
Tractable Model Checking for Fragments of Higher-Order
Coalition Logic∗

Patrick Doherty
Dept. of Computer and Information Science, Linköping University, Sweden

patrick.doherty@liu.se

Barbara Dunin-Kȩplicz
Institute of Informatics, Warsaw University, Poland

and Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
keplicz@mimuw.edu.pl

Andrzej Szałas
Institute of Informatics, Warsaw University Warsaw, Poland

and Dept. of Computer and Information Science, Linköping University, Sweden
andrzej.szalas@{mimuw.edu.pl,liu.se}

ABSTRACT
A number of popular logical formalisms for representing and reasoning
about the abilities of teams or coalitions of agents have been proposed
beginning with the Coalition Logic (CL) of Pauly. Ågotnes et al intro-
duced a means of succinctly expressing quantification over coalitions with-
out compromising the computational complexity of model checking in CL
by introducing Quantified Coalition Logic (QCL). QCL introduces a sepa-
rate logical language for characterizing coalitions in the modal operators
used in QCL. Boella et al, increased the representational expressibility
of such formalisms by introducing Higher-Order Coalition Logic (HCL),
a monadic second-order logic with special set grouping operators. Tractable
fragments of HCL suitable for efficient model checking have yet to be
identified. In this paper, we relax the monadic restriction used in HCL
and restrict ourselves to the diamond operator. We show how formulas us-
ing the diamond operator are logically equivalent to second-order formulas.
This permits us to isolate and define well-behaved expressive fragments of
second-order logic amenable to model-checking in PTIME. To do this, we
appeal to techniques used in deductive databases and quantifier elimination.
In addition, we take advantage of the monotonicity of the effectivity func-
tion resulting in exponentially more succinct representation of models. The
net result is identification of highly expressible fragments of a generalized
HCL where model checking can be done efficiently in PTIME.

Categories and Subject Descriptors
F.4 [Mathematical Logic And Formal Languages]: Miscella-
neous

General Terms
Theory, Verification
∗This work is partially supported by grants from the ELLIIT Ex-
cellence Center at Linköping-Lund in Information Technology, the
Swedish Research Council (VR) Linnaeus Center CADICS, VR
grant 90385701, NFFP5-The Swedish National Aviation Engineer-
ing Research Programme and grant N N206 399334 from the Polish
MNiSW.
Cite as: Tractable Model Checking for Fragments of Higher-Order Coali-
tion Logic, Patrick Doherty, Barbara Dunin-Kȩplicz and Andrzej Szałas,
Proc. of 10th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.), May,
2–6, 2011, Taipei, Taiwan, pp. 743-750.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Keywords
Coalition Formation,Coalition Logic,Model Checking,Complexity

1. INTRODUCTION
In recent years, developing formal techniques for representing

and reasoning about the abilities of teams or coalitions has become
a major focus of research in the areas of artificial intelligence and
multiagent systems [2–10,12,16,17,19,21–29]. In particular, com-
bining ideas and techniques from game theory, logic and social
theory has become highly relevant due to the widespread use of
social software and trends in robotics and agent systems where co-
operation among such agents is becoming increasingly important.
A number of popular logical formalisms for representing and rea-
soning about the abilities of teams or coalitions of agents have been
proposed beginning with the Coalition Logic (CL) of Pauly [19]
which is a propositional multimodal logic. Recent trends in devel-
opment of logical formalisms for reasoning about coalitions have
tried to increase expressivity of such formalisms while retaining
tractability in the reasoning components associated with such for-
malisms. For instance, Ågotnes et al [3] introduce a means of
succinctly expressing quantification over coalitions without com-
promising the computational complexity of model checking in CL
by introducing Quantified Coalition Logic (QCL). More recently,
Boella et al [7], increased the representational expressibility of such
formalisms by introducing Higher-Order Coalition Logic (HCL),
a monadic second-order logic with special set grouping operators.
HCL subsumes both CL and QCL representationally, and includes
a sound and complete axiomatization for weakly playable frames,
but currently lacks a tractable reasoning component.

Due to the modal nature of many of these formalisms which are
based on the use of effectivity functions as part of coalition frames,
the major computational problem has been that of model checking.

Given a succinct representation of a modelM, a state
s, and a formula ϕ of your favorite coalition logic L,
is it the case thatM, s |=L ϕ?

In addition to the representational problem, research focus as-
sociated with the reasoning problem has been placed on finding
succinct representations of models in L, extending the expressiv-
ity of formulas ϕ and trying to guarantee tractability of the model
checking problem for the full language or its fragments used in L.

743

Higher-order logic is particularly suited as a representation lan-
guage for modeling the abilities and interactions between coali-
tions. It is representationally expedient in the sense that coalitions
are in fact sets of agents and one wants to represent such sets and
their properties in as direct a way as possible. This of course can
be done directly and succinctly in higher-order logic. Boella et
al [7] provide very convincing arguments in this respect. On the
other hand, reasoning in higher-order logic is more problematic.
Yet there are well-behaved fragments of such logics that deserve
investigation and surprisingly, one can isolate fragments which are
representationally expressive and also computationally tractable.

This is both the focus and contribution of this paper. Our contri-
bution is to propose a higher-order logic HCL? which essentially
subsumes HCL representationally and semantically. Additionally,
we isolate a number of interesting fragments of HCL? which are
amenable to tractable model checking in PTIME using succinct im-
plicit representations of model frames. The techniques used to do
this involve quantifier elimination [13] and the use of standard tech-
niques from deductive database theory [1, 18].

In Sections 2 and 3 we give an overview of coalition logic [19],
quantified coalition logic [3] and higher-order coalition logic [7]
to set the context and provide scientific continuity. In Section 4
we propose the higher-order logic HCL? which is a generalization
of HCL. Section 5 discusses various succinct representations of
models using deductive database techniques. In Section 6 we de-
fine several fragments of HCL? and provide lemmas showing that
formulas from these fragments are amenable to model-checking in
PTIME. Section 7 summarizes assertion types that can be model
checked in PTIME. We then conclude with some comments and
future work in Section 8.

2. COALITION LOGIC
Coalition Logic (CL) [19] is a propositional modal logic, with

modalities indexed by coalitions. The semantics of CL is based
on the concept of an effectivity function developed in social choice
theory to model the ability of a group of individuals. In CL, it is
relativized to state and has the form

E : P(Ag)× S −→ P(P(S)) (1)

where Ag is a set of agents, S is a set of states and P(.) denotes
the powerset of a given set.

For a given coalitionC ⊆ Ag and a state s ∈ S,C can cooperate
to ensure that for any T ∈ E(C, s), the next state will be in T
regardless of the actions of other agents outside C. A variety of
possible strategies can lead to a set of possible outcomes. To gain
some intuitions concerning such functions consider the following
example based on one considered in [19].1

EXAMPLE 1. Angelina has to decide whether she wants to
marry Edwin, the Judge, or stay single. Edwin and the Judge each
can similarly decide whether they want to stay single or marry An-
gelina. This situation can be modeled using a function E of the
form (1) as follows. The set of agents is Ag = {a, e, j} and the set
of states is S = {s0, ss, se, sj}, where s0 is an initial state, where
Angelina, Edwin and Judge are singles, ss is a state where An-
gelina remains single, se where she marries Edwin, and sj where
she marries the Judge.

Angelina has the right to remain single, so {ss} ∈ E({a}, s0).
Edwin can only guarantee that he does not marry Angelina, so we
have {ss, sj} ∈ E({e}, s0). Analogously, for the Judge, we have

1Characters are actually taken from the comic opera Trial by Jury
and the example originates from [15].

{ss, se} ∈ E({j}, s0). Angelina and Edwin together can achieve
any situation except the one where Angelina marries the Judge,
and hence {ss}, {se} ∈ E({a, e}, s0). Again, the situation is
analogous for the Judge: {ss}, {sj} ∈ E({a, j}, s0). Edwin and
the Judge can together guarantee that Angelina remains single, so
{ss} ∈ E({e, j}, s0).

Note that Angelina can act as a dictator forcing everybody to
stay single. On the other hand, neither Edwin nor the Judge have
such a strong strategy. 2

Coalition Logic is a propositional multimodal logic, where for-
mulas are defined by the following grammar:

ϕ ::= > | p | ¬ϕ | ϕ ∨ ϕ | [C]ϕ (2)

where Ag is fixed, C ⊆ Ag and p ranges over the set of Boolean
variables Φ0. The intended meaning of [C]ϕ is that coalitionC has
the ability to achieve ϕ.

Given Ag, a modelM is a triple 〈S, E , π〉, where

• S = {s1, . . . , sn} is a finite non-empty set of states

• E is an effectivity function

• π : S −→ P(Φ0) is a valuation function, which for every
state s ∈ S gives the set of Boolean variables satisfied at s.

The satisfaction relation is defined as usual for >, atomic vari-
ables and connectives. For the modal case we have:

M, s |=CL [C]ϕ iff there is T ∈ E(C, s) such that
for all t ∈ T we haveM, t |=CL ϕ.

Table 1: Properties of effectivity function (1).
For every C ⊆ Ag, s ∈ S and
X ⊆ Y ⊆ S, if X ∈ E(C, s)
then Y ∈ E(C, s)

outcome monotonicity

For every C ⊆ D ⊆ Ag and s ∈ S,
E(C, s) ⊆ E(D, s)

coalition monotonicity

For all X ⊆ S and s ∈ S,
if X∈E(C, s) then X̄ 6∈E(C̄, s)

C-regularity

For all C ⊆ Ag, E is C-regular regularity
For all X ⊆ S and s ∈ S,
if X̄ 6∈E(C̄, s) then X∈E(C, s)

C-maximality

For all C ⊆ Ag, E is C-maximal maximality
For all X,Y ⊆ S, C ⊆ D ⊆ Ag
and s ∈ S, if C ∩D = ∅,
X ∈ E(C, s) and Y ∈ E(D, s) then
X ∩ Y ∈ E(C ∪D, s)

superadditivity

In [20] the some important properties of effectivity functions are
studied. These properties are shown in Table 1, where C̄ def

= Ag\C
and X̄ def

= S \ X . Restricting effectivity functions with certain
properties determines particular classes of models.

An effectivity function E is playable provided that for allC⊆Ag
and s ∈ S, (i) ∅ 6∈ E(C, s), (ii) S ∈ E(C, s), (iii) E is Ag-
maximal, (iv) E is outcome monotonic and (v) E is superadditive.
The term playability is justified by the fact that an effectivity func-
tion is playable iff it is an effectivity function of a strategic game
(see Theorem 3.2 in [20]).

Coalition monotonicity will play an important role in the context
of our model checking results. The following lemma (see, e.g., [19,
20]) guarantees this property for playable effectivity functions.

LEMMA 2. Every playable effectivity function is regular and
coalition monotonic. 2

744

3. EXTENSIONS OF COALITION LOGIC
Recent work with logical formalisms for representing and rea-

soning about the abilities of coalitions from a game-theoretic per-
spective have focused jointly on issues of expressivity and tractabil-
ity, balancing the two against each other. The major computa-
tional problem in this respect is model checking. In this section,
we briefly describe two prominent logical formalisms, Quantified
Coalition Logic [3] and Higher-Order Coalition logic [7] which at-
tempt to generalize Coalition Logic in several respects. This sum-
mary is intended to provide a context for the higher-order logic
HCL? and model checking results for fragments of this logic that
we introduce in Section 4.

3.1 Quantified Coalition Logic
Quantified Coalition Logic (QCL) [3] is an extension of CL that

permits a limited form of quantification over coalitions. Although
it provides no increase in expressivity, it is exponentially more suc-
cinct than CL and computationally no worse with respect to model
checking. Rather than providing C directly in formulas of the form
[C]ϕ, it allows C to be specified in a special language for coalition
predicates given by the grammar:

P ::= subseteq(C) | supseteq(C) | ¬P | P ∨ P (3)

This allows one to express coalitions based on being a subset (a su-
perset) of a coalition. There are two modalities in QCL:2

• 〈ψ〉ϕ – there is a coalition satisfying ψ which can achieve ϕ
• [ψ]ϕ – every coalition satisfying ψ can achieve ϕ.

3.2 Higher-Order Coalition Logic
Recently, Boella et al [7] introduced Higher-Order Coalition

Logic (HCL) as a more general and expressive way to quantify
over coalitions. HCL is a monadic second-order logic with special
set grouping operators which can be used to characterize differ-
ent coalitions. Both CL and QCL can be effectively embedded
into HCL and there is no need for separate languages to represent
coalitions and the effect coalitions have, as is the case with QCL.
An axiomatization is provided for HCL and it is shown to be sound
and complete for weakly playable semantic structures. Tractable
fragments of HCL suitable for efficient model checking have yet
to be identified, although this paper will identify a number of such
fragments for a related logic HCL?.

We write σ[x := u] (respectively, σ[X := U]) to denote the
assignment which differs from σ only in assigning u to x (respec-
tively, U to X).

HCL is a well-behaved fragment of second-order logic, where
second-order quantifiers are restricted to binding unary relation
variables. Free and bound variables (VI), relation symbols, con-
nectives ∧,¬, quantifiers ∀,∃ are defined as in classical first-order
logic. To obtain the monadic second-order language, the first-order
language is extended by a countable set VS of set variables (one-
argument relation variables) and formulas of HCL are defined us-
ing the following grammar:

ϕ ::= F (x1, . . . , xk) | X(x) | ¬ϕ | ϕ ∨ ϕ |
∀Xϕ | ∀xϕ | [{x}ϕ]ϕ | 〈{x}ϕ〉ϕ (4)

where

• F (x1, . . . , xk) is a first-order atomic formula
• x ∈ VI and X ∈ VS
• {x}ϕ is a grouping operator which denotes the set of all ele-

ments d such that ϕ[x := d] holds.
2Note that these modalities are not dual to each other (see [3]).

The intended meaning of modalities in HCL is the same as in
the case of QCL. However, HCL offers a much richer language to
express properties of coalitions. Consider the following examples,
mainly from [7], illustrating the expressiveness of HCL:

• ∀x(super_user(x)→user(s)) – any super user is a user
• ∀X(∀x(X(x)→user(x))→ 〈{y}X(y)〉ϕ) – there is a co-

alition, where all users can achieve ϕ
• 〈{x}ψ(x)〉ϕ → 〈{y}∃x(ψ(x) ∧ collaborates(y, x))〉ϕ –

whenever there is a coalition, say C, satisfying ψ which can
achieve ϕ, there is also a coalition consisting of collaborators
of at least one member of C which can achieve ϕ.

Semantic structures for HCL correspond to weak playability. An
effectivity function E is weakly playable if for all C⊆D⊆Ag and
s ∈ S, (i) ∅ 6∈ E(Ag, s), (ii) ∅ ∈ E(D, s) implies ∅ ∈ E(C, s),
(iii) ∅ 6∈ E(∅, S) implies S ∈ E(C, s), (iv) E is Ag-maximal,
(v) E is outcome monotonic and (vi) E is superadditive.

HCL uses a general or Henkin semantics. A more detailed dis-
cussion about the semantic basis for HCL is provided in Section 4.

4. COALITION LOGIC HCL?
The goal of this paper is to provide a logical formalism for rea-

soning about the abilities of coalitions that has high expressive-
ness, yet is still amenable to tractable model-checking. HCL cer-
tainly has high expressiveness and is more general than both CL
and QCL. On the other hand, it currently lacks nice computational
properties for different fragments of the language. Our results
are intended to provide both well-behaved fragments and tractable
model checking techniques for higher-order logic using HCL?

In this section, we introduce the higher-order logic HCL?. For
the purposes of continuity and context, before providing formal
definitions, we list the difference between HCL and HCL? and
then remark on some of these differences.

1. HCL restricts quantification over relations to unary
(monadic) predicates. HCL? relaxes this restriction and per-
mits quantification over relations of arbitrary arity.

2. HCL includes both the diamond and box operators in the lan-
guage. HCL? excludes the box operator from the language.
Since box can be defined in terms of diamond, this is done
for technical reasons pertaining to model-checking and does
not limit expressivity of the language in general.

3. HCL uses a general or Henkin semantics which approxi-
mates the standard semantics for higher-order logic. HCL?

uses the standard semantics for higher-order logic.

4. HCL restricts frames to those whose effectivity function is
weakly playable. HCL? only requires frames to be mono-
tonic (both outcome and coalition monotonic) for our model
checking results to apply.

Before commenting on these differences, we provide the syntax
and semantics of HCL?.

The syntax of HCL? is given by the following grammar:

ϕ ::= > | F (x1, . . . , xk) | X(x1, . . . , xk) |
¬ϕ | ϕ ∨ ϕ | ∀Xϕ | ∀xϕ | 〈{x}ϕ〉ϕ (5)

A coalition frame is a tuple 〈Ag, S, E〉, where Ag is a finite,
nonempty set (of agents), S is a finite set of states and E is an
effectivity function.

A coalition frame is monotonic if its effectivity function is
both outcome monotonic and coalition monotonic. Monotonicity

745

is the weakest requirement necessary for our model-checking re-
sults. In the rest of the paper we assume that the frames considered
are monotonic.

A coalition model based on a frame 〈Ag, S, E〉 is a tuple
M = 〈Ag, S, E , I, σ〉, where:

• I is a first-order interpretation, for any first order formula α
and s ∈ S it assigns a set of tuples αI(s) satisfying α in
state s

• σ assigns in states: (i) values in Ag to individual variables,
(ii) sets of tuples of respective arity to relation variables.3

Let M = 〈Ag, S, E , I, σ〉 be a coalition model and s ∈ S.
We define the satisfaction relation as follows, where
M′=〈Ag, S, E , I, σ[x := d]〉 andM′′=〈Ag, S, E , I, σ[X :=D]〉:

• M, s |= >
• M, s |= F (x1, . . . , xk) iff 〈σ(x1), . . . , σ(xk)〉 ∈ F I(s)

• M, s |= ¬ϕ iffM, s 6|= ϕ

• M, s |= ϕ ∨ ψ iffM, s |= ϕ orM, s |= ψ

• M, s |= X(x1, . . . , xk) iff 〈σ(x1), . . . , σ(xk)〉 ∈ σ(X, s)

• M, s |= ∀xϕ iff for all d ∈ Ag,M′, s |= ϕ

• M, s |= ∀Xϕ, for a k-argument relation variable X ,
iff for all D ∈ P(Agk),M′′, s |= ϕ

• M, s |= 〈{x}ψ〉ϕ iff there is C={d | M′, s |= ψ} and
T ∈ E(C, s) such that for all t∈T ,M, t |=ϕ.

HCL uses a general or Henkin semantics which approximates
the standard semantics used by HCL? for higher-order logic.
Henkin semantics is weaker than the standard semantics. In gen-
eral |=H ϕ implies |= ϕ. This is in large part due to restriction of
second-order quantification solely to definable sets which is a pre-
requisite for showing completeness of the proof system associated
with Henkin semantics. The standard semantics is not restricted to
definable sets and in HCL?, second-order quantifiers range over all
relations of respective arity, which directly reflects intuitions be-
hind them. On the other hand, HCL? is undecidable. However,
in the context of model-checking, when a given finite structure is
fixed and the language includes equality (=) as well as constants
denoting domain elements, then every set becomes definable and
both semantics become compatible in the sense that for any finite
model M , M |=H ϕ iff M |= ϕ. Note that the required constants
and equality is always available given the unique names and closed
world assumptions.

HCL? permits quantification over relation variables of any arity,
not only monadic ones, as required in HCL. Due to this, HCL?

provides increased expressivity. For example, the following HCL?

formula is outside of the HCL syntax:

∀u∀X((∀x∀y(X(x, y)→ Cn(x, y))∧
∀x∀z((Cp(x, z) ∨ ∃y(X(x, y) ∧X(y, z)))→ X(x, z)))
→ 〈{y}∃x(X(x, y) ∧ S(x))〉W (u)

)
.

(6)

If, for example, Cn stands for “controls”, Cp for “being able to
cooperate”, S for “smart” and W for “wins” then (6) states that

for every agent u, there is a coalition formed from
agents that are able to cooperate with one another and
are controlled transitively by smart agents, that can
make u a winner,

3In this definition, we restrict models to a single sort for agents, but
our results are also valid for many-sorted structures.

where “controlled transitively” is formalized by a transitiveX con-
taining relation Cp and contained in Cn.

On the other hand, the box operator, [{x}ψ], while included
in HCL syntax, is not part of HCL? syntax. The box operator,
[{x}ψ], is definable by means of the diamond 〈{x}ψ〉 operator
(see [3]). However, using such definitions results in an exponen-
tial blow up in the length of formulas. In the context of model-
checking and quantifier elimination, dealing with formulas which
include the box operator directly is problematic, as they are defined
by a formula using the sequence of quantifiers ∀∃∀. The first two
alternating quantifiers binding relational variables cause substantial
technical problems.

HCL? restricts frames to those whose effectivity function has the
property of monotonicity (both outcome and coalition monotonic).
Observe that playability implies both conditions: outcome mono-
tonicity (by definition of playability) and coalition monotonicity
(by Lemma 2). HCL considers frames whose effectivity functions
have the property of being weakly playable. If one considers weak
playability only, outcome monotonicity is assumed by definition,
however one has to additionally assume the coalition monotonicity
property.

5. REPRESENTATION OF MODELS
Querying deductive databases and model-checking are very sim-

ilar. When querying a deductive database, we can view the database
as a model and the query as a formula which is being checked for
satisfaction relative to the database. We will in fact take advan-
tage of this analogy when doing model-checking in HCL?. Since
functions are typically not allowed in deductive databases, we will
equivalently replace effectivity functions E by effectivity relations:

E ⊆ P(Ag)× S × P(S) (7)

such that E(C, s, T)
def≡ T ∈ E(C, s). This representation then

views a model frame in HCL? as a deductive database containing
the relation E and model checking as satisfying a query relative to
that database. One can then study the complexity of model check-
ing relative to the language fragments of HCL? used in the query
language by using results from deductive database theory and de-
scriptive complexity. Observe that one can identify any set with its
characteristic relation, i.e., rather than using set X , we may use the

unary relation X(x)
def≡ x ∈ X .

To simplify the presentation, coalition models will be repre-
sented in a deductive database using the relationE() defined above,
but more succinct representations are also possible, as discussed in
the end of this section. The extensional part will contain facts rep-
resented as E() atoms and the intensional part will contain a rule
encapsulating monotonicity assumptions:

(E(X,x, Y) ∧X ⊆ X ′ ∧ Y ⊆ Y ′)→ E(X ′, x, Y ′). (8)

This, in fact, ensures a succinct representation of coalition models
when doing model checking. Since we assume that coalition mod-
els are monotonic, we do not have to include information that fol-
lows from monotonicity. The same representation is used in [19]
for outcome monotonicity only. Our representation of the effec-
tivity relation is more succinct, since we also use coalition mono-
tonicity. This may result in exponentially smaller representations.
For example, if E({a}, s, {s}) holds, we do not have to include
an exponential number of facts of the form E(C, s, {s}) for all
C with a ∈ C in the model. Consequently, we avoid the prob-
lem of explicit model checking criticized elsewhere in the litera-
ture (e.g., [3]). It is important to note that rule (8) is not intended to
generate a possibly exponential number of facts. It is only used to

746

reduce the size of models and to model check facts involving E()
literals as is demonstrated in the proof of Lemma 6.

We can also increase succinctness of the model representation
by applying the Closed World Assumption, allowing one not to list
negative facts. Using this approach, model checking then becomes
similar to querying deductive databases (see, e.g., [1]). The follow-
ing example illustrates the representation used for coalition models.

EXAMPLE 3 (EXAMPLE 1 CONTINUED). The model consid-
ered in the introductory example consists of the following facts:

E
({a}, s0, {ss}

)
, E
({e}, s0, {ss, sj}

)
, E
({j}, s0, {ss, se}

)
E
({a, e}, s0, {ss}

)
, E
({a, e}, s0, {se}

)
E
({a, j}, s0, {ss}

)
, E
({a, j}, s0, {sj}

)
, E
({e, j}, s0, {ss}

)
.

Recall that the rule (8) reflecting the monotonicity of E is in the
intensional part of the database. Observe that due to (8), one can
remove facts E

({a, e}, s0, {ss}
)

and E
({a, j}, s0, {ss}

)
.

Also, no matter how many other agents and states are involved,
the above model of this particular scenario does not need to be
extended. 2

Using our representation, the size of a coalition frame
F = 〈Ag, S, E〉 is given by:

|F| def
= max

{
|Ag|, |S|,

∑
E(C,s,X)∈E

(|C|+ |X|+ 1
)}
. (9)

Complexity results will be provided w.r.t. size of models. The
input or query formula is considered to be fixed, thus has a constant
length. This is standard practice. Observe that the size of models
can, in the worst case, be exponential w.r.t. both |Ag| and |S|.

In this context, what do we mean by succinct representation of
models? Our claim is that a large class of models used in practical
applications can be succinctly represented by leveraging formal re-
sults from deductive database theory. Recall that we represent an
effectivity function as a relationE() and then represent that relation
(usually defined in terms of atoms) in a deductive database with an
intensional rule for monotonicity. In fact, one can use any equiva-
lent formula in first-order fixpoint logic to represent the effectivity
relation. This formula may include fixpoints, quantifiers and rela-
tions other than E(). Additionally, we can use other intensional
rules in addition to the monotonicity rule.

Why is this fundamentally important? Well, any model that is
polynomial in the size of agents and states can be equivalently
represented as a fixpoint formula and this fixpoint formula can be
polynomially compiled into a deductive database. The tractability
of model checking obviously applies to this class of models, too.4

Let’s illustrate this idea with the following Example 4.

EXAMPLE 4. Consider n sax players, m bass players and k
drummers (n,m, k ≥ 1). To organize a concert, one needs at least
a trio consisting of a sax player, a bass player and a drummer. Let
s0 be the initial state, sc be the state where a concert is possible
and sn where it is not. Let S(x), B(x) and D(x) stand for “x is
a sax player”, “x is a bass player” “x is a drummer”, respectively.
Then in this model we need n+m+ k facts:5

{S(s) | s is a sax player} ∪ {B(b) | b is a sax player}∪
{D(d) | d is a drummer},

4In fact, any equivalent representation of the class of fixpoint for-
mulas such as stratified Datalog would also do as a representational
mechanism.
5We implicitly assume that all players are different. For example,
no sax player is at the same time a bass player, etc.

in addition to facts reflecting that coalitions consisting of all sax
players (of all bass players or of all drummers) have the power to
block the concert:

E(S, s0, {sn}), E(B, s0, {sn}), E(D, s0, {sn})
as well as rule (8) and the following intensional rule expressing
that any suitable trio makes the concert possible:

(S(x)∧C(x)∧B(y)∧C(y)∧D(z)∧C(z))→E(C, s0, {sc}). (10)

Note that the size of the model isO(n+m+k) (and after unwinding
rule (10), it isO(n+m+k+n∗m∗k)) rather thanO(2n+m+k),
when rules (8) and (10) are not used. 2

To our knowledge, these techniques for reducing the size of mod-
els resulting in succinct representations is novel and quite power-
ful. It also shows how the integration of the model-checking tech-
niques developed in this paper together with deductive database
techniques results in an expressive and efficient representational
technique. Additionally, one has a more formal characterization
of what is meant by succinct representation.

6. MODEL CHECKING
When checking satisfiability of a formula from HCL?, we do

this relative to a model and a state. Given an arbitrary formula
in HCL?, we will introduce a translation operator Tr which maps
each formula into another second-order formula in HCL?. This
operator has two purposes.

1. It parameterizes all relational predicates in the formula with
an additional state argument.

2. It translates any instance of the diamond modality into
a second-order formula which is equivalent.

The net result is that a query is now reduced to an arbitrary second-
order formula without modalities in HCL? whose satisfiability we
would like to check relative to a coalition model. Transforming
the model checking problem into the problem of a 2nd-order query
to a deductive database representing a coalition model has great
advantages. We can now isolate fragments of second-order logic
which, through the use of quantifier elimination reduce the prob-
lem to a 1st-order or fixpoint query on a relational database. Results
from deductive database theory ensure us that this can be done effi-
ciently relative to the size of the database which we know contains
a succinct representation of a coalition model due to the advanta-
geous use of the monotonicity constraint.

We now provide the translation operator Tr . The translation
Tr (ϕ, s) results in a formula expressing the fact that formula ϕ
is satisfied in state s. To define Tr , with every k-argument symbol
like F,X of the HCL? language we associate respectively a fresh
(k + 1)-argument symbol F ′, X ′ not appearing in the original
HCL? language:

• Tr (F (x1, . . . , xk), s)
def
= F ′(s, x1, . . . , xk)

• Tr (¬ϕ, s) def
= ¬Tr (ϕ, s)

• Tr (ϕ ∨ ψ, s) def
= Tr (ϕ, s) ∨ Tr (ψ, s)

• Tr (X(x1, . . . , xk), s)
def
= X ′(s, x1, . . . , xk)

• Tr (∀xϕ, s) def
= ∀xTr (ϕ, s)

• Tr (∀Xϕ, s) def
= ∀XTr (ϕ, s)

• Tr (〈{x}ψ〉ϕ, s) def
= ∃X(∀x(X(x) ≡ Tr (ψ, s))∧

∃Y (E(X, s, Y)) ∧ ∀y(Y (y)→ Tr (ϕ, y))
)
.

747

Observe that the last clause of the Tr operator above translates
any instance of the diamond operator into an equivalent second-
order formula. The following important lemma allows us to replace
these translations of the diamond operator in a query formula with
a more efficient but equivalent query about E() without second-
order quantifiers.

LEMMA 5 (DIAMOND ELIMINATION LEMMA). For every
coalition modelM = 〈Ag, S, E , I, σ〉 and s ∈ S,

M, s |= Tr (〈{x}ψ〉ϕ, s) ≡ E({x}Tr (ψ, s), s, {y}Tr (ϕ, y)).

PROOF.
(→) Assume thatM, s |= Tr (〈{x}ψ〉ϕ, s). By definition,

M, s |= ∃X(∀x(X(x) ≡ Tr (ψ, s)) ∧ ∃Y (E(X, s, Y))∧
∀y(Y (y)→ Tr (ϕ, y))

)
,

In particular,M, s |= ∃X∀x(X(x) → Tr (ψ, s)). By monotonic-
ity of E we have that M, s |= E({x}Tr (ψ, s), s, {y}Tr (ϕ, y)).

(←) Assume thatM, s |= E({x}Tr (ψ, s), s, {y}Tr (ϕ, y)). Let

X(x)
def≡ Tr (ψ, s) and Y (y)

def≡ Tr (ϕ, y). SuchX and Y obviously
satisfy

M,s |=∀x(X(x)≡Tr (ψ,s))∧E(X,s, Y)∧∀y(Y (y)→Tr (ϕ, y)).

Therefore,

M, s |= ∃X(∀x(X(x) ≡ Tr (ψ, s)) ∧ ∃Y (E(X, s, Y))∧
∀y(Y (y)→ Tr (ϕ, y))

)
,

so, by definition of Tr ,M, s |= Tr (〈{x}ψ〉ϕ, s), which completes
the proof.

Given this lemma and the following lemma, we can already show
that formulas in the fragment of HCL? containing arbitrary in-
stances of the diamond operator, but no other 2nd-order quantifiers
can be model-checked for satisfiability in PTIME.

LEMMA 6. Model checking for formulas without second-order
quantifiers is in PTIME.

PROOF. Let M be a coalition model and s a state in M. We
first eliminate diamonds from the input formula.

Checking whether M is a model for a formula without occur-
rences of effectivity relation can be done in polynomial time in the
standard way (see, e.g., [1, 18]).

Checking the truth value of a given expression of the form
E
({x}Tr (ψ, s), s, {y}ϕ(y)

)
can be done by traversing facts in the

model and checking whether there is a fact E
(
C, s, T) such that

M, s |= E
(
C, s, T)→ E

({x}Tr (ψ, s), s, {y}ϕ(y)
)
. Such a fact

exists iffM, s |= E
({x}Tr (ψ, s), s, {y}ϕ(y)

)
. To check the re-

quired implication we use monotonicity: we simply check whether:

• the set C is included in the set being the value of
{x}Tr (ψ, s) inM and s
• the set T is included in the set being the value of {y}ϕ(x) in
M and s.

Computing the sets {x}Tr (ψ, s) and {y}ϕ(x) can be done in
polynomial time by an obvious extension of the technology of
querying databases in logic (see, [1]).

Let us now assume that our queries use both the diamond opera-
tor and additional 2nd-order quantifiers. Our next task is to identify
additional fragments of HCL? where these additional quantifiers
can be eliminated. Any formulas in such fragments are then guar-
anteed to be amenable to model-checking in PTIME based on the
results which follow.

Since universal quantifiers are definable by existential ones (us-
ing the standard definition ∀ = ¬∃¬), in what follows we will
focus on the existential fragment of HCL? without any loss in ex-
pressivity. The existential fragment of HCL? is the smallest set
containing arbitrary HCL? formulas without any universal quanti-
fiers, formulas of the form

∃X1 . . .∃Xrϕ, (11)

where ϕ contains no second-order quantifiers, and which is closed
under Boolean connectives, first-order quantifiers and modalities.

The first fragment of well-behaved formulas will be those that
are positive. By the positive fragment of HCL?, we mean formulas
in the existential fragment with the additional restriction that for
formulas of the form (11), ϕ is positive w.r.t. all relation variables
X1 . . . Xr . The standard definition of positive formulas [13] will
have to be slightly modified since relations such as the effectivity
relation E have arguments that might be formulas.

An occurrence of a relation variableX is positive (negative) inϕ,
if it appears under an even (respectively, odd) number of negation
signs.6 A formula ϕ is positive (negative) w.r.t. X if all occur-
rences of X in ϕ are positive (respectively, negative).

For example, formula

¬X(a) ∨ Y (b) ∨ ¬E({x}X(x), s, {y}¬Y (y)
)

is negative w.r.t. X and positive w.r.t. Y .
We could deal with the monotonic fragment of HCL? instead.

The reason we do not is that in general, checking monotonicity or
down-monotonicity is not decidable, while checking positivity and
negativity can be done in time linear in the length of the consid-
ered formula. Since positivity implies monotonicity and negativity
implies down-monotonicity, it is algorithmically convenient to use
positivity and negativity rather than monotonicity.

We now have the following lemma.

LEMMA 7. Model checking for the positive fragment of HCL?

is in PTIME.

PROOF. In light of Lemma 6 it suffices prove the claim for for-
mulas of the form (11), where ϕ is positive w.r.t. X1 . . . Xr . Con-
sider ϕ′ obtained from ϕ by replacing all occurrences ofX1 . . . Xr
by>. It appears that ϕ′ is equivalent to formula ∃X1 . . .∃Xrϕ. To
show this, consider a coalition modelM and its state s.

(→) If M, s |= ϕ′ then there are X1 . . . Xr such that
M, s |= ∃X1 . . .∃Xrϕ (it suffices to define all of them to be >).

(←) Assume thatM, s |= ∃X1 . . .∃Xrϕ. Formula ϕ is posi-
tive w.r.t. X1 . . .∃Xr , so monotone w.r.t. X1 . . .∃Xr .7 Since for
each 1 ≤ i ≤ r, formula Xi(. . .) → > is a tautology, by mono-
tonicity we get thatM, s |= ϕ′.

The final fragment of well-behaved formulas we will focus on
are the semi-Horn formulas. By the semi-Horn fragment of HCL?

we mean formulas in the existential fragment of HCL? which have
the following form:

∃X̄{∀x̄[α(X̄, x̄, z̄)→ Xi(x̄)] ∧ β(X̄)
}

where X̄ stands for X1, . . . , Xr , 1 ≤ i ≤ r, α is positive w.r.t.
each of X1, . . . , Xr and β is negative w.r.t. each of X1, . . . , Xr .

We will now show that semi-Horn formulas in the existential
fragment can be reduced to logically equivalent fixpoint formu-
las without higher-order quantifiers and that such formulas can be
6Here, as usual, each implication ϕ → ψ is replaced by ¬ϕ ∨ ψ
and each equivalence ϕ ≡ ψ is replaced by (¬ϕ∨ψ)∧ (¬ψ ∨ϕ).
7Monotonicity of effectivity relations is used here, too.

748

model-checked in PTIME. To show tractability of model checking
for the semi-Horn fragment of HCL?, we will use the following
theorem from [14] (see also [13]), where by LFPX(x̄) [α(X, x̄, z̄)]
and GFPX(x̄) [α(X, x̄, z̄)] we denote the least and the greatest fix-
point of α(X, x̄, z̄), i.e., the least and the greatest (w.r.t. inclusion)
relation satisfying X(x̄) ≡ α(X, x̄, z̄).8 For a detailed discussion
of fixpoint calculus and their use in databases see, e.g., [1, 18]. For
our purposes it is important to show that fixpoint queries are com-
putable in PTIME w.r.t. size of the database (in our case w.r.t. size
of the model).

The following additional notation will be used in the theorem and
proof. Let α(x, ȳ) be a higher-order formula, X(x̄) be a (higher-
order) relation, γ(x̄) be a (higher-order) formula with all free vari-
ables being x̄. Then αX(x̄)

γ(x̄) denotes the formula obtained from α

by substituting all subformulas of the form X(t̄) by γ(t̄).

THEOREM 8. Let X be a relation variable and α(X, x̄, z̄),
β(X) be formulas with relations of arbitrary order, where the num-
ber of distinct variables in x̄ is equal to the arity of X . Let α be
monotone w.r.t. X .

If β(X) is down-monotone w.r.t. X then

∃X{∀x̄[α(X, x̄, z̄)→ X(x̄)] ∧ β(X)
} ≡

β(X)
X(x̄)

LFPX(x̄) [α(X,x̄,z̄)](x̄).
(12)

If β(X) is monotone w.r.t. X then

∃X{∀x̄[X(x̄)→ α(X, x̄, z̄)] ∧ β(X)
} ≡

β(X)
X(x̄)

GFPX(x̄) [α(X,x̄,z̄)](x̄).
(13)

The following example illustrates the use of Theorem 8

EXAMPLE 9. Consider formula (6). It is universally quantified,
so we first negate it to replace universal quantifiers by existential
quantifiers:

¬∃u∃X(∀x∀y(X(x, y)→ Cn(x, y))∧
∀x∀z((Cp(x, z)∨∃y(X(x, y)∧X(y, z)))→X(x, z))∧
¬〈{y}∃x(X(x, y) ∧ S(x))〉W (u)

)
.

(14)

Formula under ∃u is semi-Horn. To apply our method we first
have to translate the formula using translation Tr and applying
Lemma 5. The result is:

¬∃u∃X ′(∀x∀y(X ′(s, x, y)→ Cn′(s, x, y))∧
∀x∀z((Cp′(s, x, y)∨∃y(X ′(s, x, y)∧X ′(s, y, z)))→X ′(s, x, z))
∧ ¬E({y}∃x(X ′(s, x, y)∧S′(s, x)), s,W ′(s, u))

)
.

To apply the equivalence (12) we formally need a small trick,9

namely the second line of the above formula is equivalent to

∀t∀x∀z((t = s ∧ (Cp′(s, x, y) ∨ ∃y(X ′(s, x, y) ∧X ′(s, y, z))))
→ X ′(t, x, z))

Now we apply equivalence (12) of Theorem 8 and obtain the fol-
lowing equivalent formula:

¬∃u(∀x∀y(X ′(s, x, y)→ Cn′(s, x, y))∧
¬E({y}∃x(X ′(s, x, y)∧S′(s, x)), s,W ′(s, u))

)
,

(15)

where X ′ should be respectively replaced by

LFPX ′(t, x, z) [t = s ∧ (Cp′(s, x, z)∨
∃y(X ′(s, x, y) ∧X ′(s, y, z)))]. (16)

8We shall only use this notation in contexts where the least and the
greatest relation exist.
9Which later will appear reversible.

Using the fact that t = s, we get the following equivalent of (16):10

LFPX ′(s, x, z) [Cp′(s, x, z)∨∃y(X ′(s, x, y) ∧X ′(s, y, z))]. (17)

Formula (16), in which X ′s are respectively replaced by the least
fixpoint formula (17), is the input to the model checking method. 2

Since positivity implies monotonicity and negativity implies
down-monotonicity, we have the following theorem as a conse-
quence of equivalence (12) from Theorem 8.

THEOREM 10. Model checking for the semi-Horn fragment of
HCL? is in PTIME.

PROOF. Observe that second-order quantifiers can be elimi-
nated from semi-Horn formulas using (12). The resulting formula
is a fixpoint formula. Checking whether it holds in a given model
M can be done in time polynomial w.r.t. the size ofM.

Note that in Theorem 8 second-order quantification binds a sin-
gle relation variable, while in semi-Horn formula there might be
a longer tuple of existential quantifiers. However, such a tuple can
be encoded by a single relation variable by adding a special argu-
ment (or a number of arguments) identifying “original” relations.
For example, to encode X1, . . . , Xr , we can consider a relation
variable X (̂i, x̄), where î is the special argument, x̄ is the list of
arguments of the length being the maximum of lengths of argu-
ments of X1, . . . , Xr . Now, rather than writing Xi(x̄i) one can
write X (̂i, x̄i, ȳ), where ȳ is a tuple of dummy arguments, needed
when the number of arguments of Xi is smaller than the number of
arguments in x̄.

One can also define the dual form of semi-Horn formulas. By the
dual semi-Horn fragment of HCL? we mean formulas in the exis-
tential fragment of HCL?, which have the following form:

∃X̄{∀x̄[Xi(x̄)→ α(X̄, x̄, z̄)] ∧ β(X̄)
}

where X̄ stands for X1, . . . , Xr , 1 ≤ i ≤ r and α, β are both
positive w.r.t. each of X1, . . . , Xr .

By applying the equivalence (13) from Theorem 8, we have the
following theorem.

THEOREM 11. Model checking for the dual semi-Horn frag-
ment of HCL? is in PTIME. 2

7. ASSERTION TYPES EXPRESSIBLE IN
TRACTABLE FRAGMENTS OF HCL?

Let us summarize a number of useful types of assertions which
can be represented in those fragments of HCL? which admit
tractable model checking.

The first, obvious class of expressible formulas is provided by
Lemma 6. This is quite a rich class of formulas. Probably the
most interesting among them are existence assertions allowing one
to express that, in a given circumstance C(x̄), there is a coalition
satisfying a certain condition A which can lead to a set of states
guaranteeing that a given goal G(z̄) is achieved:

C(x̄)→ 〈{y}A(y)〉 G(z̄). (18)

Note that bothC andG can still contain diamonds. In applications,
one can frequently expect queries of the form (18), often simplified
to the case where C(x̄) is true, i.e., when one is interested whether
in a given situation there is a coalition able to achieve a given goal
(i.e., 〈{y}A(y)〉 G(z̄)).

10Explaining what we have meant by “reversibility” of the trick ap-
plied earlier.

749

Another significant class of formulas is provided by Lemma 7 to-
gether with Theorems 10 and 11. A very important subclass of such
formulas is the one, where using existential second-order quanti-
fiers, one can “transfer” coalitions among diamonds. We call such
assertions transfer assertions, which typically can take the form

∃X(∀x̄(A(X, x̄)→ 〈{y}B(X, x̄, y)〉) ∧ C(X)
)
. (19)

Of course, tractable model checking is possible when such a for-
mula translates into a positive or (dual) semi-Horn formula, like in
the following example,

∃X(∀x̄(X(x̄)→ (〈{y}(X(y) ∨ large(y))〉goal∧
∀x̄(strong(x)→ X(x̄))

)
,

expressing that there is a coalition consisting of all strong agents
in addition to possibly some large agents, capable of achieving the
goal.

Observe that the class of formulas which admit tractable model
checking using the methods provided in this paper is not limited to
the above types of assertions, but these assertion types do show the
practical use of the fragments we deal with.

8. CONCLUSIONS
We have introduced the higher-order logic HCL? which can be

used for reasoning about the abilities of coalitions and interactions
between them. HCL? is a generalization of HCL which subsumes
both CL and QCL. Additionally, we have isolated a number of ex-
pressive fragments of HCL? and shown that the model-checking
problem for these fragments can be solved in PTIME by appeal-
ing to use of quantifier elimination, results from deductive database
theory and descriptive complexity. Additionally, through advanta-
geous use of monotonicity constraints on coalition frames and use
of deductive database techniques one can often get exponentially
more succinct representations of coalition models in the model-
checking process.

For formulas outside of this fragment one could use extensions
of the second-order quantifier elimination algorithm of [11] which,
although often finding reductions outside these fragments, does not
guarantee such reductions. For a presentation of this algorithm as
well as other relevant techniques see also [13].

9. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley Pub. Co., 1996.
[2] T. Ågnotes, W. van der Hoek, and M. Wooldridge. On the

logic of coalitional games. In Proc. AAMAS’06, pages
153–160. AAAI, 2006.

[3] T. Ågnotes, W. van der Hoek, and M. Wooldridge. Quantified
Coalition Logic. In Proc. IJCAI’07, pages 1181–1186.
AAAI, 2007.

[4] T. Ågotnes and H. van Ditmarsch. Coalitions and
announcements. In Proc. AAMAS ’08, pages 673–680, 2008.

[5] R. Alur, T.A. Henzinger, and O. Kupferman.
Alternating-time Temporal Logic. Journal of the ACM,
49:672–713, 2002.

[6] P. Balbiani, O. Gasquet, A. Herzig, F. Schwarzentruber, and
N. Troquard. Coalition games over Kripke semantics. In
C. Dégremont, L. Keiff, and H. Rückert, editors, Dialogues,
Logics and Other Strange Things – Essays in Honour of
Shahid Rahman, pages 11–32. College Publications, 2008.

[7] G. Boella, D.M. Gabbay, V. Genovese, and L. van der Torre.
Higher-Order Coalition Logic. In Proc. ECAI’10, pages
555–560, 2010.

[8] J. Broersen, A. Herzig, and N. Troquard. From coalition
logic to STIT. Electron. Notes Theor. Comput. Sci.,
157(4):23–35, 2006.

[9] N. Bulling, J. Dix, and C.I. Chesnevar. Modelling coalitions:
ATL + argumentation. In AAMAS ’08, pages 681–688, 2008.

[10] V. Dignum, editor. Handbook of Research on Multi-Agent
Systems. Information Science Reference, 2009.

[11] P. Doherty, W. Łukaszewicz, and A. Szałas. Computing
circumscription revisited. Journal of Automated Reasoning,
18(3):297–336, 1997.

[12] B. Dunin-Keplicz and R. Verbrugge. Teamwork in
Multi-Agent Systems: A Formal Approach. John Wiley &
Sons, Ltd., 2010.

[13] D.M. Gabbay, R. Schmidt, and A. Szałas. Second-Order
Quantifier Elimination. Foundations, Computational Aspects
and Applications, volume 12 of Studies in Logic. College
Publications, 2008.

[14] D.M. Gabbay and A. Szałas. Second-order quantifier
elimination in higher-order contexts with applications to the
semantical analysis of conditionals. Studia Logica,
87:37–50, 2007.

[15] A. Gibbard. A Pareto-consistent libertarian claim. Journal of
EconomicTheory, 7(4):388–410, 1974.

[16] V. Goranko. Coalition games and alternating temporal logics.
In Proc. 8th Conf. on Theoretical Aspects of Rationality and
Knowledge TARK, pages 259–272. Morgan Kaufmann, 2001.

[17] S. Ieong and Y. Shoham. Marginal contribution nets:
A complact representation scheme for coalitional games. In
Proc. ACM EC, pages 170–179, 2006.

[18] N. Immerman. Descriptive Complexity. Springer, 1998.
[19] M. Pauly. Logic for Social Software. Ph.D., ILLC

Dissertation Series. University of Amsterdam, 2001.
[20] M. Pauly. A modal logic for coalitional power in games.

Journal of Logic and Computation, 12(1):149–166, 2002.
[21] T. Rahwan and N. R. Jennings. An improved dynamic

programming algorithm for coalition structure generation. In
Proc. AAMAS’08, pages 1417–1420, 2008.

[22] T. Rahwan, T. Michalak, N. R. Jennings, M. Wooldridge, and
P. McBurney. Coalition structure generation in multi-agent
systems with positive and negative externalities. In Proc.
IJCAI, 2009.

[23] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and
F. Tohme. Coalition structure generation with worst case
guarantees. AIJ, 1-2(111):209–238, 1999.

[24] T. Sandholm and V.R. Lesser. Coalitions among
computationally bounded agents. Artificial Intelligence,
94:99–137, 1997.

[25] İ. Seylan and W. Jamroga. Description logic for coalitions. In
Proc. AAMAS’09, pages 425–432. AAAI, 2009.

[26] Y. Shoham and K. Leyton-Brown. Multi Agent Systems:
Algorithmic, Game-Theoretic, and Logical Foundations.
Cambridge, 2009.

[27] F. Tohmé and T. Sandholm. Coalition formation processes
with belief revision among bounded-rational self-interested
agents. Journal of Logic and Computation, 9:793–815, 1999.

[28] W. van der Hoek and M. Wooldridge. On the logic of
cooperation and propositional control. Artif. Intell.,
164(1-2):81–119, 2005.

[29] J. Wu, C. Wang, L. Zhang, and J. Xie. Coalitional planning in
game-like domains via ATL model checking. In ICTAI ’09:
Proc. 21st Int. Conf. on Tools with AI, pages 645–652, 2009.

750

