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ABSTRACT
In modal logic, when adding a syntactic property to an ax-
iomatisation, this property will semantically become true in
all models, in all situations, under all circumstances. For
instance, adding a property like Kap→ Kbp (agent b knows
at least what agent a knows) to an axiomatisation of some
epistemic logic has as an effect that such a property becomes
globally true, i.e., it will hold in all states, at all time points
(in a temporal setting), after every action (in a dynamic set-
ting) and after any communication (in an update setting),
and every agent will know that it holds, it will even be com-
mon knowledge. We propose a way to express that a prop-
erty like the above only needs to hold locally: it may hold in
the actual state, but not in all states, and not all agents may
know that it holds. We can achieve this by adding relational
atoms to the language that represent (implicitly) quantifi-
cation over all formulas, as in ∀p(Kap → Kbp). We show
how this can be done for a rich class of modal logics and a
variety of syntactic properties.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods—Modal Logic

General Terms
Theory
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1. INTRODUCTION
Modal logic has become the framework for formalising

areas in computer science and artificial intelligence as di-
verse as distributed computing [10], reasoning about pro-
grams [11], verifying temporal properties of systems, game
theoretic reasoning [18], and specifying and verifying multi-
agent systems [21]. Regarding the latter example alone,
since Moore’s pioneering work [14] on knowledge and ac-
tion, agent theories like intention logic [4] and BDI [15] use
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modal logic (where the modalities represent time, action,
informational attitudes like knowledge or belief, or motiva-
tional attitudes like desires or intentions) to analyse inter-
actions between modalities, like perfect recall, no-learning,
realism, or different notions of commitment. As for epis-
temic modal logic, since the seminal work of Hintikka [12],
modal epistemic logic has played a key role in knowledge
representation, witnessed by its key role for reasoning about
knowledge in computer science [7], and artificial intelligence
[13]. The current activities in dynamic epistemic logic [1,
19] can be seen as providing a modal logical analysis in the
area of belief revision, thereby providing it with a natural
basis to do multi-agent belief revision, give an account of the
change of higher order information, capture this all in one
and the same object language: a modal language, indeed.

The popularity of modal logic in those areas is partly ex-
plained by its appealing semantics: the notion of state is
a very powerful one when it comes to modeling computa-
tions of a machine, or describing possibilities that an agent
thinks/desires/fears to be possible. Another strong feature
of modal logic is its flexibility: the fact that temporal, dy-
namic, informational and motivational attitudes can be rep-
resented by modalities does not mean that they all satisfy
the same laws. Rather, depending on the interpretation one
has in mind, one can decide to either embrace or abandon
certain principles for each of the modalities used. Syntac-
tically, this means one assumes a number of axioms or in-
ference rules for a modality or for the interaction of some
modalities, and more often than not, this semantically cor-
responds to assuming some specific properties of the associ-
ated accessibility relations.

In the context of epistemic logic for instance, adding spe-
cific modal axioms allows one to specify that the knowing
agent is veridical (Kap → p): if agent a knows that p, then
p must be true), or that he is positively (Kap → KaKap)
or negatively (¬Kap → Ka¬Kap) introspective. Those ax-
ioms happen to correspond (in a precise way: correspon-
dence theory for modal logic is already some decades old,
cf. [17]) to reflexivity, transitivity and euclidicity of the as-
sociated accessibility relation Ra, respectively. Moreover,
the axioms are canonical for it: adding the syntactic axiom
to a modal logic enforces the canonical model for the logic
to have the corresponding property, which then in turn im-
plies that completeness of the logic with respect to the class
of models satisfying that relational property is guaranteed.
At this point, is important to note the difference between
Kap → p as a formula and that as a scheme, or axiom:
as a formula, it merely expresses that regarding the atom
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p, agent a cannot know it without it being true. However,
when we assume it as an axiom, or as a scheme, it means
that we assume it to hold for every substitution instance of
p, in other words, we assume that for all formulas ϕ, the
implication Kaϕ→ ϕ holds.

It is often argued (indeed, already by Hintikka in [12])
that a distinguishing feature between knowledge and belief is
that whereas knowledge is veridical, belief need not be, i.e.,
the scheme Bap → p should not be assumed as an axiom
for belief. This then simply entails that epistemic logics
have veridicality as an axiom, and doxastic logics have not.
Semantically speaking: the accessibility relations denoting
knowledge are reflexive, those denoting belief need not be.
But how then to deal with a situation where we want to
express that “currently, a’s beliefs happen to be true”? If we
add Bap → p as an axiom to our logic, the effect is that in
all models (with respect to which the logic is complete), and
in all states, all instances of that axiom are true, i.e., for all
models M , for all states s and for all formulas ϕ, we then
have M, s |= Baϕ→ ϕ. Given a model M and a state s we
can express that a’s belief that an individual proposition q
holds is correct: M, s |= Baq∧q. And we can express that a’s
belief about q is correct: M, s |= (Baq → q)∧ (Ba¬q → ¬q).
But what we cannot express in modal logic is that Baϕ→ ϕ
holds for all ϕ in one state, without claiming at the same
time it should hold throughout the model. As a consequence,
we cannot express in the object language that agent b thinks
that agent a’s beliefs are correct, while agent c believes that
a is wrong about a proposition q. The closest one gets to
expressing that would be to say that for all ϕ, in M, s we
have M, s |= Bb(Baϕ → ϕ) ∧ Bc((Baq ∧ ¬q) ∨ (Ba¬q ∧
q)) (but here, the quantification over ϕ is on a meta-level,
and not in the scope of agent b). Neither can we say, in a
temporal doxastic context, that a’s beliefs now are correct,
but tomorrow they need not be.

To give another example of the same phenomenon, sup-
pose one adds the scheme Kap → Kbp to a modal logic (b
knows everything that a knows). Semantically, this means
Rb ⊆ Ra. If the logic is about a set of agents A, then it
becomes common knowledge among A that b knows at least
what a knows! And if there is a notion of time, we have that
it will always be the case that b knows at least what a knows,
and, when having modalities for actions, it follows that no
action can make it come about that a has a secret for b, in
particular, it is impossible to inform a about something that
b does not already know—this rules out dynamics that is, in
contrast, very possible in DEL.

So, the general picture in modal logic that we take as
our starting point is the following. One has a modal logic
to which one adds an axiom scheme θ (say, Bap → p). If
one is lucky, the scheme corresponds to a relational property
Θ(x) (in the case above, Rxx). However, adding θ to the
logic means having Θ(x) true everywhere, implying that θ is
always true. What we are after is looking at ways to enforce
the scheme θ locally. To do so, we will add a marker � to
the modal language, such that � is true locally, in a state s,
if and only if Θ is true, locally (i.e., Rss holds).

Doing so, we generalise work of [20], where a case study, in
the context of a multi-agent logic S5, is given for ‘knowing
at least as much as’, i.e., in our terminology, �(a, b) in [20]
equals a � b, and our Θ(a, b)(x) is the property ∀y(Rbxy ⇒
Raxy) in [20].

We will not only generalise the result of [20] to arbitrary

modal logics K(+ϕ1, . . . ,+ϕn) where ϕi are canonical ax-
ioms, but also we allow to add several markers at the same
time. This then enables that we cannot only make global
properties locally true, but it allows for far more subtle quan-
tifications over formulas than is allowed in modal logic, en-
abling us to express properties like“If all of John’s beliefs are
correct, than so must Mary’s beliefs be”, or “If John knows
now everything that Mary knows, then that must have been
true yesterday as well” or “If John’s beliefs are correct, then
he must know that Mary’s beliefs are correct as well” (for
more examples of such quantification, see Section 2.1).

This paper is organised as follows. In Section 1.1 we sketch
how our machinery will look like. Then, in Section 2 we for-
mally introduce three languages and present an example.
Section 3 provides an axiomatisation of our extended modal
logic, we come back to the example and make a case for com-
pleteness. Finally, in Section 4 we summarise and conclude.

1.1 To a Modal Logic with Local Schemes
In this section we introduce three languages to reason

about Kripke models. The place where these languages meet
are important for our set-up. Let us outline the overall ap-
proach at the hand of an example: formal definitions fol-
low later in this section. First of all, we are interested in
a modal scheme θ(a, b, p) = [a]p → [b]p in a modal lan-
guage L (generally, we write [a]ϕ for modal formulas, but
for epistemic interpretations we may write Kaϕ, and for
doxastic ones Baϕ). To the modal language we add a rela-
tional atom �(a, b), or, in this specific case Sup(a, b), which
will be true in a state s iff ∀y(Rbsy ⇒ Rasy) holds. The
latter property is a formula Θ(a, b)(s) in a first-order lan-
guage L1. Our modal logic should now formalise the idea
that θ(a, b, c) and �(a, b) ‘capture the same’. Rather than
saying that the two are equivalent, the logic will take care
that something along the following lines holds: consistency
of a formula ϕ with an occurrence of ¬�(a, b) is the same as
consistency of ϕ with the occurrence of ¬ � (a, b) replaced
by ¬θ(a, b, p) (if p is a fresh atom). For completeness of
the logic, we then take care that in its canonical model, the
truth of θ(a, b, p) in a specific world (i.e., maximal consis-
tent set ∆) coincides with property Θ(∆). We show that
our construction works because the second order formula
∀P (∀x(Raxy ⇒ Py)⇒ ∀y(Rbxy ⇒ Py)) = ∀P Θ̂(a, b, P )(x)

is equivalent to Θ(x). The formula ∀P Θ̂(a, b, P ) is an exam-
ple of a formula from the third language that we use, i.e., a
second-order language L2.

The languages that we define are simple extensions of lan-
guages usually studied in standard modal logic [3, 2]. More
specifically, our modal logic extends that of modal logic with
some relational atoms �, the first order language is the stan-
dard language to reason about properties of accessibility re-
lations, and the second order language is similar to the one
usually obtained by applying the so-called standard trans-
lation to modal formulas. Our completeness proof, in turn,
is an extension of ‘standard’ completeness proofs in modal
logic: we sometimes have to add fresh atoms p to ensure that
θ(a, b, p) is satisfied. However, we have borrowed ideas from
[5] to prove our Extension Lemma 2 and ideas from [16] to
make this lemma work ‘everywhere in the canonical model’.
Space does not allow to include the proofs themselves, but
we will make an effort to explain the overall idea and the
construction of the canonical model.
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2. LANGUAGE AND SEMANTICS
As outlined above, we deal with three languages, which are

all interpreted over the same objects, i.e., Kripke models.
The languages are an extended modal language L, a first
order language L1 and a second order language L2.

For all languages, we assume a set of modality labels
A = {a1, . . . , a|A|}. In the modal language, these will give
rise to modalities [a], and in the other two languages, we
assume to have a binary relation Ra for each a ∈ A. For
the latter two languages we also assume to have a set of
variables X = {x, y, . . . }. The variables will range over
possible worlds: note that neither in L1 nor in L2 we as-
sume to have constants. For L2, we furthermore use a set
Π = {P, P1, P2, . . . , Q,Q1, Q2, . . . } of unary predicates. For
each such predicate P in Π we assume to have an atomic
proposition p ∈ π that are building blocks for the modal
language L. On top of this, for this modal language L we
assume a finite set ρ = {�1,�2, · · ·�m} of relational atoms:
they are nothing else than syntactic atoms of which the truth
depends on local properties of accessibility relations (see the
function I in Definition 1). Therefore, we will often write
�(a1, . . . , an) rather than � to make this dependence clear,
and treat � as if it were an n-ary relational predicate (rather
than an atomic symbol). Our languages will be denoted
L(A, π, ρ) (the modal language), L1(A,X ) (the first order
language) and L2(A,Π,X ) (the second order language). If
the parameters for the languages are clear, we will also write
L, L1 and L2, respectively.

Definition 1 (modal language). Let the sets A, π,
and ρ be as described above. The modal language L(A, π, ρ)
is defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [a]ϕ | �(a1, · · · , an)

where a, a1, . . . , an ∈ A, p ∈ π and � is an n-ary relational
atom in ρ. Formula 〈a〉ϕ is shorthand for ¬[a]¬ϕ and we
also assume the usual definitions for disjunction, implication
and bi-implication. If the modality is an epistemic one, the
labels are agents, and we write Kaϕ rather than [a]ϕ. For a
doxastic interpretation we write Baϕ, etc.

A formula without occurrences of relational atoms is called
a purely modal formula. Suppose we have a multi-modal
formula θ(a1, . . . , an, p1, . . . pk) where a1, . . . , an are labels
of modalities [a1], . . . [an] and p1, . . . , pk are atoms. We will
write ~a for the tuple a1, . . . , an and ~p for p1, . . . , pk. When
we write a ∈ ~a we mean that a is one of the labels occurring
in the tuple ~a, likewise for p and ~p. Finally, for any tuple
~x = x1, . . . , xn with each xi taken from some set X, we will
write ~x ∈ ~X.

Definition 2 (first and second order language).
Let A and X be given. First define a language L+(A,X ):

Θ := Raxy | ∀yΘ | ¬Θ | Θ & Θ

with a ∈ A, and x, y ∈ X . Now, our first order language
L1(A,X ) is the one-free-variable sublanguage of L+, i.e.,
the sublanguage of L+ consisting of all formulas with at most
one variable not in the scope of a quantifier. If Θ ∈ L1(A,X )
has x as its only free variable, and if a1, . . . an are all the
modality labels occurring in Θ, we will also write Θ(~a)(x)
for Θ.

Finally, given A,Π and X we define the second order lan-
guage L2(A,Π,X ) as the one-free-variable fragment of

Θ̂ := P (x) | Raxy | ∀yΘ̂ | ∀P Θ̂ | ¬Θ̂ | Θ̂ & Θ̂

with P ∈ Π, x, y ∈ X and a ∈ A. In L1(A,X ) and L2(A,Π,X ),
existential quantification (using ∃) and implication (using
⇒) are defined in a standard way.

We write Px for P (x). As mentioned earlier, all languages
will be interpreted over Kripke models.

Definition 3 (Kripke models and frames). Given A,
π and ρ, a Kripke model is a tuple M = 〈W,R, I, V 〉 where

• W is a set of possible worlds;

• R : A → ℘(W ×W ) assigns a binary relation to each
modality label

• I : ρ→ L1(A,X ) assigns a first order property to each
relational atom in ρ

• V : π → ℘(W ) assigns a set of possible worlds to each
propositional variable

Rather then (w, v) ∈ R(a) we will write Rawv. A Kripke
frame is a tuple F = 〈W,R, I〉 such that 〈M,V 〉 = 〈W,R, I, V 〉
is a model. The ‘arity’ of a symbol � ∈ ρ can be read off
from its interpretation I(�): if I(�) refers to modalities
a1, . . . , an, then we may write �(~a) for �.

Definition 4 (semantics of modal formulas). Let
A and π be given. Also, let M = 〈W,R, I, V 〉. Then we de-
fine, for ϕ ∈ L(A, π, ρ):

M,w |= p iff w ∈ V (p)
M,w |= ¬ϕ iff M,w 6|= ϕ
M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ
M,w |= [a]ϕ iff for all v if Rawv, then M, v |= ϕ
M,w |= �(~a) iff I(�(~a))(w) holds

The class of all models is denoted K(A, π, ρ). All models
with interpretation I are denoted K(A, π, ρ, I). Validity in
a model M is defined as usual. Moreover, K(A, π, ρ) |= ϕ
means that for all I, M = 〈W,R, I, V 〉, and all w ∈ W ,
we have M |= ϕ. Given I, we say that ϕ is I-satisfiable, if
there is a model M = 〈W,R, I, V 〉 and a w ∈ W such that
M,w |= ϕ. Formula ϕ is I-valid if ¬ϕ is not I-satisfiable.
If F = 〈W,R, I〉 is a frame, F,w |= ϕ is defined as: for all
valuations V, 〈W,R, I, V 〉, w |= ϕ.

Interpretation of L1(A,X )-formulas in a modelM = 〈W,R,
I, V 〉 is straightforward. For L2(A,Π,X ), we assume that
Ps holds for a predicate P iff s ∈ V (p). In other words, the
link between a propositional atom and a unary predicate is
implicit by using lower-case and upper-case notation.

Example 1. Let �(a, b) be such that in M with interpre-
tation I, we have I(�(a, b)) = Θ(a, b) where Θ(a, b)(x) =
∀y(Rbxy ⇒ Raxy), saying that in the current world w, the
set of a-successors of w is a superset of the set of b-successors
of w. If this is the interpretation of �(a, b), we will also
write Sup(a, b). As a second example, take � = �(a) to
be such that I(�(a))(x) = Raxx. Note that Ba � (a) can
hence be interpreted as ‘a believes that his beliefs are correct’,
since M,w |= Ba � (a) does entail that for all ϕ, M,w |=
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Table 1: In this table, ~a is a sequence a or (a, b) or (a, b, c) of modality labels, and ~p is either the single atom
p or the sequence p, q. Θ(~a)(x) is a property of a state x, and �(~a) is a name in the object language such that
�(~a) holds at w iff Θ(~a)(w) holds of M .

θ(~a, ~p) Θ(~a)(x) �(~a)
[a]p→ [b]p ∀y(Rbxy ⇒ Raxy) Sup(a, b)
[c]p→ [a][b]p ∀y, z((Raxy&Rbyz)⇒ Rcxz) Trans(a, b, c)
¬[a]⊥ ∃yRaxy Ser(a)
[a]p→ p Raxx Refl(a)
¬[a]p→ [b]〈c〉p ∀yz((Raxy&Rbxz)⇒ Rcyz) Eucl(a, b, c)
〈a〉p→ 〈b〉〈c〉p ∀z(Raxz ⇒ ∃yRbxy&Rcyz) Dens(a, b, c)

Table 2: For every modal formula θ(~a, ~p) from Table 1, we give the second order translation Θ̂(~a, ~P ).

θ(~a, ~p) Θ̂(~a, ~P )(x)
[a]p→ [b]p ∀y(Rbxy ⇒ Py)⇒ ∀z(Raxz ⇒ Pz)
[c]p→ [a][b]p ∀w(Rcxw ⇒ Pw)⇒ ∀y(Raxy ⇒ ∀z(Rbyz ⇒ Pz))
¬[a]⊥ ¬∀y(Raxy ⇒ ⊥)
[a]p→ p ∀y(Raxy ⇒ Py)⇒ Px
¬[a]p→ [b]〈c〉p ¬∀w(Raxw ⇒ Pw)⇒ ∀y(Rbxy ⇒ ∃z(Rcyz&Pz))
〈a〉p→ 〈b〉〈c〉p ∃w(Raxw&Pw)⇒ ∃y(Rbxy&∃z(Rcyz&Pz))

Ba(Baϕ→ ϕ) (but see Remark 1). As a final example, take
�(a, b, c) with I(�(a, b, c))(x) = ∀y∀z((Raxy &Rbyz) ⇒
Rcxz) we will write Trans(a, b, c) for Θ(a, b, c). Of course,
a special case of this is � = �(a, a, a) saying that currently,
at world w, the relation Ra is transitive. For more examples,
see Table 1.

Remark 1. Take �(a) and M such that I(�(a)) = ∀xRaxx.
Note that although M,w |= �(a) entails that agent a’s beliefs
are correct, the converse is not true, as the following exam-
ple shows. Let M = 〈W,R, I, V 〉 be such that W = {w, v},
and Ra = {(w, u), (u,w)}. Moreover, assume that for all p,
w ∈ V (p) iff u ∈ V (p). Since M,w and M, v are bisimilar [2,
Chapters 1 and 5] models, we have M,w |= ϕ iff M,u |= ϕ,
and hence M,w |= Baϕ → ϕ, for all purely modal ϕ. How-
ever, since (w,w) 6∈ Ra, we have M,w |= ¬� (a).

Note that, since Θ(~a)(w) does not refer to atomic propo-
sitions p (or, rather predicates P ), we have that Θ(~a)(w)
holds in the model M iff Θ(~a)(w) holds in the frame F .

Definition 5 (Standard Translation). Fix sets A,
π, Π, and ρ. Fix an interpretation I and write I(�(~a)) =
Θ�(~a). We define STI : L(A, π, ρ)×X → L2(A,Π,X ) by

STI(p)(x) = P (x)
STI(�~a)(x) = Θ�(~a)(x)
STI(¬ϕ)(x) = ¬STI(ϕ)(x)
STI(ϕ ∧ ψ)(x) = STI(ϕ)(x) & STI(ψ)(x)
STI([a]ϕ)(x) = ∀y(Rxy ⇒ STI(ϕ)(y))

In the last clause, y is assumed to be a fresh variable. If ϕ
is purely modal (i.e., ϕ is �-free), STI(ϕ) does not depend
on the interpretation I and we write ST(ϕ) in such a case.

Note that the standard translation ST(θ(~a, ~p)) of a modal
formula involving modalities ~a and atoms ~p is typically a
formula Θ̂(~a, ~P )(x) involving binary relations Ra (one for

each a ∈ ~a) and predicates P (one for each p ∈ ~p) and a free
variable x.

Example 2. Take θ(a, b, p) = [a]p→ [b]p. Then we have
that STI(θ(a, b, p))(x) =

∀y(Rbxy ⇒ Py)⇒ ∀z(Raxz ⇒ Pz)

If θ(a, b, c, p) = [c]p→ [a][b]p, we have STI(θ(a, b, c, p)) =

∀w(Rcxw ⇒ Pw)⇒ ∀y(Raxy ⇒ ∀z(Rbyz ⇒ Pz))

The following is straightforward from classical modal the-
ory, except for the case of θ(~a, ~p) = �(~a), in which case it
follows directly from the truth definition (Definition 4) for
�-formulas.

Lemma 1. Let I be an interpretation of relational symbols
and let θ(~a, ~p) be a modal formula. Let Θ̂(~a, ~P )(x) be its
second order translation STI(θ(~a, ~p)). Then, for all models
M = 〈W,R, I, V 〉, all frames F = 〈W,R, I〉 and worlds w ∈
W we have

1. M,w |= θ(~a, ~p) iff Θ̂(~a, ~P )(w) holds in M

2. M |= θ(~a, ~p) iff ∀xΘ̂(~a, ~P )(x) holds in M

3. F,w |= θ(~a, ~p) iff ∀~P Θ̂(~a, ~P )(w) holds in F

4. F |= θ(~a, ~p) iff ∀x∀~P Θ̂(~a, ~P )(x) holds in F

Table 2 provides the standard translation Θ̂(~a, ~P )(x) of
the modal formulas θ(~a, ~p) that we introduced in Table 1.

Definition 6. Let θ(~a, ~p) be a purely modal formula from
L(A, π, ρ) and suppose that Θ ∈ L1(A,X ) is such that Θ(~a)(x)

is equivalent with the second order formula ∀~P Θ̂(~a, ~P )(x)

where Θ̂(~a, ~P )(x) = ST(θ(~a, ~p))(x). Then we say that θ(~a, ~p)
characterises Θ(~a)(x).
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If θ(~a, ~p) characterises Θ(~a)(x) then we have that F,w |=
θ(~a, ~p) if Θ(~a)(w) holds. In other words, θ(~a, ~p) corresponds
with Θ(~a). There are many well known classes of modal
formulas θ(~a, ~p)(x) for which it is guaranteed that the sec-

ond order formula ∀~PST(θ(~a, ~p)) is equivalent to a formula
Θ(~a)(x) ∈ L1(A,X ). A large set of formulas for which this
is true is the set of so-called Sahlqvist formulas. Moreover,
given such a Sahlqvist formula θ(~a, ~p), its first order equiva-
lent Θ(~a)(x) can be effectively computed from it [3, Theorem
3.54]. So for Sahlqvist formulas, we can effectively find the
first-order formula that it characterises. All the formulas
θ(~a, ~p) from Table 1 are (equivalent to) Sahlqvist formulas.

Take the specific example in a doxastic context where
Θ(a)(x) is ∀xRaxx, and I(�(a)) = Θ(a), note that θ(a, p) =
(Bap → p) characterises Θ(a)(x) but still, as shown in Re-
mark 1, the formulas �(a) and θ(a, p) are not equivalent.
Still, the two should be strongly connected, in a sense we
will explain in Section 3. We first look at an example, in-
volving our extended modal language.

2.1 A Simple Example
Consider five friends, Joey, Chandler, Ross, Monica and

Phoebe (or j, c, r,m and p, for short). In this example, we
use ‘think’ and ‘believe’ for the same thing. Joey believes
that Monica’s beliefs are at least as accurate as Ross’ beliefs,
i.e., Joey believes that if Ross’ beliefs are correct, so must
Monica’s be (A). Joey also believes that Monica thinks that
Chandler believes anything that Monica believes (B). Al-
though Joey does not think that he believes everything he
knows (he thinks that he knows he cannot find a job as an
actor, but at the same time cannot believe it), he actually
believes anything he knows (C). Moreover, Joey thinks that
Chandler’s beliefs are consistent (D). Finally, Joey happens
to know that Monica believes that Phoebe is in competition
with her for Chandler’s attention, but at the same time Joey
thinks that Chandler believes that Phoebe is not in compe-
tition with Monica for his attention (E). Then, we conclude
that Joey believes that Ross’ beliefs are not guaranteed to
be correct (F ), or, better, that Joey believes he may assume
that some formula is believed by Ross, but not true (F ′).

We first give a (semi-formal) formalisation of our assump-
tion using a modal logic that allows for quantification over
formulas. Let z represent the proposition that Joey cannot
find himself a job as an actor, and let q be the proposition
that Phoebe is in competition with Monica for Chandler’s
attention. This formalisation is given in Table 3, where as-
sumption A in the episode is represented as a, etc. The
formalisation in our language L(A, π, ρ) follows in Table 4.

We can now be more precise about what it means that
our language can do more than just formalising a local ver-
sion of a global property. For instance, the global property
Bap→ p will have a local counterpart Refl(a). Locally, this
will denote something that is similar to ∀ϕ(Bϕ → ϕ). But
if one looks at the ‘translation’ a in Table 3 of the assump-
tion A above, i.e., Bj(∀ϕ(Brϕ → ϕ) → ∀ϕ(Bmϕ → ϕ)), it
becomes clear that this is different from the quantification
g : ∀ϕBj((Brϕ → ϕ) → (Bmϕ → ϕ)), which one would
get as a local counterpart of an axiom Bj((Brp → p) →
(Bmp → p)). That a and g are not equivalent, can be seen
in the model M,w of Figure 1, where a is true in M,w, but
g is not: for the latter, ϕ = p provides a counterxample.
That a is true in M,w is easily seen from realising that a is
formalised by a′.

r m
mr

r m r m
m

j j j

w

Figure 1: A model M,w. The atom p is true exactly
in the worlds that are filled black.

Table 3: A semi-formal translation of the episode

a Bj(∀ϕ(Brϕ→ ϕ)→ ∀ϕ(Bmϕ→ ϕ))
b BjBm(∀ϕ(Bmϕ→ Bcϕ))
c ¬Bj(Kjz → Bjz) ∧ ∀ϕ(Kjϕ→ Bjϕ)
d Bj∀ϕ(¬(Bcϕ ∧Bc¬ϕ))
e KjBmq ∧BjBc¬q
f Bj¬∀ϕ(Brϕ→ ϕ)

We then formalise the same episode using the relational
atoms �(~a) introduced in Table 1, which results in Table Ta-
ble 4. Abusing the language somewhat, we write Sup(kj, j)
for the relational atom corresponding to Kjϕ→ Bjϕ—from
a language point of view, Kj and Bj are simply two different
modal operators, say [i] and [kj].

Table 4: A formalisation of the episode

a′ Bj(Refl(r)→ Refl(m))
b′ BjBmSup(m, c)
c′ ¬Bj(Kjz → Bjz) ∧ Sup(kj, k)
d′ BjSer(c)
e′ KjBmq ∧BjBc¬q
f ′ Bj¬Refl(r)

3. AXIOMATIZATION
The aim of this section is to provide an axiomatisation for

modal logics that are enriched with some relational atoms
�1(~a1), . . . ,�m(~am), such that for every �k(k ≤ m), there is
a modal formula θ�k (~a, ~p) such that, at least on frames, the
two ‘mean the same thing’. In fact, the logic K(A, π, ρ, I)
that we define should be sound and complete with respect
to K(A, π, ρ, I), so our aim for our logic is that for all for-
mulas ϕ ∈ L(A, π, ρ), the notions K(A, π, ρ, I) ` ϕ and
K(A, π, ρ, I) |= ϕ coincide. The idea to achieve this is as
follows. First of all, suppose that for every relational atom
�(~a) and fixed interpretation I we have a formula θ�(~a, ~p)
such that θ�(~a, ~p) characterises I(�(~a)). Then, for each
�(~a) and related θ�(~a, ~p) we add an axiom �(~a)→ θ�(~a, ~p)
to our logic K(A, π, ρ, I).
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Adding the other direction as an implication does not
work, as the example �(~a) = �(a, b) = Sup(a, b) and θ(~a, ~p) =
[a]p → [b]p shows: ([a]p → [b]p) → Sup(a, b) is not a valid-
ity: the antecedent may be true due to some specific choice
of p. However, what we semantically do have is the follow-
ing: suppose that we have K(A, π, ρ, I) |= ϕ→ ([a]p→ [b]p),
where p does not occur in ϕ. This then means that ϕ must
entail that (locally) all b successors are a successors, i.e.,
K(A, π, ρ, I) |= ϕ → Sup(a, b), because if the latter would
not hold, there would be a model M = 〈W,R, I, V 〉 such
that M,w, |= ϕ ∧ ¬Sup(a, b). But since p does not occur
in ϕ, we can change the valuation V for p freely without
changing that of ϕ, in particular we can choose V ′ such that
x ∈ V ′(p)↔ Rawx (and V ′(q) = V (q) for atoms q 6= p). It
is easy to see that in the resulting model M ′ = 〈W,R, I, V ′〉
we have M ′, w |= ϕ ∧ ¬([a]p → [b]p): a contradiction. This
means that we need to be able to infer the following in
K(A, π, {Sup(a, b)}, I):

If K(A, π, {Sup(a, b)}, I) |= ϕ→ ([a]p→ [b]p) (1)

then K(A, π, {Sup(a, b)}, I) |= ϕ→ Sup(a, b),

where p 6∈ ϕ
The rule (1) can be understood as follows. If p does not occur
in ϕ, and ϕ→ ([a]p→ [b]p) is true at a state s, then ϕ must
carry sufficient information such that [a]p→ [b]p must hold
(it will not be because of specific requirements on p imposed
by ϕ) and hence we must have ϕ→ Sup(a, b) holding at s as
well. But in fact we can do the same reasoning that involves
successors of s: Suppose ϕ implies that in all Rc successors t
of s, we have M, t |= [a]p→ [b]p. Then (in the same way as
for s), we must have M, t |= ϕ→ Sup(a, b). In other words,
the following should hold for K(A, π, {Sup(a, b)}, I):

If K(A, π, {Sup(a, b)}, I) |= ϕ→ [c]([a]p→ [b]p) (2)

then K(A, π, {Sup(a, b)}, I) |= ϕ→ [c]Sup(a, b),

where p 6∈ ϕ
And the same should hold for all Rd successors u of all Rc-
successors t of s, i.e., we also have a valid rule if we replace
[c] in (2) by [c][d]. But also, we have the following. Suppose
that p does not occur in ϕ or ψ. If M, s |= ϕ → [c](ψ →
([a]p → [b]p)), it means that if ϕ is true in s, then in all
Rc successors t of s we have M, t |= ψ → ([a]p → [b]p),
and we have argued above that we then should also have
M, t |= ψ → Sup(a, b). I.e., we have:

If K(A, π, {Sup(a, b)}, I) |= ϕ→ [c](ψ → ([a]p→ [b]p)) (3)

then K(A, π, {Sup(a, b)}, I) |= ϕ→ [c](ψ → Sup(a, b)),

where p 6∈ ϕ,ψ
To formalise that a property θ�(~a, ~p) holds after arbitrary
sequences ϕ1 → [a1](ϕ2 → . . . [an−1](ϕn → θ�(~a, ~p)) . . . ),
we follow [20] and introduce pseudo modalities: we will then
present an inference rule R� for every � ∈ ρ to our axioma-
tisation K(A, π, ρ, I).

Definition 7 (pseudo modalities). We define the
following pseudo modalities, which are (possibly empty) se-
quences s = () or s = (s1, . . . , sn), where each si is a for-
mula or a modality label. The formula 〈s〉ϕ represents an
L(A,Π, ρ) formula, as follows:
〈()〉ϕ = ϕ
〈ψ, s2, . . . , sn〉ϕ = ψ ∧ 〈s2, . . . , sn〉ϕ
〈a, s2, . . . , sn〉ϕ = 〈a〉(〈s2, . . . , sn〉ϕ)

We also define [s]ϕ as ¬〈s〉¬ϕ. We say that ~p does not
occur in s (and write ~p 6∈ s) if none of the atoms p occurring
in ~p does occur in any of the formulas si in s.

So, for instance 〈a, ψ, b〉ϕ is an abbreviation of 〈a〉(ψ∧〈b〉ϕ),
while [a, ψ, b]ϕ is [a](ψ → [b]ϕ).

Definition 8 (proof system). Fix A, π and ρ. More-
over, fix an interpretation I : ρ → L1(A,X ) such that for
every � ∈ ρ, there is a θ�(~a, ~p) such that the modal formula
θ�(~a, ~p) characterises the first order formula I(�). Then,
the following comprises the axioms and inference rules of
the logic K(A, π, ρ, I)

Prop All instances of propositional tautologies

K [a](ϕ→ ψ)→ ([a]ϕ→ [a]ψ)

Ax� �(~a)→ θ�(~a, ~p)

MP From ϕ→ ψ and ϕ, infer ψ

Nec From ϕ, infer [a]ϕ

R� From 〈s〉¬θ�(~a, ~p)→ ϕ, infer 〈s〉¬� (~a)→ ϕ, where ~p
does not occur in ϕ or s.

US From ϕ infer ϕ[ψ/p].

MP stands for Modus Ponens, Nec for Necessitation, and
US for Uniform Substitution (ϕ[ψ/p] stands for substitution
of ψ for every occurrence of p in ϕ). If �(~a) and θ�(~a, ~p) are
connected through the axiom Ax� and inference rule R�, we
say they are axiomatically linked (through axiom Ax� and
rule R�). If there is a derivation of a formula ϕ from a set
of formulas Γ using Γ and the axioms and inference rules
from K(A, π, ρ, I) we write Γ `K(A,π,ρ,I) ϕ, or Γ `K ϕ, for
short.

Theorem 1 (Soundness). For all ϕ ∈ L(A, π, ρ), if
K(A, π, ρ, I) ` ϕ then K(A, π, ρ, I) |= ϕ.

3.1 Back to Our Example
To formalise the derivation of Table 4, let the set of modal-

ities A = {c, j,m, p, r}, let π = {q, z} and let ρ = {Refl(r),
Refl(m),Sup(c,m),Ser(c),Sup(kj, j)} and those atoms are
axiomatically linked with their ‘natural’ modal counterparts
(see Table 1 and for KimplB(j) we take Kjp → Bjp). Let
the resulting logic be K(A, π, ρ, I).

First of all, from c′ and AxKimplB(j) we derive KjBmq →
BjBmq. Together with e′ this gives e′′: BjBmq ∧ BjBc¬q.
From d′, i.e., BjSer(c) and AxSer(c), we get Bj(Bc¬q →
¬Bcq). Combining this with e′′ gives BjBmq ∧ Bj¬Bcq,
which is equivalent to Bj¬(Bmq → Bcq) (*).

From b′ and AxSup(m,c) we derive BjBm(Bmp→ Bcp), for
any p (**). Now, take the formula ψ = (Bmq → Bcq). From
(*) we have Bj¬ψ, and from (**) we conclude BjBmψ. In
other words, we found a formula ψ for which Bj¬(Bmψ →
ψ). Now using the contrapositive of axiom AxRefl(m), we
obtain Bj¬Refl(m), which is our conclusion f ′.

Now one may wonder whether this also warrants the con-
clusion f , but as should be clear from Remark 1, Bj¬Refl(m)
and Bj¬∀ϕ(Bmϕ → ϕ) are not the same thing. However,
what we do have is the following. Let ϕ be a′∧b′∧c′∧d′∧e′,
and let s be Bj , then what we have proven now is

K(A, π, ρ, I) ` ϕ→ Bj¬Refl(m) (4)
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But from this, if not derive, we can safely assume that, given
ϕ, there is some formula ψ for which Bj(Bmψ∧¬ψ), because
if this were not the case, we would have, for some atom p
not occuring in ϕ:

K(A, π, ρ, I) ` ϕ→ Bj(Bmp→ p) (5)

From which, using rule R�(~a), we would conclude

K(A, π, ρ, I) ` ϕ→ BjRefl(m) (6)

which either means we have a derivation for Bj⊥ (Joey be-
lieves anything), or, if we assume the conjunct g′ = Ser(j)
to be also part of ϕ (expressing, that actually, Joey’s beliefs
are consistent), that we have derived a contradiction with
(4).

It is worth noting how the axiomatisation makes it possi-
ble that some relational atoms (and hence some first-order
frame properties) only hold in the scope of a modal operator
(like in property a′ and b′ for example): the axiom Ax� and
rule R� do not require that some relational properties hold,
they only specify what should be the case if they hold.

3.2 Completeness
Definition 9. A theory Γ is a set of formulas. For π

a set of propositional atoms, Γ is a π-theory if all propo-
sitional atoms in Γ are from π. Given a logic L, a theory
Γ is L-consistent if ⊥ cannot be derived from Γ using the
axioms and inference rules of L. A theory Γ is a maximal
L-consistent π-theory if it is consistent and no π-theory ∆
is L-consistent while at the same time Γ ⊂ ∆. For a logic
K(A, π, ρ, I), a set of formulas Γ is a witnessed π-theory
if for every 〈s〉¬ � (~a) ∈ Γ, there are atoms ~p such that
〈s〉¬θ�(~a, ~p) ∈ Γ, where �(~a) and θ�(~a, ~p) are axiomatically
linked. If Γ is not witnessed, then a formula 〈s〉¬ � (~a) for
which there is no 〈s〉¬θ�(~a, ~p) ∈ Γ, is called a defect for
the theory Γ. Finally, Γ is said to be fully witnessed, if it
is witnessed and for every formula of the form 〈s〉ϕ, either
that formula or its negation is in Γ.

Lemma 2 (Extension Lemma). Let Σ be a K(A, π, ρ, I)-
consistent π-theory. Let π′ ⊇ π be an extension of π by
a countable set of propositional variables. Then there is a
maximal K(A, π′, ρ, I)-consistent, witnessed π′-theory Σ′ ex-
tending Σ.

Before we outline a proof, we first define some languages.

Definition 10. Let the set of agents A, the set of atoms
π and the set of relational atoms ρ be fixed. Let L(A, π, ρ)
be as in Definition 1. Let π0 = {p0, p1, . . . } be a set of fresh
atomic variables, i.e., π ∩ π0 = ∅ and let π′ = π ∪ π0. Let
πn = π∪{pi | i ≤ n}. Define Ln to be L(A, πn, ρ), and let Lω
be L(A, π′, ρ). A theory ∆ ⊆ Σ is called an approximation
if for some n it is a consistent πn-theory. For such a theory,
and any number k, the sequence ~p = 〈pn+1, . . . , pn+k〉 is a
new sequence ~p for ∆ if n is the least number such that ∆
is a πn-theory.

Proof of Lemma 2 (Sketch). Assume an enumeration
of ψ0, ψ1, . . . of all formulas of the form 〈s〉¬� (~a), where s
is a pseudo modality and �(~a) ∈ ρ. Define

∆+ =

8>>><>>>:
∆ ∪ {〈s〉(¬θ�(~a, ~p))} where ~p is a new sequence

for ∆, and 〈s〉¬� (~a) is the
first defect for ∆,
if this exists

∆ otherwise

Clearly, by Ax�, the set ∆+ is consistent when ∆ is and
hence, if ∆ is an approximation, so is ∆+. To define the
extension Σ′ of Σ, assume ϕ0, ϕ1, . . . to be an enumeration
of the formulas in Lω, and define Σ0 = Σ, and

Σ2n+1 =


Σ2n ∪ {ϕn} if this is consistent
Σ2n ∪ {¬ϕn} else

Σ2n+2 = (Σ2n+1)+

Finally, let Σ′ =
S
n∈ω Σn. By construction, Σ′ ⊃ Σ is a

maximal K(A, π, ρ, I)-consistent, witnessed π′-theory.

Definition 11 (canonical model). The canonical mo-
del Mc = (W c, Rc, I, V c) for the logic K(A, π, ρ, I) has:

• W c = {Γ | Γ is a maximal Lω-consistent witnessed
π′-theory};
• RcaΓ∆ iff for all ϕ ∈ Lω it holds that if [a]ϕ ∈ Γ, then
ϕ ∈ ∆;

• I as given as a parameter of the logic;

• V cp = {Γ | p ∈ π′ ∩ Γ}.
Lemma 3. Suppose the following holds:

1. θ�(~a, ~p) is a purely modal formula;

2. θ�(~a, ~p) and �(~a) are linked through the rule R� and
the axiom Ax�;

3. The first order formula I(�(~a)) = Θ(~a)(x) is equiva-

lent with the second order formula ∀~P Θ̂(~a, ~P )(x) where

Θ̂(~a, ~P )(x) is ST(θ�(~a, ~p))(x).

Then, in the canonical model, �(~a) and Θ(~a)(x) are con-
nected as in Definition 4, i.e., for all ∆ ∈ Mc we have
Mc,∆ |= �(~a) iff in Mc it holds that I(�(~a))(∆).

Lemma 3 paves the way for a coincidence lemma that
guarantees that membership and truth in the canonical model
coincide. We then get:

Theorem 2. If the assumptions of Lemma 3 hold, the
logic K(A, π, ρ, I) is sound and complete with respect to the
class of K(A, π, ρ, I) models.

Definition 12. A purely modal formula ϕ is canonical
for a first order property Φ, if the canonical model for the
modal logic (K + ϕ)(A, π, ρ, I) has the property Φ.

There are many examples of canonical formulas: all Sahlqvist
formulas are canonical [8].

Theorem 3. Let ϕi be canonical for Φi, i ≤ n. Then the
logic (K+ϕ1, . . . , ϕn)(A, π, ρ, I) is sound and complete with
respect to all models in K(A, π, ρ, I) that satisfy Φ1, . . . ,Φn.

4. CONCLUSION
First, note that our modelling of locality is different from

local frame correspondence as defined in [3], and quite dis-
tant from the use of local propositions in epistemic logic
[6], propositions that do not change truth value within an
agent’s equivalence class .

We have so far assumed that the properties of �(~a) are
those specified by the axiom A� and rule R�. However, one
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can add connections between �(~a) and modal formulas, or
between different �1(~a1) and �2(~a2) atoms. For instance

Refl(a, a)→ Trans(a, a, a) (7)

added to an epistemic logic has the effect that whenever
a’s knowledge is veridical, a is also positively introspective.
I.e., we would have, semantically, that whenever M, s |=
Kaϕ → ϕ, for all ϕ, then also M, s |= Kaϕ → KaKaϕ, for
all ϕ. This again is a property that cannot be expressed in
standard, ‘global’ modal logic. As a second example, in an
epistemic temporal modal logic, one could add an axiom

Trans(a, a, a)→ F (Trans(a, a, a) ∧ Eucl(a, a, a)) (8)

saying that whenever agent a is positively introspective, he
will eventually also become negatively introspective. As a
third example, a simple axiom like

Ser(a)→ Ser(b) (9)

in a doxastic setting would mean that whenever a’s beliefs
are consistent, those of b must be consistent as well.

It is possible to view some standard results in modal logic
concerning completeness of modal systems as obtained as
special cases from our local logic. If the conditions of The-
orem 2 are satisfied, and one adds a �(~a) as an axiom, one
immediately gets completeness with respect to the class of
models that satisfy I(�(~a)). For instance, in a logic with ax-
ioms and rules for Refl(a), adding Refl(a) itself as an axiom
gives a modal system that is sound and complete with re-
spect to the class of reflexive Kripke models! Of course, this
amounts to the same thing as adding θ�(~a, ~p), as is directly
clear from rule R� (take ϕ = ⊥ and s the empty sequence).

Finally, it is important to realise that, although we pre-
sented the axioms for the underlying logic (the formulas ϕi
that we assumed to be canonical) and the relational atoms
as two independent layers, let us recall that [20] showed
that interaction properties between the modalities and the
relational atoms may be automatically ‘imported’. For the
case of epistemic logic S5 with at least two agents and the
Sup(a, b) atom, one can derive that Sup(a, b)→ KbSup(a, b)
and ¬Sup(a, b) → Kb¬Sup(a, b), in other words, in such a
logic, it is derivable that if agent a considers at least the
states possible that b considers possible, then b knows this!
Similarly, if there is a state considered possible by b but not
by a, then agent b knows this as well!

To summarise, we have presented a flexible way to deal
locally with quantification over formulas. In particular, we
have shown how, under some mild conditions, in a modal
logic that extends K with some canonical axioms, one can
add a number of relational atoms, for each of them an ax-
iom and an inference rule, such that the logic is complete
for the class of models that interpret the atom as a first
order property of the underlying frame. We argued that
this presents many opportunities to express properties con-
cerning the knowledge or beliefs of agents in a local way, so
that they are only true now, or as a belief or knowlege of
some specific agents. Although we focussed on epistemic and
doxastic logics, our technique is applicable in temporal and
dynamic settings as well. On our agenda is to study how our
framework behaves in a dynamic epistemic logic setting. For
instance, one might consider the effect of publicly announc-
ing relational atoms, like Sup(a, b), which would mean that it
is announced that a knows at least what b knows. After such
an announcement, one would expect that the local property

becomes global again, in many cases it would become a va-
lidity in the resulting model that ∀y(Rbxy ⇒ Raxy).

Like we explained, our completeness proof borrows ideas
from both [16] and [5]. Also, the inference rule R� is remi-
niscent of an inference rule for irreflexivity [9]. However, it
is important to stress that the approaches mentioned aim to
axiomatise global properties. As far as we know, the work
presented in this paper is a first general approach to local
properties in models.

We thank the AAMAS reviewers for their helpful com-
ments.
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