
Evolving Subjective Utilities:
Prisoner’s Dilemma Game Examples

Koichi Moriyama Satoshi Kurihara Masayuki Numao
The Institute of Scientific and Industrial Research, Osaka University

8-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
{koichi, kurihara, numao}@ai.sanken.osaka-u.ac.jp

ABSTRACT
We have proposed the utility-based Q-learning concept that
supposes an agent internally has an emotional mechanism
that derives subjective utilities from objective rewards and
the agent uses the utilities as rewards of Q-learning. We have
also proposed such an emotional mechanism that facilitates
cooperative actions in Prisoner’s Dilemma (PD) games.

However, this mechanism has been designed and imple-
mented manually in order to force the agents to take coop-
erative actions in PD games. Since it seems slightly unnat-
ural, this work considers whether such an emotional mech-
anism exists and where it comes from. We try to evolve
such mechanisms that facilitate cooperative actions in PD
games by conducting simulation experiments with a genetic
algorithm, and we investigate the evolved mechanisms from
various points of view.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—intelligent agents, multiagent systems

General Terms
Experimentation

Keywords
Reward structures for learning; Multiagent Learning; Evo-
lution, adaptation; Game theory

1. INTRODUCTION
In this paper, we consider a learning agent that chooses

actions seeming appropriate. The most popular learning
method for agents is reinforcement learning [14]. In rein-
forcement learning, an agent is given rewards from the envi-
ronment according to its actions and the states of the envi-
ronment, and the agent learns to take actions that maximize
the rewards.

If there is only one agent in the world, it can take actions
that maximize its own rewards. However, in a multiagent
environment consisting of multiple agents, the maximization
becomes impossible because of interactions among agents.

Cite as: Evolving Subjective Utilities: Prisoner’s Dilemma Game Ex-
amples, Koichi Moriyama, Satoshi Kurihara, and Masayuki Numao, Proc.
of 10th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.),
May, 2–6, 2011, Taipei, Taiwan, pp. 233-240.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

In this case, cooperative behaviors like yielding are neces-
sary, but reinforcement learning as a reward-maximizer fails
to learn such behaviors.

When we consider the most intelligent agents, i.e., hu-
mans, they take cooperative behaviors in such cases. For
example, Fehr and Schmidt [3] tried to explain human be-
haviors by introducing “inequity-aversion” assumption into
their models. This assumption represented a feeling of aver-
sion to the difference from others and prevented the models
from outsmarting others. Rilling et al. [11] reported that,
when humans took cooperative behaviors, reward processing
areas in their brains were positively activated. They inferred
that the cooperative behaviors themselves became a kind of
rewards in their brains.

Based on them, we have proposed the utility-based Q-
learning concept [8]. This concept supposes that the agent
internally has an emotional mechanism that derives subjec-
tive utilities from objective rewards, and it uses the utili-
ties as rewards of Q-learning [16], a representative method
of reinforcement learning. We have also proposed such an
emotional mechanism that facilitates cooperative actions in
Prisoner’s Dilemma (PD) games [8]. PD games [1, 9] are
the most famous two-person two-action game in game the-
ory, in which if the two players try to maximize individual
payoffs without cooperating with each other, they obtain
less payoffs than those they would obtain when cooperating
with each other. The mechanism we have proposed derives
a larger subjective utility than the payoff each agent is given
when the agents take mutual cooperation in PD games. The
agents learning by the utilities take cooperation afterward.

However, this utility deriving function has been designed
and implemented manually in order to force the agents to
take cooperative actions in PD games. Since it seems slightly
unnatural, this work considers whether such an emotional
mechanism exists and where it comes from. We try to evolve
such mechanisms that facilitate cooperative actions in PD
games by conducting simulation experiments with a genetic
algorithm. Notice that the objective of this work is not to
acquire a strategy itself in PD games, but to know whether
such an emotional mechanism evolves.

This paper consists of six sections. Section 2 introduces
PD games, Q-learning, the utility-based Q-learning concept,
and genetic algorithms, which are used in the following sec-
tions. In Section 3, we see the experiment scheme to obtain
the emotional mechanisms for PD games by evolution. In
Section 4, we investigate the emotional mechanisms we ob-
tained from the experiment. After we check several related
works in Section 5, this paper is summarized in Section 6.

233

Table 1: Prisoner’s Dilemma game

A \ B C D
C R, R S, T
D T, S P, P

2. BACKGROUNDS
This section introduces PD games, Q-learning, the utility-

based Q-learning concept, and genetic algorithms, which are
used in the following sections. We use the terms“payoff”and
“reward” in the same sense in this paper.

2.1 Prisoner’s Dilemma Games
A Prisoner’s Dilemma (PD) game [1, 9] is a two-person

two-action game and is often shown by a bimatrix, called a
payoff matrix (Table 1). Each player has two actions C (co-
operation) and D (defection). The players A and B choose
actions from rows and columns, respectively. After choosing
actions, each player obtains a payoff in Table 1. For exam-
ple, when A and B choose C and D, respectively, A and
B obtain payoffs S and T , respectively. Hereafter, (X, Y)
stands for the pair of actions of both players such that X
and Y are the actions of A and B, respectively.

PD has the following relations among payoffs:

T > R > P > S and 2R > T + S.

Under these relations, each player obtains a larger payoff
when he/she chooses D regardless of the opponent’s action.
As a result, the action pair becomes (D, D) and each player
obtains a payoff P . However, it is more desirable for both
players to choose the first actions (C, C) and obtain R which
is larger than P . Since rational decisions of both players give
a worse result, this game is called “dilemma”.

2.2 Q-learning
Suppose an agent senses a state st ∈ S and chooses an

action at ∈ A(st) at a discrete time t. S is a set of possi-
ble states in the environment and A(st) is a set of possible
actions in the state st. After choosing an action, the agent
receives a reward rt+1 ∈ R and senses a new state st+1.
Q-learning [16] updates an action value function Q by the
following rule to make it approach the true value under the
optimal policy π∗, which is the expected sum of rewards dis-
counted by γ ∈ [0, 1) under π∗, i.e., Eπ∗

`P∞
k=0 γkrt+1+k

´
.

Qt+1(s, a) =

(
Qt(st, at) + α δt if (s, a) = (st, at),

Qt(s, a) otherwise.

δt ≡ rt+1 + γ max
a′∈A(st+1)

Qt(st+1, a
′)−Qt(st, at).

α ∈ (0, 1] is a parameter called the learning rate and δt is
called TD error that approaches 0 when Q(s, a) approaches
the true value of the action a in the state s under π∗. For all s
and a, Q(s, a) is proved to converge to the true value Q∗(s, a)
under π∗ with probability one when (i) the environment has
the Markov property, (ii) the agent visits all states and takes
all actions infinitely, and (iii) α is decreased properly [16].

If the true value function Q∗ is known, the agent can
choose an optimal action a∗ in a state s from Q∗ by

a∗ = arg max
a′′∈A(s)

Q∗(s, a′′).

Rewards (external stimulus)

An emotional mechanismUtilities (internal stimulus)
$

Figure 1: An emotional mechanism

However, if the agent always chooses such actions during
learning, Q may converge to a local optimum because the
agent may not visit all states. To avoid it, the agent usu-
ally uses a stochastic method like ε-greedy [14] to choose
actions. ε-greedy method chooses either an action having
the maximum Q with probability 1− ε or a random action
with probability ε.

2.3 Utility-based Q-learning
The utility-based Q-learning concept [8] supposes that the

agent internally has an emotional mechanism that derives
subjective utilities from objective rewards (Figure 1), and it
uses the utilities as rewards of Q-learning. Especially, in
one-state Q-learning, we have also proposed such an emo-
tional mechanism, namely a utility deriving function, that
facilitates mutual cooperation in PD games [8]. This utility
deriving function derives a utility u from a reward r,

u ≡

r + r′(≡ R + r′) if the actions are (C, C),
r otherwise,

(1)

such that

r′ ≥ P − (αR + (1− α)S)

α
(2)

and α ∈ (0, 1) is constant.
The utility u derived from Equation 1 makes the action

value of cooperation larger than (or equal to) that of defec-
tion, i.e., Q(C) ≥ Q(D), after a single mutual cooperation.
It comes theoretically from the number of consecutive mu-
tual cooperation that is necessary to make Q(C) ≥ Q(D),
when Q(D) is the limit value after infinite mutual defections.
See the paper [8] for details.

2.4 Genetic Algorithm
A genetic algorithm (GA) [5, 7] is an algorithm that sim-

ulates the evolution of creatures. GA uses many entities
called genomes consisting of multiple genes. Each genome
represents a solution of the target problem. GA finds a
genome that maximizes a fitness function, which indicates
goodness of a genome for the target problem, by iterating
selection, crossover , and mutation. GA can be applied to
many problems of which we can define fitness functions.

Simple GA first defines genomes and a fitness function
from solution candidates and the objective of the problem,
respectively. After that, GA executes the following proce-
dure iteratively. One iteration is called one generation. Fi-
nally, a genome with the maximum fitness shows the best
solution satisfying the objective of the problem.

1. Generate N genomes in a set named “current” ran-
domly and prepare an empty set named “new”.

234

u(r)

r

TRPS

Figure 2: Assumption of a utility deriving function

2. Calculate the fitness of each genome in the current set.

3. According to the fitness, select two genomes from the
current set (selection), copy them, and apply the fol-
lowing procedure to the copied genomes to create new
genomes. After that, the new genomes are added to
the new set.

• Exchange several genes between the two genomes
with probability pc (crossover).

• Modify each gene in each genome with probability
pm (mutation).

4. Until the size of the new set becomes N , repeat 3.

5. If the termination condition is not satisfied, clear out
the current set and move all the contents of the new
set to the current set. Back to 2.

3. EVOLVING UTILITIES
Although the utility-based Q-learning with the utility de-

riving function (Equation 1) was shown to bring out mu-
tual cooperation [8], this function has been designed and
implemented manually in order to force the agents to take
cooperative actions in PD games. Since it seems slightly un-
natural, this work considers whether such a utility deriving
function, i.e., an emotional mechanism, exists and where it
comes from. Humans, who may show mutual cooperation,
appeared as the result of evolution. Therefore, we try to
obtain such an emotional mechanism by evolutionary calcu-
lation using GA.

This work especially investigates how utility deriving func-
tions evolve by GA when N agents having these functions
play PD games in a round-robin fashion.

3.1 Genome Definition
In order to apply GA to evolving utility deriving functions,

first we have to define genomes. Suppose u(r) shows a utility
deriving function that derives a utility u when the reward
is r. If the payoffs T > R > P > S in Table 1 become
u(R) > u(T), u(S) > u(P), and u(R) > u(P), it is obvious
that the action C becomes superior to D. Since this function
u(r) can be depicted as like Figure 2, we assume that u(r)
is a cubic function, i.e.,

u ≡ u(r) ≡ ar3 + br2 + cr + d, (3)

and the coefficients a, b, c, d are evolved by real-valued GA.
Note that we do not assume that the cubic function itself

Start

Initialize

Playing PD & Q-learning

Selection, Crossover
& Mutation

N new agents?

G generations?

Finish

Yes

Yes

No

No

Figure 3: Flowchart of a run of the experiment

promotes cooperation. We simply choose it because it may
be the simplest function that can represent the assumption
of Figure 21.

3.2 Experiment Scheme
Let N and G be the number of agents in a generation

and the total number of generations, respectively. Figure 3
shows the overview of a run of the experiment. This is based
on the simple GA shown in Section 2.4.

Initialize: Two empty sets named “current” and “new” are
prepared. N Q-learning agents each of which has its
own u represented by a genome (Equation 3) are con-
structed and put into the current set. Each gene, i.e.,
the coefficients a, b, c, d of Equation 3, is a random real
value in a finite interval. The action value functions Q
of the agents are initialized.

Playing PD & Q-learning: N agents play iterative PD
games in a round-robin fashion. Each play consists
of M games. After each game, each agent executes
utility-based Q-learning with the utility u derived from
Equation 3.

Let rg
ij be the sum of payoffs an agent i obtains in a

play with an agent j at the generation g. After playing
with all other agents, the agent i calculates the (raw)
fitness fg

i =
P

j rg
ij . Notice that the fitness is the sum

of payoffs, not the sum of utilities.

Selection, Crossover & Mutation: Two agents are cho-
sen from the current set by roulette wheel selection
according to the scaled fitness that is calculated from
fg

i with a linear scaling method [5] with the coefficient
ξ. That avoids premature convergence to extraordi-
nary individuals at the beginning and emphasizes the
differences among genomes at the end.

1Naturally, there are other functions that can represent the
assumption. We need to investigate the cases of using other
functions.

235

The genomes of the selected agents are copied. The
copied genomes are crossed, with probability pc, by
the uniform crossover that swaps genes of the genomes
with probability 0.5. Then, each of the two genomes
is mutated by adding a real value from a Gaussian
distribution N(µ, σ) to each gene with probability pm.

After that, two agents having the two new genomes
are constructed and added to the new set. The action
value functions Q of the new agents are initialized.

N new agents? Until the size of the new set becomes N ,
“Selection, Crossover & Mutation” is repeated.

G generations? Until evolving G generations, the current
set is cleared out and all agents in the new set are
moved to the current set. The whole process except
“initialize” is repeated.

We use the following parameters in the experiment: the
number of agents N = 100, the number of generations G =
10000, the number of games in a play M = 1000, the coef-
ficient of the linear scaling method ξ = 1.2, the probability
of crossover pc = 0.9, and that of mutation pm = 0.01. The
interval for each gene is [−10, 10] and the Gaussian distri-
bution for mutation is N(0, 1). We do not employ the elite
strategy that copies the best genome into the next genera-
tion automatically.

The payoffs of PD game are identical with those used in
the Axelrod’s tournament [1], i.e., (T, R, P, S) = (5, 3, 1, 0).

The number of state of Q-learning is set to one. This
means each agent does not remember the action sequences
at all and thus each game becomes identical with a one-
shot PD game for the agents. The parameters of Q-learning
are identical with those in the previous paper [8], i.e., the
learning rate α = 0.25, the discount factor γ = 0.5, ε in
ε-greedy method is 0.05, and the initial values of the action
value function Q are all zero. Since M × (ε/2)2 = 0.625,
both agents take an action that has less Q simultaneously
around 0.625 times in a play.

GAlib2 2.4.7 is used as the implementation of real-valued
GA.

4. RESULTS
The experiment described in Section 3.2 was conducted

100 runs. In this section, we investigate the results of the
experiment.

4.1 Did mutual cooperation occur?
At the end of each run, the average payoff each agent

obtained per game became more than 2.7 in 83 out of 100
runs. This means that mutual cooperation occurred because
(T + S)/2 = 2.5. However, in the remaining 17 runs each
agent obtained around 1.4 in the mean, which showed mu-
tual defection was continuing.

Figure 4 shows the mean payoffs per game at each gener-
ation in a certain run. The function u of the best agent that
obtained the highest payoff at the end of this run became

u(r) = −1.18073r3 + 7.81789r2 − 4.44985r − 10

and the agent obtained 2.95169 per game. There were eight
agents that had same u, and they obtained more than 2.9 in

2http://lancet.mit.edu/ga/

 1

 1.5

 2

 2.5

 3

 0 2000 4000 6000 8000 10000
 0

 25

 50

 75

 100

M
e
a
n
 p

a
y
o
ff

#
 o

f
g
e
n
o
m

e
s
 m

a
k
in

g
 u

(R
)>

u
(T

)

Generation

(a) Overall view (plotting every 100 generations)

 1

 1.5

 2

 2.5

 3

 1600 1620 1640 1660 1680 1700
 0

 25

 50

 75

 100

M
e
a
n
 p

a
y
o
ff

#
 o

f
g
e
n
o
m

e
s
 m

a
k
in

g
 u

(R
)>

u
(T

)

Generation

(b) Closeup at the phase transition (plotting ev-
ery generation)

Figure 4: Mean payoffs per game (line with the left
scale) and the number of genomes making u(R) >
u(T) (bars with the right scale) in a certain run

the mean. This u is shown by a solid line in Figure 5. It goes
against the assumption of Figure 2 because u(R) ≡ u(3) =
15.13175 is slightly less than u(T) ≡ u(5) = 15.60675. It is
also obvious that u(S) ≡ u(0) < u(1) ≡ u(P). Thus, this u
also gives the agent a PD game.

We can see in Figure 4(b) a kind of phase transition where
the average payoffs rose suddenly in a short time of a few
dozen games. Although it depended on runs when the phase
transition occurred, the phase transition period was a few
dozen games in most runs. This is discussed in Section 4.3.

It is clear that the first coefficient a in Equation 3 should
be negative so as to realize the assumption of Figure 2. Al-
though the coefficients of most genomes at the end of the
83 successful runs were negative, those of 16 out of 17 failed
runs were positive. In the remaining one run, the mean pay-
offs per game around the end were fluctuating. It might be
the beginning of the phase transition.

4.2 What property did u have?
In addition to u of the best agent at the end of a certain

run, Figure 5 also shows u of the best agent at the 1700th
generation of this run, which was just after the phase tran-
sition, by a dotted line. We can see that, at the 1700th
generation, u(R) was obviously larger than u(T) as the as-
sumption of Figure 2, but at the end of the run, as we saw
before, u(R) became less than u(T).

236

-10

 0

 10

 20

S(=0) P(=1) R(=3) T(=5)

u
(r

)

r

1700th
10000th

Figure 5: Utility deriving functions of agents ob-
taining the highest per-game payoff at the 1700th
generation and at the 10000th generation in the run
of Figure 4, respectively

Hence, let us investigate the relation between u(R) and
u(T) in all generations. Figure 4 also shows the number of
genomes that made u(R) > u(T) by bars. Let us call such
genomes “R-preferring”. We can see that, most genomes
were R-preferring until around the 8000th generation, but
the number fluctuated after that. We have not found the
reason why that fluctuation happens. We can only say about
the run that, if the best genome was R-preferring at the start
of decreasing, it was replaced by a non-R-preferring genome
soon. On the other hand, interestingly, when the number
was increasing, the best non-R-preferring genome continued
to stay for a while and R-preferring genomes were prevailing
in the middle level.

We investigated all 83 runs showing the phase transition
and found the following two cases:

1. Most of all genomes were R-preferring at least once,
like the example shown before (Figure 4), and

2. Only a small number of genomes were R-preferring,
like an example shown in Figure 6.

In order to eliminate the effect of random initial values, we
ignore first 20 generations and analyze the remaining 9980
generations of the result of each run. It was 35 out of 83
runs that all genomes were R-preferring at least once and it
was 19 out of 83 runs that R-preferring genomes were in the
minority in all generations. It was only five out of 83 runs
that the best genome were R-preferring at the end of the
runs. Hence, in at least 30 runs, the best genome changed
from an R-preferring one to a non-R-preferring one.

4.3 What happened at the phase transition?
In Section 4.2, we investigated the number of R-preferring

genomes in all generations. In this section, let us focus on
the phase transition period and investigate the number of
R-preferring genomes and generations in this period.

First the period is to be defined. Based on the results like
Figures 4 and 6, we define the start and the end of the period
as the generations when the average payoff first exceeded 1.6
and 2.7, respectively.

Under this definition, Figure 7 shows the length of the
period. Y -axis shows the number of generations in log scale
and x-axis shows each run sorted by the number of genera-
tions. From this figure, we can see that, in most runs, the

 1

 1.5

 2

 2.5

 3

 0 2000 4000 6000 8000 10000
 0

 25

 50

 75

 100

M
e
a
n
 p

a
y
o
ff

#
 o

f
g
e
n
o
m

e
s
 m

a
k
in

g
 u

(R
)>

u
(T

)

Generation

(a) Overall view (plotting every 100 generations)

 1

 1.5

 2

 2.5

 3

 2080 2100 2120 2140 2160 2180
 0

 25

 50

 75

 100

M
e
a
n
 p

a
y
o
ff

#
 o

f
g
e
n
o
m

e
s
 m

a
k
in

g
 u

(R
)>

u
(T

)

Generation

(b) Closeup at the phase transition (plotting ev-
ery generation)

Figure 6: A certain run in which only a small num-
ber of genomes made u(R) > u(T)

phase transition period was less than 100 generations, and
the length seems to follow an exponential function.

Figure 8 shows the average numbers of R-preferring ge-
nomes during the period. In each run, the total number of
R-preferring genomes during the period was divided by the
number of generations of the period. X-axis shows each run
sorted by the average number of genomes. We can see that
this graph consists of two linear lines bending around the
37th, where the number of R-preferring genomes is around
10. Eighteen out of the aforementioned 19 runs of the “mi-
nority case”, in which R-preferring genomes were in the mi-
nority in all generations, were left side of the bending point.
On the other hand, 31 out of the 35 runs of the “majority
case”, in which all genomes were R-preferring at least once,
were right side of the point. Therefore, the left side and
the right side may correspond to the minority case and the
majority case, respectively. It suggests that about a half of
the phase transition is similar to the minority case. This
is interesting because it disagrees with the assumption of
Figure 2.

Figure 9 shows the relation between the number of R-
preferring genomes in the phase transition period and the
duration of the period. We can see the variance became
smaller as the number of genomes increased.

More analyses are necessary to know the reason why mu-
tual cooperation occurred even when R-preferring genomes
were in the minority. Perhaps, since the condition u(R) >

237

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80

#
 o

f
g
e
n
e
ra

ti
o
n
 (

lo
g
 s

c
a
le

)

Runs (ordered)

Figure 7: Number of generations needed for phase
transition. x: each run (sorted by the number of
generations), y: number of generations (log scale)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80

#
 o

f
g
e
n
o
m

e
s
 m

a
k
in

g
 u

(R
)>

u
(T

)

Runs (ordered)

Figure 8: Average number of genomes that made
u(R) > u(T) in the phase transition period. x: each
run (sorted by the average number), y: average num-
ber of genomes

u(T) is not a necessary one but a sufficient one, genomes in
such runs may have evolved so as to satisfy only (unknown)
necessary conditions.

4.4 Relation between u and Formula 2
Formula 2 appeared in Section 2.3 is a kind of neces-

sary condition to facilitate mutual cooperation in PD games.
Hence, based on the discussion in Section 4.3, here we in-
vestigate the relation between the result of this work and
Formula 2.

Assigning the learning rate α = 0.25 of the experiment to
Formula 2 gives the following formula:

r′ ≥ 4P −R− 3S.

From this formula, if 4P − R − 3S > 0, i.e., R < 4P − 3S,
r′ should be larger than 0. This means that, in order to
maintain mutual cooperation in one-state Q-learning, it is
necessary to make the payoff larger. On the other hand, if
R ≥ 4P −3S, the mutual cooperation can be maintained by
the original payoff. Hence, we check whether the utilities u
calculated by Equation 3 satisfied

u(R) ≥ 4u(P)− 3u(S) (4)

so as to know whether the mutual cooperation could be

 1

 10

 100

 1000

 10000

 0.1 1 10 100

#
 o

f
g
e
n
e
ra

ti
o
n
 (

lo
g
 s

c
a
le

)

of genomes making u(R)>u(T) (log scale)

Figure 9: Relation between the number of genomes
making u(R) > u(T) in the phase transition period
and the duration of the period. x: average number
of genomes (log scale), y: number of generations (log
scale)

maintained only by the evolved utilities.
The result shows that most of all genomes in most of all

runs satisfied Formula 4 regardless of the phase transition.
It is because, as u(T) became much larger before the phase
transition, u(R) also became much larger than u(P) and
u(S)3. It may be a reason why mutual cooperation occurred
even when R-preferring genomes were in the minority.

5. RELATED WORKS
There are several existing works in which agents learn

strategies in PD games. Sandholm and Crites [12] conducted
various experiments in which Q-learning agents played PD
games and investigated whether or not mutual cooperation
occurred. They reported that mutual cooperation did not
occur when both agents did not take their past actions into
account and that the parameters determining exploration
rates had a major impact on the result when both agents
used the past actions. Stimpson et al. [13] investigated what
patterns the satisficing strategy produced in PD games. This
strategy consisted of a parameter named aspiration, a sim-
ple behavior rule, and a simple update rule for aspiration.
Under the behavior rule, the agent (i) continued to take the
current action if it gave a larger payoff than aspiration, or
(ii) took the other action otherwise. This work is interesting
because it tried to derive a satisfactory result instead of an
optimal result.

There are a lot of works that tried to obtain strategies of
PD games by evolutionary algorithms. Here we see only a
few of them. Axelrod [1] held two computer competitions
of PD games, in which all of the attending programs played
iterative PD games in a round-robin fashion. In both compe-
titions, a strategy named Tit for Tat (TFT) became the best
one according to the mean payoffs. After the competitions,
he investigated what strategies of PD games evolved by GA
[2]. First he specified that each locus of a gene indicated the
sequence of past three actions and each gene indicated the
next action. After that, he calculated some representative

3This may depend largely on the fact that u was a con-
tinuous function in which u(T) and u(R) were (somewhat)
dependent. We also have to investigate the cases where u is a
discrete function, in which they are completely independent.

238

strategies statistically from all of the attending programs
of the second competition. He reported that, by playing
PD games with these representative strategies, GA evolved
strategies like TFT. Also, he reported that if all genomes in
the genome set played PD games in a round-robin fashion,
mutual cooperation occurred after growth and decay of de-
fection. Fogel [4] also reported that cooperation occurred in
PD games if genomes were defined as finite state automata.
Vega-Redondo [15] introduced multiple sets of genomes. In
each set, genomes played PD games with each other and
evolved according to payoffs, and, simultaneously, each set
was also under selection pressure according to the sum of
payoffs of member genomes. Under this setting, he showed
mutual cooperation was evolved even in one-shot PD games.
Obviously, the selection of the sets themselves facilitated the
cooperation.

Several works used both learning and evolution. Hingston
and Kendall [6] introduced a kind of “switch” gene into the
traditional genome which represented (fixed) next actions
depending on the past action sequences. The switch gene
determined whether the agent learned the opponent’s ac-
tion model and changed its actions according to the model.
They investigated how the genomes evolved by mutations
and what strategy was spread. The result showed that the
learning genomes did not increase so much. Quek et al. [10]
proposed memetic learning and tried to obtain strategies of
PD games. Memetic learning combined learning and evolu-
tion as an optimizer in an individual and a communicator
between individuals, respectively. They reported that by
combining learning and evolution, both compensated each
other and, as a result, memetic learning could derive good
strategies.

All of those works investigated strategies themselves for
PD games. However, the work of this paper is not to de-
rive strategies themselves for PD games, but to investigate
whether an emotional mechanism that derives subjective
utilities can evolve according to objective payoffs. This is
a major difference between this work and those works.

6. CONCLUSION
The utility-based Q-learning concept supposes an agent

internally has an emotional mechanism deriving subjective
utilities from objective payoffs and it uses the utilities as
rewards of Q-learning. In this work, we tried to obtain such
an emotional mechanism by evolutionary computation using
genetic algorithm (GA). Especially, we tried to evolve such
mechanisms that facilitated cooperative actions in a game
named Prisoner’s Dilemma (PD).

First we assumed that the mechanism could be repre-
sented by a cubic function and used real-valued GA to evolve
its coefficients. We succeeded in obtaining mutual coopera-
tion in 83 out of 100 runs. Although, in at least one genera-
tion, all genomes in 35 out of 83 runs were R-preferring, i.e.,
u(R) > u(T), there were only five runs in which the best ge-
nome was R-preferring at the end. Even more surprisingly,
R-preferring genomes were in the minority in all generations
of 19 runs.

It was also shown that mutual cooperation followed a
phase transition. In most runs, the phase transition pe-
riod was less than 100 generations. The average numbers
of R-preferring genomes at the phase transition suggested
that about a half of the phase transition might occur even
when R-preferring genomes were in the minority. We also

investigated the relation between the evolved u and For-
mula 2, which was originated in the previous paper [8], so as
to know whether the evolved u could maintain the mutual
cooperation by themselves. The result showed that most of
all genomes in most of all runs satisfied the formula regard-
less of the phase transition. It may be a reason why mutual
cooperation occurred even in the minority case.

Until now, this work is in a preliminary phase of showing
results in a certain setting. We have to discuss the reason
why such the results emerge and also have to investigate
the effect of settings on the results. Especially, we have to
clarify the property of the phase transition rigorously. Also,
we should analyze the dynamics of the evolution process to
elucidate the results of this paper.

7. REFERENCES
[1] R. Axelrod. The Evolution of Cooperation. Basic

Books, New York, 1984.

[2] R. Axelrod. The Evolution of Strategies in the
Iterated Prisoner’s Dilemma. In L. Davis, editor,
Genetic Algorithms and Simulated Annealing, pages
32–41. Pitman / Morgan Kaufmann, London / Los
Altos, CA, 1987.

[3] E. Fehr and K. M. Schmidt. A Theory of Fairness,
Competition, and Cooperation. Quarterly Journal of
Economics, 114:817–868, 1999.

[4] D. B. Fogel. Evolving behaviors in the iterated
prisoner’s dilemma. Evolutionary Computation,
1:77–97, 1993.

[5] D. E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley,
Reading, MA, 1989.

[6] P. Hingston and G. Kendall. Learning versus
Evolution in Iterated Prisoner’s Dilemma. In Proc.
2004 Congress on Evolutionary Computation, CEC’04,
pages 364–372, Portland, Oregon, U.S.A., 2004.

[7] M. Mitchell. An Introduction to Genetic Algorithms.
MIT Press, Cambridge, MA, 1996.

[8] K. Moriyama. Utility based Q-learning to facilitate
cooperation in Prisoner’s Dilemma games. Web
Intelligence and Agent Systems, 7(3):233–242, 2009.

[9] W. Poundstone. Prisoner’s Dilemma. Doubleday, New
York, 1992.

[10] H.-Y. Quek, K. C. Tan, C.-K. Goh, and H. A. Abbass.
Evolution and Incremental Learning in the Iterated
Prisoner’s Dilemma. IEEE Transactions on
Evolutionary Computation, 13:303–320, 2009.

[11] J. K. Rilling, D. A. Gutman, T. R. Zeh, G. Pagnoni,
G. S. Berns, and C. D. Kilts. A Neural Basis for Social
Cooperation. Neuron, 35:395–405, 2002.

[12] T. W. Sandholm and R. H. Crites. Multiagent
reinforcement learning in the Iterated Prisoner’s
Dilemma. BioSystems, 37:147–166, 1996.

[13] J. L. Stimpson, M. A. Goodrich, and L. C. Walters.
Satisficing and Learning Cooperation in the Prisoner’s
Dilemma. In Proc. 17th International Joint
Conferences on Artificial Intelligence, IJCAI-01, pages
535–540, Seattle, Washington, U.S.A., 2001.

[14] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. MIT Press, Cambridge,
MA, 1998.

239

[15] F. Vega-Redondo. Long-run cooperation in the
one-shot Prisoner’s Dilemma: A hierarchic
evolutionary approach. BioSystems, 37:39–47, 1996.

[16] C. J. C. H. Watkins and P. Dayan. Technical Note:
Q-learning. Machine Learning, 8:279–292, 1992.

240

