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ABSTRACT
CP-net (Conditional Preference Network) is one of the extensively
studied languages for representing and reasoning with preferences.
The fundamental operation of dominance testing in CP-nets, i.e.
determining whether an outcome is preferred to another, is very
important in many real-world applications. Current techniques for
solving general dominance queries is to search for improving flip-
ping sequence from one outcome to another as a proof of the domi-
nance relation in all rankings satisfying the given CP-net. However,
it is generally a hard problem even for binary-valued, acyclic CP-
nets and tractable search algorithms exist only for specific problem
classes. Hence, there is a need for efficient algorithms and tech-
niques for dominance testing in more general problem settings. In
this paper, we propose a heuristic approach, called DT*, to dom-
inance testing in arbitrary acyclic multi-valued CP-nets. Our pro-
posed approach guides the search process efficiently and allows sig-
nificant reduction of search effort without impacting soundness or
completeness of the search process. We present results of experi-
ments that demonstrate the computational efficiency and feasibility
of our approach to dominance testing.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Algorithms, Design

Keywords
CP-nets; Dominance Testing; Heuristic

1. INTRODUCTION
The problems of eliciting, representing and reasoning with qual-

itative preferences over multi-attribute domain arise in many fields
such as planning, design, and collective decision making [5, 6, 7,
8]. As the number of alternative outcomes of such domains is ex-
ponentially large in the number of attributes, it is unpractical to
express preferences explicitly by giving out the ordering over the
alternative outcome space. Therefore, the AI research community
has developed languages for representing preferences in such do-
mains in a succinct way, exploiting structural properties such as
conditional preferential independence. The formalism of CP-nets
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(Conditional Preference Networks) [3] is among the most popu-
lar ones, since it preserves a good readability that is similar to the
way users express their preferences in natural languages. CP-nets
provide a compact representation of preference ordering in terms
of natural preference statements under a ceteris paribus (all else
being equal) interpretation. Ceteris paribus semantics induces a
graph, known as induced preference graph [2, 3]; and an outcome
α is said to dominate another outcome β if there exists a directed
path, also called a sequence of improving flips, consisting of suc-
cessively improving outcomes in the graph from β to α [1, 3]. Un-
fortunately, reasoning about the preference ordering (dominance
relation) expressed by a CP-net is far from easy [3, 5]. With the ex-
ception of special cases such as CP-nets with tree or polytree struc-
tured conditional dependencies, dominance testing has been shown
to be PSPACE-complete even with binary domain and acyclic de-
pendences [5]. Some general pruning rules have been studied in
[3] to reduce the search effort. But they might not be able to guide
the search efficiently when the number of variables is large or the
structure of the CP-net is complex. Another work proposed by
Santhanam et al. [9] explores an approach to dominance testing
with acyclic CP-nets via Model Checking. However, their approach
mainly applies to binary-valued conditional preference statements.
The complexity and feasibility of their approach to dominance test-
ing in multi-valued CP-nets is still an open question. Hence, there
is a need for efficient algorithms and techniques for dominance test-
ing in more general problem settings.

To this end, we address the problem of dominance testing by
proposing an efficient heuristic algorithm, called DT*, to guide the
search process for improving flipping sequence from the worse out-
come to the better outcome of the given query1. The proposed ap-
proach can be applied to arbitrary acyclic multi-valued CP-nets. It
uses a numerical approximation of the given CP-net and considers
the hamming distance between the currently considered outcome
and the target outcome of the given query, i.e., the number of vari-
ables that the two outcomes differ from each other. We show that
our proposed approach efficiently guides the search process for im-
proving flipping sequence. It allows significant reduction of search
effort without impacting soundness or completeness of the search
process. Moreover, when there are no flipping sequences possi-
ble, it returns the quick failure for the dominance query without
having to search all possible branches. We experimentally eval-
uate the proposed algorithm in different structure settings, includ-
ing tree-structured CP-nets, directed-path singly connected CP-nets
and arbitrary acyclic CP-nets, and with different domain sizes from
binary to multi-valued. The experimental results presented in this

1The proposed heuristic will be described in the context of improv-
ing flipping sequences, but it can be applied to worsening search
according to the same principle
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paper demonstrate that the proposed approach is computationally
efficient. It allows dominance queries for CP-nets that are quite
large and complex to be answered in reasonable time.

The remainder of this paper is organized as follows. Section 2
restates the necessary background on CP-nets and discusses some
existing pruning techniques for the search process in dominance
testing. Second 3 introduces the proposed approach in technical
details and Section 4 presents the experimental results. Finally,
Section 5 discusses the concluding remarks and outlines some di-
rections for future research.

2. PRELIMINARIES

2.1 CP-nets
Let V = {X1, . . . , Xn} be a set of n variables, for each X ∈

V, D (X) is the value domain of X . A variable X is binary if
D (X) = {x, x̄}. If X =

{
Xi1 , . . . , Xip

}
⊆ V, with i1 < · · · <

ip then D (X) denotes D (Xi1 ) × · · · × D
(
Xip
)

and x denotes
an assignment of variable values to X (x ∈ D (X)). If X = V,
x is a complete assignment; otherwise x is called a partial assign-
ment. For any assignment x ∈ D (X), we denote by x [X] the value
x ∈ D (X) (X ∈ X) assigned to variable X by that assignment;
and x [W] denotes the assignment of variable values w ∈ D (W)
assigned to the set of variables W ⊆ X by that assignment. If x and
y are assignments to disjoint sets X and Y, respectively (X∩Y = ∅),
we denote the combination of x and y by xy. Let X, Y, and Z be
nonempty sets that partition V and � a preference relation over
D (V), X is (conditionally) preferentially independent of Y given
Z iff for all x, x′ ∈ D (X), y, y′ ∈ D (Y), z ∈ D (Z):

xyz � x′yz iff xy′z � x′y′z

A CP-net N [3] over V is an annotated directed graph G over
X1, . . . , Xn, in which nodes stand for the problem variables. Each
node X is annotated with a conditional preference table (CPT), de-
noted by CPT (X), which associates a total order�X|u with each
instantiation u of X’s parents Pa (X), i.e. u ∈ D (Pa (X)). For
instance, let V = {X1, X2, X3}, all three being binary, and assume
that the preferences of an agent can be defined by a CP-net whose
structural part is the directed acyclic graph G = {(X1, X2), (X1, X3),
(X2, X3)}; this means that the agent’s preference over the values
of X1 is unconditional, preference over the values of X2 (resp.
X3) is fully determined given the value of X1 (resp. the values
of X1 and X2). The preference statements contained in the condi-
tional preference tables are written with the usual notation, that is,
x1x̄2 : x3 � x̄3 means that when X1 = x1 and X2 = x̄2 then
X3 = x3 is preferred to X3 = x̄3. Figure 1 illustrates an example
of CP-net.

2.2 Dominance Testing
One of the most fundamental queries in any preference repre-

sentation formalism is whether some outcome α dominates (i.e.,
is strictly preferred to) some other outcome β, called Dominance
Testing. As discussed in [3, 9], such dominance queries in CP-nets
are required whenever we wish to generate more than one non-
dominated solutions to a set of hard constrains.

In this paper, we assume the structure of the CP-net is acyclic,
i.e. does not contain any dependency cycles. In such case, two
outcomes α and β can stand in one of three possible relations with
respect to N : either N |= α � β (α is strictly preferred to β); or
N |= β � α (β is strictly preferred to α); or N |= α Z β (α
and β are incomparable: N 6|= α � β and N 6|= β � α). The
third case means that the given CP-net N does not contain enough

Figure 1: An example CP-netN

information to prove that either outcome is preferred to the other.
Given an acyclic CP-net, comparisons between two outcomes that
differ in the value of a single variable are easy: we only need to
check the CPT of that variable and determine which outcome as-
signs it to a more preferred value. The better (improved) outcome
can be considered as a product of a single improving flip in the
value of a variable X from the worse outcome. For any pair of
outcomes that differ on more than one variables, an outcome α is
said to dominate another outcome β with respect to an acyclic CP-
net N (N |= α � β) if there exists a sequence of improving flips
from β to α. Otherwise, N 6|= α � β. The following definition of
improving flipping sequence is introduced in [3].

DEFINITION 1 (IMPROVING FLIPPING SEQUENCE).
A sequence of outcomes β = γ1, γ2, . . . , γm−1, γm = α such that

β = γ1 ≺ γ2 ≺ · · · ≺ γm−1 ≺ γm = α

is an improving flipping sequence with respect to an acyclic CP-net
N if and only if, ∀1 ≤ i ≤ m, outcome γi is different from the out-
come γi+1 in the value of exactly one variable X , and γi+1[X] �
γi[X] given the parent context u of X assigned by γi and γi+1.

For instance, consider the preference statements over two bi-
nary variables X1 and X2, x1 � x̄1, x2 � x̄2, the sequence
x̄1x̄2, x̄1x2, x1x2 is an improving flipping sequence from the out-
come x̄1x̄2 to the best outcome x1x2.

2.3 Some General Search Techniques
Given an acyclic CP-netN , a queryN |= α � β can be treated

as a search for an improving flipping sequence from the less pre-
ferred outcome β to the more preferred outcome α. The search
process can be implemented as an improving search tree rooted
at β, T (β). The children of every node2 γ in T (β) are those
outcomes that can be reached by a single improving flip from γ.
Consequently, every rooted path in T (β) corresponds to some im-
proving flipping sequence from the outcome β with respect to N .
Taking different directions in T (β) leads to different improving
sequences; however, taking a different direction during the tree
traversal may also lead to a dead end, i.e., reach the optimal out-
come ofN without visiting the target outcome α of the query. Re-
cent works have studied the computational complexity of testing
dominance relations in CP-nets, e.g. [3, 5]. The results show that
dominance testing in general CP-nets is PSPACE-complete and it
remains PSPACE-complete even though the CP-net is acyclic [5].
Since the hardness of dominance testing, several search techniques
for dominance queries have been studied in [3] in order to reduce
the search effort.

Suffix Fixing. Let Xi1 > · · · > Xin be an arbitrary topologi-
cal ordering consistent with the CP-net N , an rth (r ≥ 1)

2A node in the improving search tree is also an outcome.
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suffix of an outcome α is the subset of the outcome values
α [Xir]α

[
Xir+1

]
. . . α [Xin ]. The rth suffix of outcomes

α and β match iff ∀r ≤ j ≤ n, α
[
Xij
]

= β
[
Xij
]
.

For a query N |= α � β, suffix fixing rules out the ex-
ploration of any possible flipping sequences that destroy of
the suffix of the currently considered outcome that matches
the target outcome α. It prunes the subtree that improves
the value of a variable within the matching suffix. For in-
stance, consider the CP-net N in Figure 1 and the query
N |= x1x̄2x3x4x5 � x̄1x2x3x4x̄5. Let α = x1x̄2x3x4x5
and β = x̄1x2x3x4x̄5, if pruned using suffix fixing and con-
sider the variable ordering X1 > X5 > X2 > X3 > X4,
the 2nd suffix x3x4 of α and β matches. Thus, the values
of X3 and X4 will never be improved in the search tree
T (β), although given the assignment β[X1] = x̄1 (resp.
β[X2] = x2, β[X3] = x3), x̄3 � x3 (resp. x̄4 � x4).
As shown in [3], any complete search algorithm for the im-
proving search tree remains complete if pruning using suffix
fixing is used.

Least-variable flipping. For every node γ in the improving search
tree, least-variable flipping rule restricts flips to the variables
that are least-improvable. Formally, a variable X is least-
improvable in an outcome γ with respect to N if there is
some value x ∈ D (X) such that x �u γ [X] (where u =
γ[Pa(X)] is the parent context assigned by γ), and no de-
scendent of X in γ has this property. For a queryN |= α �
β, least-variable flipping rule restricts attention to those vari-
ables that are not part of any matching suffix with the target
outcome α and requires that the only neighbours of a node γ
can be expanded in the search tree T (β) are those in which
some least improvable variable with respect to γ is improved.

However, least-variable flipping rule is only complete for a
restricted class of CP-nets [3], i.e. tree-structured CP-nets
and binary-valued, directed-path singly connected CP-nets.
For multiply-connected networks, and networks with multi-
valued variables, it does not guarantee completeness. That
means, least-variable flipping may fail to find any improv-
ing sequence from β to α although there does exist at least
one. In such case, it does not provide a correct answer to
the given query. For instance, consider the CP-netN in Fig-
ure 1 and the query N |= x1x2x3x4x5 � x̄1x̄2x̄3x̄4x̄5. 3

Starting with the root node β = x̄1x̄2x̄3x̄4x̄5, the only least
improvable variable that can be flipped isX2. Unfortunately,
flipping X2 to value x2 leads to outcome x̄1x2x̄3x̄4x̄5, from
which the target outcome α = x1x2x3x4x5 is unreachable.
All branches in the improving search tree grow towards the
optimal outcome x1x̄2x3x4x5 without going through the tar-
get outcome α of the query. Figure 2 shows the complete im-
proving search tree T (β) using least-variable flipping. How-
ever, there in fact exists a sequence of improving flips from β
toα: x̄1x̄2x̄3x̄4x̄5, x1x̄2x̄3x̄4x̄5, x1x̄2x3x̄4x̄5, x1x̄2x3x4x̄5,
x1x2x3x4x̄5, x1x2x3x4x5.

When the number of variables is large or the structure of the CP-
net is complex, suffix fixing may not be able to guide the search ef-
ficiently while least-variable flipping rule does not guarantee com-
pleteness for general acyclic CP-nets. To this end, we will present
another efficient heuristic approach to dominance testing. The pro-
posed approach significantly prunes the search tree without impact-
ing soundness or completeness of the search process.

3This example has also been discussed in Example 7 in [3]

Figure 2: Improving search tree for queryN |= x1x2x3x4x5 �
x̄1x̄2x̄3x̄4x̄5 using Least-variable flipping rule

3. HEURISTIC FOR DOMINANCE TESTING
In this section, we present our proposed heuristic approach, called

DT*, to dominance testing in arbitrary acyclic CP-nets. In broad
terms, we first define a penalty function based on a numerical ap-
proximation proposed by Domshlak et al. [4] that approximates
acyclic CP-nets using weighted soft constraints. Then, an evalu-
ation function is defined based on the hamming distance between
the currently considered outcome and the target outcome and their
penalties as a heuristic to guide the search process.

3.1 Penalty function
For a variable X , let |D (X)| be the domain size of X and thus

there are |D (X)| degrees of penalties ofX , denoted by d1, . . . , d|D(X)|.
Without loss of generality, we assume the degree of penalties of
a variable X range between 0 and |D (X)| − 1; that is, d1 =
0, . . . , d|D(X)| = |D (X)| − 1. For instance, consider the agent’s
CP-net in Figure 1, since all variables are binary, there are only two
degrees of penalties, i.e., d1 = 0 and d2 = 1 for each variable.
For a variable X , consider a preference ordering over the value of
X given an instantiation of X’s parents, let the rank of the most
preferred value of X be 0 and the rank of the least preferred valued
of X be |D (X)| − 1, given an outcome γ, the degree of penalty
of a variable X in γ is then the rank of the value γ[X] in the pref-
erence ordering over X given the parent context u = γ[Pa(X)].
We denote by dγX (dγX ∈

{
d1, . . . , d|D(X)|

}
) the degree of penalty

of X with respect to γ. For instance, consider a variable X such
that D(X) = {x, x′, x′′}. Assume that, under a parent context
u = γ[Pa(X)] assigned by an outcome γ, x � x′ � x′′. If
γ[X] = x, then dγX = d1 = 0; if γ[X] = x′, then dγX = d2 = 1;
if γ[X] = x′′, then dγX = d3 = 2.

CP-net imposes a rich structure to allow variables to have differ-
ent degrees of importance: variables “higher-up” in the structure
of the network are considered to be more important than the lower
level variables [1, 2, 3]. Thus, it is more important to obtain a pre-
ferred value for a variable than any of its descendents. We now
analyse the importance weight of a variable in a CP-net. Given an
acyclic CP-netN and consider an improving flip from an outcome
γ to another outcome γ′ that flips the value of a single variable X ,
changing the value of X may also affect the preference status of
X’s children. Thus, the resulting changes from γ to γ′ includes: (i)
the degree of penalty of X decreases from dγX to dγ

′

X (dγX > dγ
′

X );
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Algorithm 1: assgWeightCP(N)
Input: N , an acyclic CP-net
Order variables ofN in a reverse topological ordering;1
foreach X ∈ N do2

if Ch (X) = ∅ then3
wX ← 1;4

else5
wX ← 1 +

∑
Y ∈Ch(X) wY · (|D (Y )| − 1);6

end7

end8

and (ii) the degrees of penalty of X’s children changes, which in
the worst case, results in the degree of penalty of each chilren Y
increasing from dγY = d1 to dγ

′

Y = d|D(Y )−1|. Consequently,
in order to preserve the preference ordering induced by the given
CP-net, the importance weight of a variable in that CP-net must
be larger than the sum of the maximum penalties of its children.
We now provide the formal definition of the variable importance
weight in an acyclic CP-net.

DEFINITION 2 (IMPORTANCE WEIGHT). Given an acyclic CP-
net N over a set of variables V. For each variable X ∈ V,
let Ch (X) denote the set of children of X in N , the importance
weight of variable X , denoted by wX , is recursively defined by:

wX = 1 +
∑

Y ∈Ch(X)

wY · (|D (Y )| − 1) (1)

Algorithm 1 provides a simple implementation to compute im-
portance weights of variables. It takes linear time in the size of
the network. Following a reverse topological ordering, it first as-
signs the importance weights to the variables that have no descen-
dents (line 3–4) and then iteratively assigns the importance weights
to the upper level variables according to Equation (1). Note that
there are several ways to assign importance weights to the vari-
ables and the way we use here is different from [4]. In this paper,
we consider the tight lower bound of the importance weight assign-
ment, i.e. the sum of maximum penalties of the variable children∑

Y ∈Ch(X) wY · (|D (Y )| − 1).

EXAMPLE. Consider an agent’s CP-net over a set of 5 variables
V = {X1, . . . , X5} in Figure 1. In this example, since all vari-
ables are binary, i.e. ∀X ∈ V, |D (X)| = 2.We can assign the
importance weight to each variable in a reverse topological order-
ing of variables: wX4 = 1; wX2 = 1 + wX4 · (2− 1) = 2;
wX3 = 1 + wX4 · (2− 1) = 2; wX1 = 1 + (wX2 · (2− 1) +
wX3 · (2− 1)) = 5; wX5 = 1 + wX2 · (2− 1) = 3. The impor-
tance weight of each variable in this CP-net is attached on top of
the variables respectively in Figure 3.

Given an acyclic CP-net N and an outcome γ, the penalty of
a variable X in γ is the degree of penalty of X in γ multiplied
by the importance weight of X . The penalty of γ is then defined
by the sum of penalties of the domain variables. We define the
following penalty function for an acyclic CP-net based on the work
by Domshlak et al. [4].

DEFINITION 3 (PENALTY FUNCTION). Given an acyclic CP-
net N over a set of variables V and an outcome γ. The penalty
function pen, mapping from an outcome γ ∈ O to [0,+∞], is
defined as follows:

∀γ ∈ O, pen (γ) =
∑
X∈V

wX · dγX (2)

Figure 3: Variable importance weight inN

EXAMPLE (CONT.) Consider our running example in Figure 1
and the outcome γ = x̄1x̄2x̄3x̄4x̄5. As the agent uncondition-
ally prefers X1 = x1 to X1 = x̄1 (resp. X5 = x5 to X5 = x̄5),
dγX1

= 1 (resp. dγX5
= 1). On the other hand, x2 � x̄2 (resp.

x̄3 � x3, x̄4 � x4) given the parent context X1 = x̄1 and
X5 = x̄5 (resp. X1 = x̄1, X2 = x̄2 and X3 = x̄3) and thus
dγX2

= 1 (resp. dγX3
= 0, dγX4

= 0). Consequently, the penalty of
outcome x̄1x̄2x̄3x̄4x̄5 is: pen (γ) = wX1 · 1 + wX2 · 1 + wX3 ·
0 +wX4 ·0 +wX5 ·1 = 5∗1 + 2∗1 + 2∗0 + 1∗0 + 3∗1 = 10.

In order to compute the penalty of an outcome, we simply need
to sweep through the network from top to bottom (i.e., from ances-
tors to descendants), and to check the degree of penalty of the cur-
rently considered variable given its parent context. And finally we
compute the penalty of the outcome based on Equation (2). Con-
sequently, the penalty computation for a particular outcome takes
polynomial time in the size of the network. We now prove that
our algorithm for assigning penalties over alternative outcomes pre-
serves the strict preference ordering induced by the original CP-net.

THEOREM 1. Given an acyclic CP-netN , we have:

∀α, β ∈ O, ifN |= α � β then pen (β) > pen (α)

PROOF. N |= α � β if and only if there exists a sequence of
improving flips from β toα, denoted by Seq (β, α) = γ1 (= β) , γ2,
. . . , γm−1, γm (= α), with respect to the conditional preference ta-
bles in N . Each improving flip from γi to γi+1 in Seq (β, α) that
improves the value of a single variableX , pen (γi)−pen (γi+1) =
wX ·

(
dγi
X − d

γi+1
X

)
+σ, where σ≥−

∑
Y ∈Ch(X) w (Y )·(|D (Y )|−1)

and
(
dγi
X − d

γi+1
X

)
≥ 1. Thus, pen (γi) − pen (γi+1) ≥ wX −∑

Y ∈Ch(X) w (Y ) · (|D (Y )| − 1) = wX − (wX − 1) = 1 > 0.
Consequently, with each improving flip from γi to γi+1, pen (γi) >
pen (γi+1). Following from the transitivity: pen (γ1 (= β)) >
pen (γ2) > · · · > pen (γm−1) > pen (γm) (= α) and thus pen (β) >
pen (α).

COROLLARY 1. Given an acyclic CP-netN , ∀α, β ∈ O,

• if pen (β) > pen (α) thenN |= α � β orN |= α Z β

• if pen (β) = pen (α) thenN |= α Z β

LEMMA 1. Given an acyclic CP-net N over a set of variables
V,let α, β be any pair of outcomes thatN |= α � β; IS the set of
all possible improving flipping sequence from β to α with respect
to the CPTs in N ; HD(β, α) the hamming distance between β
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and α (Note that both in binary-valued and multi-valued CP-nets,
the hamming distance is defined by the number of variables that
the two outcomes differ from each other.); Seq(β, α) ∈ IS an im-
proving flipping sequence from β to α; |Seq(β, α)| is the length
of Seq(β, α) and thus the number of improving flips from β in this
sequence is |Seq(β, α)| − 1, then,

HD(β, α) ≤ |Seq(β, α)| − 1 ≤ pen(β)− pen(α)

PROOF. As each improving flip flips the value of a single vari-
able, if N |= α � β, there must be at least HD(β, α) flips that
flips the value of each variable X that β and α differ, from β[X]
to α[X]. Thus, ∀Seq(β, α) ∈ IS, |Seq(β, α)| − 1 ≥ HD(β, α).
On the other hand, any improving flip from γi to γi+1 in Seq(β, α)
that flips the value of a single variableX , pen(γi)−pen(γi+1) ≥ 1
(see the proof of Theorem 1). Thus, pen(γi) − pen(γi+1) ≥ 1.
Assume γ is an outcome in Seq(β, α) that improved from β by t
flips, pen(β) − pen(γ) ≥ t and pen(β) − t ≥ pen(γ). Thus,
pen(β) − pen(α) − t ≥ pen(γ) − pen(α). If t > pen(β) −
pen(α), then pen(β)− pen(α)− t < 0 and pen(γ)− pen(α) <
0. According to Corollary 1, N |= γ � α or N |= γ Z α
(N 6|= α � γ), contradicting the fact that γ is in the improv-
ing sequence Seq(β, α). Hence, the number of improving flips
from β in Seq(β, α) can not be greater than pen(β) − pen(α),
|Seq(α, β)| − 1 ≤ pen(β)− pen(α).

3.2 The proposed DT* algorithm
The penalty function mentioned above provides an order-preserving

numerical approximation for a given CP-net. We also show the up-
per bound and lower bound of the number of improving flips from a
worse outcome to a preferred outcome in Lemma 1. In this section,
these results are used as a heuristic in the search process for im-
proving flipping sequence. The proposed algorithm has a number
of desirable properties:

• it often returns the quick failure for the dominance query if
no flipping sequence is possible;

• it often quickly shows that back-tracking is needed when
there is no possible flipping sequence to the target outcome
following the currently considered path; and,

• it efficiently guides the search direction without compromis-
ing soundness or completeness of the search process.

Given an acyclic CP-net N and a pair of outcomes α and β,
for the query N |= α � β, we build the search tree T (β) and
search for an improving flipping sequence to the target outcome α
as discussed in [3]. We introduce the evaluation function f for the
heuristic search strategy as follows:

DEFINITION 4 (EVALUATION FUNCTION). Given an acyclic
CP-net N and the query N |= α � β (α, β ∈ O). The evalu-
ation function f , mapping from a node (i.e., an outcome) γ in the
improving search tree T (β) to [0,+∞], is defined by:

f(γ) = pen (γ)−HD(γ, α)− pen (α) (3)

Our proposed heuristic algorithm DT* (see Algorithm 2) is adapted
from the A* heuristic search algorithm with f (γ) being the evalua-
tion function. It maintains a priority queue of nodes to be expanded,
known as the fringe. On the one hand, the lower f value for a
node γ, the higher its priority is. On the other hand, we only con-
sider the outcomes that the f value is non-negative. That means,

Algorithm 2: DT*(N |= α � β)
Input: a dominance query (an acyclic CP-netN ; a pair of

outcomes α and β; and determining whether
N |= α � β)

Output: True: N |= α � β; False: N 6|= α � β
if f(β) < 0 then1

return False;2
else3

fringe← INSERT(MAKE-NODE(β), fringe);4
while fringe , ∅ do5

γ∗ ← REMOVE-FIRST(fringe);6
if GOAL-TEST(γ∗ = α) then7

return True;8
else9

foreach X ∈ N do10
if IMPROVABLE(γ∗, X)11
&&X < ANY-MATCHING-SUFFIX(γ∗, α)
then

γ′ ← SINGLE-FLIP(γ∗, X);12
if NOT-REPEATED(γ′) && f(γ′) ≥ 013
then

INSERT-ASC(MAKE-NODE(γ′), fringe)14
end15

end16

end17

end18

end19
return False20

end21

an outcome γ will be added into the fringe only if f(γ) > 0.
In essence, an outcome with a negative f value means that there
is no possible improving flipping sequence from that outcome to
the target outcome α (see Lemma 2). Before adding the original
node β into the fringe, the f value of β will be computed and the
algorithm will return False if f(β) < 0 (line 1–2). In this case,
the query fails (N 6|= α � β) even before building the root node
of the improving search tree. Otherwise, β will be added into the
fringe as the root node of the improving search tree T (β) (line
4). At each iteration of DT*, the first node γ∗, i.e. the node with the
lowest f value, is removed from the fringe and being expanded
(line 4). The children of a node in T (β) are those outcomes that
can be reached by a single improving flip from that node. Our pro-
posed algorithm applies suffix fixing rules, restricting attention to
those variables in γ∗ that are not part of any matching suffix with
the target outcome α (line 11). Moreover, it requires that a child
γ′ of a node be added into the fringe if and only if: (i) γ′ has not
been traversed before; and (ii) f(γ′) ≥ 0 (line 13). For the current
node γ∗ under consideration, we add each child γ′ of γ∗ that meets
the above requirements into the fringe in ascendant order of the
f values of the nodes in the fringe (line 14). DT* continues un-
til: the currently considered node for expansion equals to the target
outcome α, then it ends and returns True (N |= α � β) (line
7–8); or the fringe is empty, it returns False (N 6|= α � β) (line
20).

In order to prove the completeness of our proposed heuristic al-
gorithm, we first proof the follow lemma.

LEMMA 2. Given an acyclic CP-netN and a queryN |= α �
β (α, β ∈ O), ∀γ∗ ∈ O, if f(γ∗) < 0, then γ∗ would not be part
of any possible improving flipping sequence from β to α.
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Figure 4: Improving search tree

PROOF. During the execution of DT* algorithm, for any out-
come γ∗ (including β), f(γ∗) = pen(γ∗)−HD(γ∗, α)−pen(α).
Assume that there exist an improving flipping sequence Seq(γ∗, α)
= γ1(= γ∗), γ2, . . . , γm−1, γm(= α) from γ∗ to the target out-
come α. Based on Lemma 1, we know that there must be at least
HD(γ∗, α) flips improved from γ∗. For any improving flip from
γi to γi+1, pen(γi)− pen(γi+1) ≥ 1. Consequently, for any out-
come γ′ that improved from γ∗ by HD(γ∗, α) flips, pen(γ∗) −
pen(γ′) ≥ HD(γ∗, α) and thus pen(γ∗)−HD(γ∗, α) ≥ pen(γ′).
Hence, pen(γ∗)−HD(γ∗, α)−pen(α) ≥ pen(γ′)−pen(α). Be-
cause f(γ∗) < 0, pen(γ′)− pen(α) ≤ pen(γ∗)−HD(γ∗, α)−
pen(α) < 0. Consequently, pen(γ′)−pen(α) < 0 andN 6|= α �
γ′. γ′ will not be part of any possible improving flipping sequence
to α, contradicting the fact that there exist an improving flipping
sequence Seq(γ∗, α) from γ∗ to the target outcome α.

We now prove the completeness of our proposed heuristic algo-
rithm.

THEOREM 2. DT* is complete for any arbitrary acyclic CP-
nets.

PROOF. DT* traverses the tree searching all neighbours; it fol-
lows lowest evaluated value path and keeps a sorted priority queue
of alternate path segments along the way. If at any point the path
being followed has a higher evaluated value than other encoun-
tered path segments, the higher evaluated value path is kept in the
fringe and the process is continued at the lower value sub-path.
This continues until the currently considered node for expansion is
the target outcome or the fringe is empty. During the execution of
DT* algorithm, there are three kinds of nodes will be pruned: (i)
the outcomes that have been explored previously; (ii) the outcomes
that improve the value of the variable that is part of some matching
suffix with the target outcome; and (iii) the outcomes with negative
f values. Obviously, checking repeated nodes does not affect the
completeness of the algorithm. Also, as shown in [3], any complete
search algorithm for the improving search tree remains complete if
pruning using suffix fixing rule is used. Furthermore, we have al-
ready proved in Lemma 2 that an outcome γ∗ with f(γ∗) < 0 will
not be part of any possible improving sequence from β to α, so
pruning the third kind of outcomes also does not affect the com-
pleteness of the algorithm. Consequently, DT* is complete for any
acyclic CP-nets.

EXAMPLE (CONT.) We now demonstrate the execution of DT*
algorithm with the CP-net in our running example (Figure 1) and
consider the query N |= x1x2x3x4x5 � x̄1x̄2x̄3x̄4x̄5. Let α =
x1x2x3x4x5 and β = x̄1x̄2x̄3x̄4x̄5, we first consider the f value
of the less preferred outcome β of the query. As f(β) = pen(β)−
HD(β, α)− pen(α) = 10− 5− 3 = 2 > 0, we build the search
tree T (β) with β being the root node and add β into the fringe.
In the 1th iteration of DT*, γ∗ = x̄1x̄2x̄3x̄4x̄5 is removed from
the fringe to be expanded. There are three improvable variable
from γ∗: X1, X2 and X5. Hence, there are three children nodes:
x1x̄2x̄3x̄4x̄5, x̄1x2x̄3x̄4x̄5 and x̄1x̄2x̄3x̄4x5. The f value of these
three children nodes are computed accordingly. f(x1x̄2x̄3x̄4x̄5) =
0, f(x̄1x2x̄3x̄4x̄5) = 1 and f(x̄1x̄2x̄3x̄4x5) = 0. As none of the
f value of these three children nodes is negative, all of them are
added into the fringe according to the ascendant order of the f
value.
In the 2nd iteration, the first outcome γ∗ = x1x̄2x̄3x̄4x̄5 with the
lowest f value is removed from the fringe (Assume that the nodes
with the same f value will be traversed in the order from left to
right). There are three possible children nodes of γ∗: x1x2x̄3x̄4x̄5,
x1x̄2x3x̄4x̄5 and x1x̄2x̄3x̄4x5. As f(x1x2x̄3x̄4x̄5) = 5−3−3 =
−1 < 0; f(x1x̄2x3x̄4x̄5) = 6−3−3 = 0; and f(x1x̄2x̄3x̄4x5) =
2−3−3 = −4 < 0. There is only one outcome x1x̄2x3x̄4x̄5 will
be added into the fringe.
In the 3rd iteration, we continue with the outcome γ∗ = x1x̄2x3x̄4x̄5.
There are three possible outcomes can be reached by a single flip
from γ∗: x1x2x3x̄4x̄5, x1x̄2x3x4x̄5 and x1x̄2x3x̄4x5. We com-
pute the f value of these three outcomes: f(x1x2x3x̄4x̄5) = 3 −
2 − 3 = −2 < 0; f(x1x̄2x3x4x̄5) = 5 − 2 − 3 = 0; and
f(x1x̄2x3x̄4x5) = 1 − 2 − 3 = −4 < 0. Only one outcome
x1x̄2x3x4x̄5 can be added into the fringe.
Similarly, in the 4th iteration, we explore the outcome γ∗=x1x̄2x3x4x̄5
and add only one outcome x1x2x3x4x̄5 into the fringe.
In the 5th iteration, we explore the outcome γ∗ = x1x2x3x4x̄5.
In essence, there are two variables can be improved from γ∗: X4
and X5. However, as X4 is in the 3rd matching suffix with the
target outcome α (using the topological order X1 > X5 > X2 >
X3 > X4), we only consider flipping the value of X5. And this
step produces the target outcome α, which will be explored in the
last iteration and the algorithm returns True to this query.
Note that as we have discussed in Section 2.3, an algorithm based
on Least-variable flipping rule is incomplete in this case.

4. EXPERIMENT
We now describe the results of experiments that show the feasi-

bility of our approach to dominance testing with respect to (i) the
average number of visited nodes during the search process; (ii) the
number of variables svar and the domain size sdz that can be effi-
ciently handled in practice; and (iii) the structure of CP-nets. We
compare the performance of the proposed DT* algorithm with (i) a
standard depth-first search algorithm that applies suffix fixing dur-
ing the search, called DF; and (ii) an algorithm using Least-variable
flipping rule, called LVF. We generate random preference networks
by varying the number of variables, the structure of the network and
the preference of the variables. For directed-path singly connected
CP-nets and arbitrary acyclic CP-nets, we restrict the maximum
in-degree of each node in the generated CP-nets to 10. For multi-
valued CP-nets, we restrict the maximum domain size sdz to 5.
We conduct the following six sets of experiments. At each set of
experiments, we generate 1000 CP-nets randomly and using each
resulting preference network, we evaluate 5 dominance queries by
picking distinct pairs of outcomes at random.
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Figure 5: Avg. number of visited nodes with binary-value tree-
structured CP-nets
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Figure 6: Multi-valued tree-structured CP-nets

Set 1: binary-valued tree-structured CP-nets. We vary the num-
ber of variables svar from 2 to 30 and only generate tree-
structured dependences. From Figure 5 we can observe that
on average, the numbers of visited nodes by both DT* and
LVF algorithms are much less than DF algorithm. Note that
for binary-valued tree-structured CP-nets, LVF (Least-variable
flipping rule) is guaranteed to be complete and backtrack-
free. 4 However, on average, DT* is more efficient than the
LVF algorithm for dominance testing in tree-structured CP-
nets. The average execution time of DT* approach with 30
variables is less than 0.03 seconds. It offers more than three
orders of magnitude improvement in performance over the
DF algorithm.

Set 2: multi-valued tree-structured CP-nets. We vary svar from
2 to 15. The results of multi-valued tree-structured CP-nets
(see Figure 6(a)) is similar to the set of experiments with
binary-valued tree-structured CP-nets. However, LVF algo-
rithm does not guarantee completeness in multi-valued CP-
nets. Figure 6(b) shows the percentage of cases in which
the LVF algorithm is incomplete, i.e., it gives an incorrect

4The authors can also refer to [3] Page 161, TreeDT algorithm for
binary-valued, tree-structured CP-nets
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Figure 7: Avg. number of visited nodes with binary-valued,
directed-path singly connected CP-nets
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Figure 8: Multi-valued polytree CP-nets

answer to the query. In general, the percentage of incom-
pleteness of LVF algorithm is increasing as the number of
variables increases. When there are 15 variables, in more
than 28% cases that LFV algorithm fails to find the improv-
ing flipping sequence for the given query although there does
exist at least one. On the other hand, according to the exper-
iment data, DT* completes the search process in about 12
seconds on average in the cases of 15 variables.

Set 3: binary-valued, directed-path singly connected CP-nets. In
this set of experiments, the number of variables svar is from
2 to 25. Note that LVF algorithm guarantees completeness in
binary-valued, directed-path singly connected CP-nets while
it may require back-tracking during the search. The average
number of visited nodes in this set of experiments is shown in
Figure 7. Both LVF and DT* algorithms are much more effi-
cient than the DF algorithm. When there are 25 variables, the
average execution time of DT* is about 5.7 seconds, which
is more than two orders of magnitude less than the DF algo-
rithm.

Set 4: multi-valued, directed-path singly connected CP-nets. We
vary svar from 2 to 12. Figure 8(a) shows that the average
number of visited nodes of both LVF and DT* algorithms are
much less than DF algorithm. Although the result shows that
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Figure 9: Binary-value arbitrary acyclic CP-nets

when the number of variables is large, the LVF algorithm
may visit less nodes than DT* algorithm, the percentage of
incompleteness of LVF is on the other hand, increasing as
the number of variables increases (see Figure 8(b)). When
there are 12 variables, this percentage is more than 25%. Ac-
cording to the experimental data, with 12 variables and each
variable with the maximum domain size of 5, the average ex-
ecution time of DT* approach is still less than 50 seconds.

Set 5: binary-valued arbitrary acyclic CP-nets. We vary svar
from 2 to 20. Similar to the results presented in Set 4, when
the number of variables is large (more than 15) the average
number of visited nodes of DT* algorithm is more than that
of LVF algorithm (see Figure 9(a)). However, for binary-
valued CP-nets in general, LVF does not guarantee complete-
ness and the percentage of cases that the LVF algorithm re-
turns incorrect answers is increasing as the number of vari-
able increases (Figure 9(b)). When there are 20 variables,
this percentage is more than 20%. While on average, DT* al-
gorithm returns a correct answer to the given query in about
20 seconds.

Set 6: multi-valued arbitrary acyclic CP-nets. In the last set of
experiments, we vary svar from 2 to 10. The results with
arbitrary acyclic CP-nets in multi-valued setting is similar
to that in binary-valued setting (see Figure 10(a) and Fig-
ure 10(b)). When there are 10 variables, the percentage of
incomplete cases the LVF algorithm is more than 20%; on
the other hand, DT* guarantees to return a correct answer in
about 9 seconds on average.

In summary, our experiments show that on average, our proposed
DT* algorithm is much more efficient than the DF algorithm. It is
as relatively efficient as LVF algorithm while guaranteeing sound-
ness and completeness of the search process. From the experiment,
we can also conclude that our proposed DT* algorithm allows dom-
inance queries for CP-nets that are quite large and complex to be
answered in reasonable time.
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Figure 10: Multi-valued arbitrary acyclic CP-nets

5. CONCLUSION AND FUTURE WORK
In this paper, we have studied the problem of dominance test-

ing in CP-nets. We have proposed a heuristic algorithm DT* for
dominance testing with arbitrary acyclic CP-nets. The proposed
approach significantly reduces the search effort without impacting
soundness and completeness. We have also experimentally shown
that the proposed algorithm is computationally efficient.

Nonetheless, the present work is only applicable for acyclic CP-
nets. The investigation of techniques to deal with cyclic preferences
need to be further explored.
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