing exclusively linear comple-
mentarity constraints. This is because, checking whether
or not a sequence q is on the path is intrinsically quadratic
due to the presence of the operator ‘and’ between conditions
pi(q) > 0 and p−i(f(q)) > 0. A non–linear complementarity
constraint (non–solvable by Lemke’s algorithm and requir-
ing different algorithms such as Scarf’s [17]) can be:

pi(q)p−i(f(q))(p̂i(q) − pi(q)) = 0 ∀i ∈ N, q ∈ Qi, f(q) ∈ Q−i

(We cannot exclude that an alternative linear formulation
exists, anyway we have not been able to find it.) Instead, the
ESCG (and, consequently, the EPNS) formulation(s) can be
extended. The ESGC can be easily modified by substitut-
ing constraints (9). More precisely, the ESGC formulation
finding a USCE is:

constraints (1), (2), (3), (4), (5), (6), (7), (8), (11), (12)

p̂i(q) ≤ pi(q) +M(2 − s−i(f(q)) − si(q)) ∀i ∈ N, q ∈ Qi (15)

p̂i(q) ≥ pi(q) −M(2 − s−i(f(q)) − si(q)) ∀i ∈ N, q ∈ Qi (16)

Constraints (15) and (16) force beliefs to be correct when
s−i(f(q)) = 1 and si(q) = 1.

We know that pi(⋅) and p−i(⋅) may not constitute a NE
(e.g., see Example 1 in Section 3.5). However, surprisingly,
we have that p̂i(⋅) and p̂−i(⋅) constitute a NE.

Theorem 3.1. Given a USCE, expressed as a set of strate-
gies pi(⋅) and beliefs p̂i(⋅), strategies p′i(⋅) = p̂i(⋅) constitute
a Nash equilibrium.

Proof. By definition, on the equilibrium path, the actions
played with positive probability in p′i(⋅) = p̂i(⋅) are best re-
sponses to p̂−i(⋅), p′i(⋅) being the same of pi(⋅). Off the
equilibrium path, the actions played with positive proba-
bility in p′i(⋅) are potentially different from those in pi(⋅),
but, providing a utility of zero, agent i cannot gain more
by deviating from them. Therefore, p′i(⋅) = p̂i(⋅) is a best
response to p̂−i(⋅) and then (p′i(⋅), p

′

−i(⋅)) constitutes a Nash
equilibrium. ◻

As a result, given a USCE, we can find a Nash equilibrium
in constant time. We can state the following theorem, whose
proof is a trivial application of Theorem 3.1.

Corollary 3.2. For any USCE there exists a Nash equi-
librium that induces the same randomization over the out-
comes.

We focus on the computational complexity of finding a USCE.

Theorem 3.3. The problem of computing a USCE in a
two–player game (called usce–2) is PPAD–complete.

Proof. usce–2 is in PPAD because any usce–2 instance
admits at least one solution and, given an assessment, it

984



can be verified in polynomial time in the size of the game
whether or not it is a solution. The PPAD–completeness can
be proved by reduction to nash (the problem of computing a
Nash equilibrium). A trivial reduction is due to the fact that
in strategic-form games every Nash equilibrium is a USCE.
A less–trivial reduction is due to Theorem 3.1. ◻

3.3 Heterogeneous SCE
Formally, an HSCE is an assessment (σ,µ) such that for

every agent i ∈ N :

● each pure strategy j in σi is optimal with respect to
some (potentially different) µi (denoted by µi,j),

● the beliefs prescribed by µi,j are correct on the equi-
librium path identified by pure strategy j in σi.

According to above definition, we need to introduce different
(heterogeneous) beliefs for each agent. More precisely, ac-
cording [4] we define p̂i,q(q

′) as the belief of agent −i over the
probability with which agent i plays sequence q′ ∈ Qi, where
the parameter is q ∈ Q−i. For each p̂i,q(q

′) the sequence form
constraints must hold:

p̂i,q(∅) = 1 ∀i ∈N, q ∈ Q−i (17)

p̂i,q(q
′) = ∑

a at hq′

p̂i(q
′∣a) ∀i ∈ N, q′ ∈ Qi, q ∈ Q−i, hq′ ∈ Iq′ (18)

p̂i,q(q
′) ≥ 0 ∀i ∈N, q′ ∈ Qi, q ∈ Q−i (19)

Given that the beliefs are parameterized with respect to
sequence q and the expected utility of playing a sequence
q′ depends on the beliefs, we need to specify the parameter
q in the expected utility formula. That is, we denote by
vi,q(q

′) the expected utility received by agent i when she
plays sequence q′ and the beliefs are those parameterized
with respect to sequence q (i.e., p̂−i,q(⋅)). We can easily
check whether or not a sequence q is a never best response
(i.e., there is not any belief such that q is a best response).
For simplicity, we safely limit to terminal sequences. A non–
terminal sequence q is not a never best response if there
exists at least a terminal sequence q′ extending q that is not
a never best response. We denote by Q∗i the set of terminal
sequences of agent i. A sequence q ∈ Q∗i is not a never best
response if there are some p̂−i,q(q

′′) such that:

vi,q(q
′) = ∑

q′′∈Q−i

p̂−i,q(q
′′)Ui(q

′
, q
′′) ∀i ∈N, q, q′ ∈ Q∗i (20)

vi,q(q) ≥ vi,q(q
′) ∀i ∈N, q, q′ ∈ Q∗i (21)

According to the definition of HSCE, we need to constrain
the beliefs p̂i,q(⋅) to which a sequence q is a best response
to be correct on the equilibrium path identified by q, e.g.,
consider Fig. 1, beliefs p̂2,L(⋅) can be any, no information
set of agent 2 being on the equilibrium path identified by
sequence q = L, instead beliefs p̂2,M(⋅) must be correct at
least at information set 2.1, this information set being on
the equilibrium path identified by sequence q =M . We state
the problem of finding a HSCE as a mixed–integer linear
programming problem as follows:

constraints (4), (5), (6), (12), (17), (18), (19), (20)

vi,q(q) ≥ vi,q(q
′) −M(1 − si(q)) ∀i ∈ N, q, q′ ∈ Q∗i (22)

p̂i,q(q
′) ≤ pi(q

′) +M(1 − si(q
′))

∀i ∈ N, q
′ ∈ Qi, q ∈ Q

∗
−i,

q
′
extends somehow f(q)

(23)

p̂i,q(q
′) ≥ pi(q

′) −M(1 − si(q
′))

∀i ∈ N, q
′ ∈ Qi, q ∈ Q

∗
−i,

q
′
extends somehow f(q)

(24)

Constraints (22) with constraints (12) force sequences q
to be played with a probability of zero if beliefs p̂−i,q(⋅) are
such that q is not a best response. Constraints (23) and
(24) force p̂i,q(⋅) to be correct only on the equilibrium path
identified by q.

Differently from what happens for the computation of a
USCE, there is a straightforward linear complementarity for-
mulation for finding a HSCE. This is because the equilibrium
path identified by a single sequence q ∈ Qi depends only on
q and the strategy of agent −i, but not on the strategy of
agent i. Call vi,q the largest expected utility among vi,q(q

′)
for all q′ ∈ Qi. The formulation is:

constraints (4), (5), (6), (17), (18), (19), (20)

vi,q ≥ vi,q(q
′) ∀i ∈ N, q ∈ Q∗i , q′ ∈ Q (25)

pi(q)(vi,q(q) − vi,q) = 0 ∀i ∈ N, q ∈ Q∗i (26)

pi(q
′)(p̂i,q(q

′′) − pi(q
′′)) = 0

∀i ∈ N, q
′
, q
′′ ∈ Qi,

q ∈ Q
∗
−i, q

′′ = q
′ ∣a,

q extends somehow f(q′)

(27)

Constraints (25) force vi,q to be the largest expected util-
ity among vi,q(q

′) for all q′ ∈ Qi; constraints (26) force
a sequence q to be played only if it is a best response to
p̂i,q(⋅); constraints (27) force beliefs p̂i,q(⋅) to be correct on
the equilibrium path identified by q. Rigorously speaking,
constraints (27) are not expressed as linear complementar-
ities because p̂i,q(q

′′) − pi(q
′′) may be negative. Anyway,

calling p̂i,q(q
′′) = p̂i,q(q

′′)++ p̂i,q(q
′′)− and pi(q

′′) = pi(q
′′)++

pi(q
′′)−, we can express constraints (27) as linear comple-

mentarity constraints as pi(q
′)(p̂i,q(q

′′)+ − pi(q
′′)+) = 0 and

pi(q
′)(pi(q

′′)− − p̂i,q(q
′′)−) = 0 imposing that p̂i,q(q

′′)+ −
pi(q

′′)+ ≥ 0 and pi(q
′′)− − p̂i,q(q

′′)− ≥ 0. Finally, we notice
that combining the USCE’s constraints with the HSCE’s
constraints, we can capture asymmetric situations where
there is a single individual for agent i and a population for
agent −i.

We discuss the relationship between HSCEs and USCEs.

Theorem 3.4. An HSCE induces a randomization over
outcomes that may not occur in any USCE.

Proof. The proof is by an example. In particular, see Ex-
ample 2 in Section 3.5. ◻

We focus on the computational complexity of HSCE (the
proof is the based on the first reduction used in the proof of
Theorem 3.3).

Theorem 3.5. The problem of computing an HSCE in a
two–player game (called hsce–2) is PPAD–complete.

3.4 Rationalizable SCE
We initially consider rationalizable USCEs. Formally, a

RUSCE is an assessment (σ,µ) such that for every i ∈ N :

● strategy σi is sequentially optimal with respect to some
µi,

985



● all the beliefs prescribed by µi are correct on the equi-
librium path and on the off the equilibrium path in-
formation sets reachable by agent i when her strategy
is perturbed.

Since we must assure rationality off (a portion of) the equi-
librium path, we resort to the formulation to find a sequen-
tial equilibrium. The formulation for finding a RUSCE is:

constraints (1), (2), (3), (4), (5), (6), (7), (8), (14)

p̂i(q) ≥ ǫ
∣q∣ ∀i ∈ N, q ∈ Qi (28)

(pi(q) − ǫ
∣q∣)(p̂i(q∣a) − pi(q∣a)) = 0 ∀i ∈ N, q ∈ Qi (29)

Constraints (28) force every belief to have strictly positive
probability, granting the sequential rationality with respect
to the beliefs; constraints (29) force beliefs at off the equilib-
rium path reachable information sets to be correct. Rigor-
ously speaking, constraints (29) are not linear complemen-
tarities because p̂i(q∣a) − pi(q∣a) may be negative. Anyway,
these constraints can be expressed in linear complementarity
fashion as we accomplished for constraints (27). We notice
that combining the USCE’s constraints with the RUSCE’s
constraints we can capture asymmetric situations where only
agent i have some information over agent −i’s payoffs.

The authors state in [3] that the idea behind rationaliz-
able USCEs can be extended to HSCEs, but they do not dis-
cuss how. We study this extension, showing that the sets of
RUSCEs and RHSCEs are essentially the same and then the
concept of rationalizable SCE does not depend on whether
the equilibrium is unitary or heterogeneous. For this rea-
son, we omit the mathematical programming formulation
for finding a RHSCE. Formally, a RHSCE is an assessment
(σ,µ) such that for every i:

● each pure strategy j in σi is sequentially optimal with
respect to some (potentially different) µi (denoted by
µi,j),

● all the beliefs prescribed by µi,j are correct on the
equilibrium path identified by pure strategy j in σi

and at all the information sets reachable by agent i by
perturbing her pure strategy j.

We state the following theorem that shows that the sets of
RUSCEs and RHSCEs are essentially the same.

Theorem 3.6. Given a RHSCE (σ,µ), any assessment
(σ′, µ′) with σ′ = σ and µ′i = µi,j for any j is a RUSCE.

Proof. It can be easily observed that the set of informa-
tion sets at which the beliefs µi,j must be correct does not
depend on j. This is because, although j identifies a differ-
ent equilibrium path with respect to other sequence k ≠ j,
we have that by perturbing strategy j the set containing
the reachable information sets and those on the equilibrium
path is the same. Then, µi,j = µi,k on the equilibrium path
and at the reachable information sets for all j, k. Beliefs µi,j

can differ only at non reachable information sets, but these
beliefs do not affect the computation of the agents’ best re-
sponse. Therefore, any assessment (σ′, µ′) with σ′ = σ and
µ′i = µi,j for any j is a RUSCE. ◻

We focus on the computational complexity of finding a
RSCE with two agents (the proof is trivial, the problem can
be formulated as a path–following problem and a solution
can be verified in polynomial time).

Theorem 3.7. The problem of computing a RSCE in a
two–player game (called rsce–2) is PPAD–complete.

3.5 Examples
We depict in Fig. 1 an example of two–player extensive–

form game with imperfect information. In what follows we
report some equilibria specifying strategies pi(⋅) and beliefs
p̂i(⋅). For reasons of space, we report only the non-null prob-
abilities.

b

b b b

b b b b b b

b b

b b

L M R

l m r l m r

L1 R1

l1 r1

1.1

2.1

1.2

2.2

8, 0

12, 5 2, 1 −3, 4 10, 2 9, 3

−4, 1

13, 4 −5, 1

Figure 1: Example of two–player extensive–form
game. (“x.y” denotes the y-th information set of
agent x.)

The NEs in pure strategies are: σ = (p1(M) = 1, p2(lr1) =
1), σ = (p1(RR1) = 1, p2(r) = 1), and σ = (p1(RL1) =
1, p2(ll1) = 1). The unique SE in pure strategies is: σ =
(p1(RL1) = 1, p2(ll1) = 1).

Example 1. A USCE that is not a NE is: σ = (p1(L) =
1, p2(ll1) = 1) with µ = (p̂1(L) = 1, p̂2(l) = p̂2(m) = p̂2(r) =
1
3
, p̂2(ll1) =

1
3
). The agents’ strategies are not optimal,

agent 1 gaining more by playing q = RL1, while the beliefs
are confirmed on the equilibrium path.

Example 2. An HSCE that is not a USCE: σ = (p1(L) =
1
2
, p1(M) =

1
12

, p1(RL1) =
5
12

, p2(ll1) =
1
2
, p2(r) =

1
2
) where

sequence q = L is a best response to beliefs µ1,L = (p̂2,L(lr1) =
p̂2,L(r) = p̂2,L(m) =

1
3
) that are all incorrect, agent 2 play-

ing only off the equilibrium path; sequence q = M is a
best response to beliefs µ1,M = (p̂2,M(lr1) = p̂2,L(r) =

1
2
)

that are correct on q = l,m, r, being on the equilibrium
path, but incorrect on q = ll1, lr1, being off the equilib-
rium path; sequence q = RL1 is a best response to beliefs
µ1,RL1 = (p̂2,RL1(ll1) = p̂2,RL1(r) =

1
2
) that are correct ev-

erywhere, all the information sets of agent 2 being on the
equilibrium path; sequence q = ll1 is a best response to be-
liefs µ2,ll1 = (p̂1,ll1(M) =

1
12

, p̂1,ll1(RL1) =
5
12
) that is cor-

rect everywhere, all the information sets of agent 1 being on
the equilibrium path; and sequence q = r is a best response
to beliefs µ2,r = (p̂1,r(M) =

1
12

, p̂1,r(RR1) =
5
12
) that are

correct on q = L,M,R, being on the equilibrium path, but
incorrect on q = RL1,RR1, being off the equilibrium path.
Notice that (M,r) does not occur in any USCE.

Example 3. A NE that is a RUSCE is σ = (p1(RR1) =
1, p2(r) = 1) with µ = (p̂1(RR1) = 1, p̂2(r) = 1, p̂2(lr1) →
1 in perturbation). Fixed σ2, there is not any perturbation
of agent 1 such that she can observe σ2 at information set 2.2
and then the beliefs of agent 1 on the behavior of agent 2 at

986



information set 2.2 can be any. Fixed σ1, there is a perturba-
tion of agent 2 such that she can observe σ1 at information
set 1.2 and then the beliefs of agent 2 on the behavior of
agent 1 at 1.2 must be correct.

Example 4. A NE that is not a RUSCE is σ = (p1(M) =
1, p2(lr1) = 1). This is because, in perturbation agent 2 takes
q = ll1 instead of q = lr1. It can be shown that there not
exists any RUSCE when p1(M) = 1. Indeed, if p1(M) = 1,
then, by best response, p2(ll1) = 1 (p2(lr1) = 1 is removed
by perturbation). Fixed σ2, there exists a perturbation of
agent 1 such that she can observe σ2 at information set 2.2
and then the beliefs of agent 1 on the behavior of agent 2 at
2.2 must be correct. Then, by sequential rationality, agent 1
knows that, if she takes q = RL1, she gains more than taking
q =M .

4. EXPERIMENTAL EVALUATION
Our experimental setting is constituted by a set of game

instances similarly to those used in [8, 18]. We produced a
number of game instances characterized by the following pa-
rameters: tree depth (from 1 to 8), branching factor (from
2 to 5), information set density (from 0, when all the in-
formation sets are singleton, to 1, when the game is played
simultaneously by the players; we used the values: 0, 0.25,
0.5, 0.75, 1). The players alternate in the game. The payoffs
are randomly generated from 0 to 1 with a uniform proba-
bility distribution. For each combination of parameters we
produced 100 different game instances. In our experimen-
tal evaluations we used an UnixOS based Intel Xeon CPU
2.33 Ghz with 4 MB cache and 8 GB RAM.

We experimentally evaluate the computational time needed
to find the different concepts of SCE by using both mixed–
integer linear and linear complementarity mathematical pro-
gramming formulations. The SCG based formulations were
coded by using AMPL 8.1 [1] and solved by using CPLEX
11.0 [6]. To solve the LC based formulations, we devel-
oped an ad-hoc algorithm. As discussed in Section 2.3, the
Lemke’s algorithm is commonly used to compute a NE and a
SE. Anyway, this algorithm suffers of several limitations that
prevent its applicability to general linear complementarity
problems. More precisely, the Lemke’s algorithm presents
two critical issues: it strongly suffers of numerical instabil-
ity and it can fail even when the LCP admits at least one
solution. An alternative method to solve a LCP, that does
not suffer of the Lemke’s algorithm limitations, is proposed
in [18]. We implemented two variations of this algorithm to
find a HSCE and a RSCE respectively. (In Appendix A, we
discuss the details concerning the limitations of the Lemke’s
algorithm and we present our solving algorithm.) We coded
our algorithms in C.

We executed the algorithms with a deadline of ten minutes
(as customarily accomplished in similar evaluations [16]).
Table 1 reports the average computational times (NE is com-
puted by SCG original formulation without beliefs) spent to
solve the mixed–integer linear formulations when informa-
tion set density is 0.5. It can be observed that computing a
HSCE is harder than computing a USCE that, in its turn, is
harder than computing a NE. With different values of infor-
mation set density, the computational times differ for ±20%,
keeping the same profile (NE is the easiest and HSCE is the
hardest). The main reason is that the size (in terms of num-
ber of variables and constraints) of the HSCE mathematical
programming problem is much larger than the USCE size

that is, in its turn, larger than the NE size (the variables re-
quired by NE are O(∣Q1∣ + ∣Q2∣), O(2∣Q1 ∣ + 2∣Q2∣) by USCE
and RSCE, O(∣Q1∣ ⋅ ∣Q2∣) by HSCE).

depth concept branching
2 3 4 5

NE <0.01 <0.01 <0.01 <0.01
1 USCE <0.01 <0.01 <0.01 <0.01

HSCE <0.01 <0.01 <0.01 <0.01
NE <0.01 <0.01 0.01 0.10

2 USCE <0.01 <0.01 0.03 0.17
HSCE <0.01 0.01 0.09 1.92
NE <0.01 0.04 22.93 –

3 USCE <0.01 0.24 41.72 –
HSCE <0.01 0.41 94.37 –
NE <0.01 0.83 – –

4 USCE 0.02 6.75 – –
HSCE 0.03 44.10 – –
NE 0.02 – – –

5 USCE 0.06 – – –
HSCE 0.13 – – –
NE 0.06 – – –

6 USCE 0.77 – – –
HSCE 0.78 – – –
NE 0.08 – – –

7 USCE 1.44 – – –
HSCE 4.19 – – –
NE 1.15 – – –

8 USCE 11.00 – – –
HSCE 30.24 – – –

Table 1: Computational times spent to solve mixed
integer linear formulations.

Table 2 reports the computational times spent to solve the
linear complementarity formulations. The results confirm
those previously discussed with the mixed integer linear for-
mulations: HSCE is harder than NE. RSCE is easier than
HSCE, requiring a much smaller number of variables and
constraints. LC based formulations are much more efficient
than SCG based formulations, but they do not allow one to
find an optimal equilibrium.

depth concept branching
2 3 4 5

NE <0.01 <0.01 <0.01 <0.01
1 HSCE <0.01 <0.01 <0.01 <0.01

RSCE <0.01 <0.01 <0.01 <0.01
NE <0.01 <0.01 <0.01 <0.01

2 HSCE <0.01 <0.01 <0.01 <0.01
RSCE <0.01 <0.01 <0.01 <0.01
NE <0.01 <0.01 <0.01 31.6

3 HSCE <0.01 <0.01 10.64 –
RSCE <0.01 <0.01 0.09 44.83
NE <0.01 <0.01 96.27 –

4 HSCE <0.01 6.72 – –
RSCE <0.01 0.05 131.54 –
NE <0.01 5.23 – –

5 HSCE <0.01 67.89 – –
RSCE <0.01 6.48 – –
NE <0.01 – – –

6 HSCE <0.01 – – –
RSCE <0.01 – – –
NE <0.01 – – –

7 HSCE <0.01 – – –
RSCE <0.01 – – –
NE 0.42 – – –

8 HSCE 5.87 – – –
RSCE 1.25 – – –

Table 2: Computational times spent to solve linear
complementarity formulations.

5. CONCLUSIONS AND FUTURE WORKS
In a large number of practical applications, the assump-

tion of common information is hardly verified, making the
adoption of the Nash equilibrium concept not justifiable.
The game theory literature provides a solution concept, i.e.,
self–confirming equilibrium (SCE), that appropriately cap-
tures the situation where agents are rational and form their
beliefs by observing the behaviors of their opponents with-
out having a common prior. In this paper, we provide some
algorithms to compute different notions of SCE, we discuss

987



their properties, and we evaluate their performance in terms
of computational time.

In future works, we shall study the computation of SCEs
when there is uncertainty both in the situations where the
uncertainty is not known by the agents and apply them to
economic situations. We are also interested in characterizing
easy and hard games for the computation of SCEs.

6. REFERENCES
[1] AMPL Opt. LLC. http://www.ampl.com, 2010.

[2] C. Daskalakis, P. Goldberg, and C. Papadimitriou.
The complexity of computing a Nash equilibrium. In
STOC, pages 71–78, 2006.

[3] E. Dekel, D. Fudenberg, and D. Levine. Payoff
information and self-confirming equilibrium. J ECON
THEORY, 89(2):165–185, 1999.

[4] D. Fudenberg and D. Levine. Self-confirming
equilibrium. ECONOMETRICA, 61(3):523–545, 1993.

[5] D. Fudenberg and J. Tirole. Game Theory. The MIT
Press, Cambridge, USA, 1991.

[6] ILOG Inc. http://ilog.com.sg/products/cplex, 2010.

[7] D. Koller, N. Megiddo, and B. von Stengel. Efficient
computation of equilibria for extensive two-person
games. GAME ECON BEHAV, 14(2):220–246, 1996.

[8] D. Koller and A. Pfeffer. Representations and
solutions for game-theoretic problems. ARTIF
INTELL, 94(1-2):167–215, 1997.

[9] D. Kreps and R. Wilson. Sequential equilibria.
ECONOMETRICA, 50(4):863–894, 1982.

[10] C. Lemke. Some pivot schemes for the linear
complementarity problem. MATH PROGRAM STUD,
7:15–35, 1978.

[11] C. Lemke and J. Howson. Equilibrium points of
bimatrix games. SIAM J APPL MATH,
12(2):413–423, 1964.

[12] P. Miltersen and T. Sorensen. Computing sequential
equilibria for two-player games. In SODA, pages
107–116, 2006.

[13] D. Monderer and M. Tennenholtz. Learning
equilibrium as a generalization of learning to optimize.
ARTIF INTELL, 171(7):448–452, 2007.

[14] A. Osepayshvili, M. Wellman, D. Reeves, and
J. Mackie-mason. Self-confirming price prediction for
bidding in simultaneous ascending auctions. In UAI,
pages 441–449, 2005.

[15] R. Porter, E. Nudelman, and Y. Shoham. Simple
search methods for finding a Nash equilibrium. In
AAAI, pages 664–669, 2004.

[16] T. Sandholm, A. Gilpin, and V. Conitzer.
Mixed-integer programming methods for finding Nash
equilibria. In AAAI, pages 495–501, 2005.

[17] Y. Shoham and K. Leyton-Brown. Multiagent Systems:
Algorithmic, Game Theoretic and Logical Foundations.
Cambridge University Press, Cambridge, USA, 2008.

[18] B. von Stengel, A. van den Elzen, and D. Talman.
Computing normal form perfect equilibria for
extensive two-person games. ECONOMETRICA,
70(2):693–715, 2002.

[19] M. Wellman and J. Hu. Conjectural equilibrium in
multiagent learning. MACH LEARN, 33(2-3):179–200,
1998.

APPENDIX

A. MLCP FORMULATION
Given variables z,w ∈ Rn, and coefficients square matrix

M(n,n) and vector b ∈ Rn, a standard LCP is expressed as:

z, w ≥ 0 (30)

w =Mz − b (31)

z
T
⋅w = 0 (32)

The Lemke’s algorithm is granted to terminate when ma-
trix M and vector b satisfies two conditions: M is positive
semi–definite and b is such that, if z ≥ 0 and Mz ≥ 0 and
zT Mz = 0, then zT b ≥ 0. While a straightforward formula-
tion satisfying these two conditions can be found to compute
a NE and a SE, we were not able to find a formulation for
HSCE and RSCE.

The algorithm described in [18] is granted to terminate
when applied to game instances and it does not require ad-
ditional conditions. It is based on mixed linear complemen-
tarity problems (MLCP). A MLCP is a generalization of a
LCP, being the combination of a LCP and linear equation
system. Its standard form is expressed as:

z1, w ≥ 0 (33)

w =M1,1z1 +M1,2z2 − b1 (34)

0 =M2,1z1 +M2,2z2 − b2 (35)

z
T
1 ⋅w = 0 (36)

According to [18], the resolution of the MLCP is accom-
plished into two phases. In the first phase, a basis satisfying
constraints (35) and (36) that is a well–defined strategy is
found. In the second phase, the complementarity pivoting
is applied as prescribed by the Lemke’s algorithm. During
the pivoting the algorithm is proved to move on well–defined
strategies and not to cycle and therefore it always terminates
producing a solution. We provide the MLCP formulation for
finding a RSCE (the formulation for HSCE is analogous):

z1 = [p
+
1 , p

−
1, p

+
2 , p

−
2, t

+
1, t

−
1, t

+
2, t

−
2] z2 = [v1, v2, p̂

+
1, p̂

−
1 , p̂

+
2, p̂

−
2]

b1 = [0, 0, 0, 0, 0, 0, 0, 0] b2 = [s1, s2, s1, s2, 0, 0, 0, 0]

M1,1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
−F1 0 0 0
0 F1 0 0
0 0 −F2 0
0 0 0 F2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, M1,2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ST
1 0 0 0 −U1 −U1

ST
1 0 0 0 −U1 −U1

0 ST
2 −UT

2 −UT
2 0 0

0 ST
2 −UT

2 −UT
2 0 0

0 0 F1 0 0 0
0 0 0 −F1 0 0
0 0 0 0 F2 0
0 0 0 0 0 −F2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

M2,1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S1 S1 0 0 0 0 0 0
0 0 S2 S2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

T1 T1 0 0 −I 0 0 0
T1 T1 0 0 0 −I 0 0
0 0 T2 T2 0 0 −I 0
0 0 T2 T2 0 0 0 −I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, M2,2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 0 0 0

S1 S1 0 0
0 0 S2 S2
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where variables ti are auxiliaries, Si and si code the sequence
form constraints (1), (2), (4), (5) as described in [7], Fi and
Ti code constraints (27). For reasons of space, in matrices
M we report only non-zero columns. Additional constraints
are p+i , p−i , p̂+i , p̂+i ≥ li(ǫ) where li(ǫ) is the perturbation de-
fined as prescribed in Section 3.4. Perturbed variables are
substituted as follows π±i = p±i − li(ǫ) and π̂±i = p̂±i − li(ǫ) and
the problem is solved in π.

The initial solution is calculated similarly as accomplished
in [18]. Instead, we need to modify the pivoting for what
concerns the dropping variable. More precisely, the dropping
variables must assure that π̂±i keeps to be non–negative.

988


