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ABSTRACT
While speaking about social interaction, psychology claims as cru-
cial the temporal correlations between interactants’ behaviors: to
give to their partners a feeling of natural interaction, interactants,
be human, robotic or virtual, must be able to react on appropriate
time. Recent approaches consider autonomous agents as dynamical
systems and the interaction as a coupling between these systems.
These approaches solve the issue of time handling and enableto
model synchronization and turn-taking as phenomenon emerging
with the coupling. But when complex computations are added to
their architecture, such as processing of video and audio signals,
delays appear within the interaction loop and disrupt this coupling.
We model here a dyad of agents where processing delays are con-
trolled. These agents, driven by oscillators, synchronizeand take
turns when there is no delay. We describe the methodology en-
abling to evaluate the synchrony and turn-taking emergence. We
test oscillators coupling properties when there is no delay: coupling
occurs if coupling strength is inferior to the parameter controlling
oscillators natural period and if the ratio between oscillators peri-
ods is inferior to 1/2. We quantify the maximal delays between
agents which do not disrupt the interaction: the maximal delay tol-
erated by agents is proportional to the natural period of thecoupled
system and to the strength of the coupling. These results areput
in perspective with the different time constraints of human-human
and human-agent interactions.

Categories and Subject Descriptors
H.1.2 [Models and Principles]: User/Machine Systems
; I.6.4 [Simulation and modeling]: Model Validation and Analysis

General Terms
Theory, Measurement

Keywords
Human-robot/agent interaction, Multi-user/multi-virtual-agent in-
teraction, Peer to peer coordination,Emergent behavior,Modeling
the dynamics of MAS, Agent commitments
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Since 1966, when Condon and Ogston’s annotations of interac-
tions have suggested that there are temporal correlations between
the behaviors of two persons engaged in a discussion [9, 8], time
relations between interactants’ behaviors have been investigated in
both behavioral studies and cerebral activity studies [25,27, 28, 40,
22, 37, 45, 30, 31]. These studies tend to show that when people in-
teract together, their ability to synchronize with each other is tightly
linked to the quality of their communication: smooth interaction
is possible only when partners are online, not only active but reac-
tive [28], responding to each other in a continuously changing flow.
Consistently with these results, in the design of autonomous agents,
be robotic or virtual, able to interact with human users or other
agents, one of the major issues is the “handling of time” [18]. The
agents use verbal and non-verbal means to communicate. Theyare
endowed with perceptive capacities allowing them to detectand in-
terpret what their interactant is saying and how. When all the agents
are virtual, interacting in a virtual environment, they canhave di-
rect access to information about their partners: there is noneed
of complex signal processing, and time handling is facilitated (see
fig.1(a) for such a setting). By contrast, when agents have tointer-
act through the real environment, just as they would have to do with
humans, acoustic and visual analysis software is needed to provide
information on behaviors as well as high level information such as
emotional and epistemic states: these complex processes take time
and introduce delays within the interaction loop. As a consequence,
agent-agent interaction (as in fig.1(b)) or agent-human interaction
cannot be handled as in human-human interaction. Processing de-
lays influence the interaction capabilities of agents dyad.Our aim
is to evaluate this influence.

When we refer to the timing of an interaction between agents,
be human, robotic or virtual, “real-time” may account for a wide
range of time scales. “Real-time” can be defined as: “Denoting or
relating to a data-processing system in which a computer receives
constantly changing data,[...] and processes it sufficiently rapidly to
be able to control the source of the data” [7]. For instance, talking
about “real-time” Embodied Conversational Agents (ECA) implies
to give on one hand an estimation of processing, answering and an-
imation speed; and on the other hand an estimation of the speed of
the systems, human or virtual, agents interact with. Withininter-
actions (and given a certain culture), there is a continuum of time
scales which may be focused on, depending on the phenomenon we
are talking about:
- for instance in face to face interactions, gaze crossing and syn-
chronous imitations rely on imperceptible delays (< 40msec) [10];
- concerning human-human turn-taking, over 70% of between-
speaker silences are less than 500msec[46], i.e. the approximate
simple vocal reaction time to variably-timed cues ([21] cited by
[46]);
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(a)

(b)
Figure 1: Two agents setup. (a) The two agents are on the
same computer, exchange of information between them is fast
and coupling occurs (synchrony and turn-taking). (b) The two
agents are on two different computers, information exchanged
has to be processed: there are longer delays and the coupling
does not occur anymore.

- up to 30% of between-speaker silences are less than 200msec
long, i.e. the simple vocal reaction time over maximally favorable
conditions ([17] cited by [46]);
- behaviors modifications in non-verbal interactions are exhaus-
tively coded with 0,4sectime windows [27];
- in human-agent interactions, after 1 second delay humans hardly
detect being imitated by the virtual agent and after 4 seconds they
do not detect it at all [3].

These time scales are spread from 10msec to 4 seconds but
we foresee two main timescales to classify agent design studies:
> 1sectime scales systems and 100msectime scales systems.
- the> 1sectimescale enables virtual agents to handle communi-
cation of the type emit/receive/answer, i.e. the telegraphist model
of Shannon’s theory of communication [43]. For instance, ifthe
interaction is a question/answer scenario with only non-verbal be-
haviors of mean latency such as posture or attitude imitation, a one
second delay will not disrupt the interaction. This timescale allows
processing delay to appear within the interaction loop, between per-
ception and reaction of agents; this is the rough estimationof tim-
ing of many present virtual agents systems, when they interact with
human and have to process both video and audio signals and to
compute both verbal and non-verbal behaviors to display.
- the timescale around hundreds of milliseconds comes from psy-
chological studies of interaction. This is the time scale associated
to changes of gaze direction, facial expression and acoustic promi-
nence; these behaviors are necessary to give to human users the
sense of ECA engagement; a one second delay can completely dis-
rupt this feeling [3]. The model of fast and automatic appraisal,
triggers very quick reactions (< 100msec) [23]. It claims that reac-
tive and very rapid influence of stimuli on behavior is crucial. This
model associates this quick reaction to a larger time scales(nearer
the second) which enables top-down modulation of the behavior.

Recent approaches in psychology [27], neuro-dynamics [10]and
agent design [32, 16, 39, 33] proposes that communication isa
coupling between dynamical systems and stress the issue of time
handling: agents, when coupled together with their interactants,
constitute a new, larger and richer, dynamical system. For instance
turn-taking and synchrony can be modeled as emerging from the

coupling between oscillators [46, 39, 44]. These approaches point
to the fact that, during an interaction, participants are continuously
active, each modifying its own actions in response to the continu-
ously changing actions of its partners. They highlight the necessity
to handle small timescales to build agent capable to interact with
humans, and capable to give them a feeling of shared understand-
ing [38].

In our paper, given a specific time scale, we study the range of
delays in the interaction loop which do not disrupt the interaction.
In particular we study the effect of time delay on coupling between
two agents. We simulate simulate them by two oscillators using a
model similar to [39].

In the remaining of the paper, we first remind the psychological
and neurological background on interaction and coupling, as well
as their existing robotics and virtual implementations as oscillatory
systems. In Section 3 we describe our model of dyad of oscilla-
tors. Then, in Section 4, we test the coupling properties of such
a dyad, i.e. we analyze the emergence of coupling depending on
the difference between natural periods of oscillators and reciprocal
influence between oscillators. In Section 5, we test if delayin the
interaction loop has a crucial effect on the coupling capability of
the dyad. Finally, in Section 6, we discuss these results andtheir
outcomes.

2. DYNAMICAL APPROACH OF INTER-
ACTION

The dynamical approach of interactions is sustained by psy-
chological studies which tend to show that dyadic parameters of
interaction (such as synchrony) are phenomena emerging from the
coupling occurring between interactants. In mother-infant interac-
tions via the “double-video” design (which enables a teleprompter
interaction to be modified online by experimenters), synchrony is
shown to emerge from the mutual engagement of mother and infant
in interaction [25, 27, 28]. In adult-adult interactions mediated by
a technological device which restrains perception to only tactile
stimulation, coupling between partners has been shown to emerge
from the mutual attempt to interact with the other [2]. Other
studies focus on the “Unintentional Interpersonal Coordination”,
in both behavioral studies [40, 22] and cerebral activity studies
[37, 45, 30, 31]. These studies show that synchrony emerges even
when people do not intentionally interact. Synchrony is shown
as emerging from the coupling which takes place between people
when cross-perception is enabled (cross-perception occurs when
two interactants perceive each other simultaneously: eye contact
or touch are cross-perceptions [2]).

These phenomena are echoed by physics and theoretical studies on
oscillators coupling. Huygens discovered in 1665 that the pendu-
lums of two clocks hung together synchronize in anti-phase after a
while [15]. The model explaining the anti-phase synchronization of
the pendulums was proposed three hundred years later [24]: when
the two pendulums oscillate, they make the support moves. These
movements of the support provide little exchanges and loss of en-
ergy between the two oscillators. The furthest from anti-phase the
pendulums are, the larger the movement is and thus the highest the
exchange and loss of energy is. The anti-phase synchronization is
the unique stable attraction basin of this dynamical system. This
explains Huygens’ observations.

The more general issue of coupling between non-periodic
oscillators such as chaotic oscillators has been studied by[41,
42, 14, 19, 4] following the pioneer model ofSynchronization in
Chaotic Systemsfrom Pecora and Carroll [34].
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The stability of these coupling states leading to turn-taking (anti-
phase) and synchrony (constant phase-shift) is a direct consequence
of the reciprocal influence between agents. It has already been im-
plemented for robotics [39] and for virtual agent coupling [33].
- In the robotic experiment, two robots controlled by neuraloscil-
lators are coupled together by their mutual influence: turn-taking
and synchrony emerge [39].
- In the virtual agent experiment, Evolutionary Robotics1 was used
to design a dyad of agents able to favor cross-perception situation;
the obtained result is a dyad of agents with oscillatory behaviors
which share a stable state of both cross perception and synchrony
[33].

Coupling Model Principles.
These two implementations are quite simple: both signals emit-

ted and received by the agents are one dimension signals and very
few computational processes are done on them (by contrast, when
visual perception is involved such as in human-agent interaction,
images of video are bi-dimensional signals which require complex
computational processes). It allows for very fast processing time
with time delay negligible compared to interaction timing.It en-
ables an easy coupling with the emergence of both turn-taking and
synchrony. We reproduced these experiments with a dyad of 3Dhu-
manoid virtual agents. If the two agents are on the same computer
and agents have a copy of the other agent’s behavior (see fig. 1(a))
the signals are exchanged without any treatment: no time delay
is introduced within the interaction loop and coupling occurs. By
contrast, if each agent is on its own computer and relies on acoustic
and visual analysis to get information on the other as in fig. 1(b)
setting, the coupling does not occur anymore. We believe this ef-
fect is due to the complex audio-video processing which introduces
time delay in the interaction loop between agents.

This last setting is equivalent to human-agent systems whenhu-
man’s motion is analyzed and sent to the agent. In our work we
are relying on Watson [26] that provides head motion in interactive
time. The mean time to get data concerning the partner (e.g type of
head movements) is about 1sec.

We test this model and its sensitivity to time delays by imple-
menting a dyad of agents as a NN (Neural Network) in the NN Sim-
ulator Leto/Prometheus (developed in the ETIS lab. by Gaussier et
al. [12, 13]). Leto/Prometheus simulates the dynamics of NNs
by an update of the whole network at each time step; it also en-
ables to simulate coupling between agents comparable to coupling
through the real world [39]. These two oscillators control the be-
haviors of two virtual agent implemented with the system Greta
[35]. This system enables one to generate multi-modal (verbal and
non-verbal) behaviors with accurate timing.

3. OSCILLATOR COUPLING MODEL
In both robotic and virtual agent modeling of turn-taking, two

properties must be satisfied by every agent [39]: each agent has to
alternate between an active state and a receptive state; these states
have to be influenced by the actions of the other agent. When agents
having these two properties are placed in the same environment,
turn-taking emerges [39].

To satisfy these conditions, agents are controlled by two states
oscillators: one state orientates the agent to be active (the agent ini-
tiates actions in imitation games, and speaks in dialogs); the other

1Evolutionary Robotic is a “technique for automatic creation of
autonomous robots [...] inspired by the Darwinian principle of se-
lective reproduction of the fittest” [29] preface

state orientates the agent to be receptive (the agent imitates in im-
itation games, and listens in dialogs). This oscillator is influenced
by the other agent’s behavior: it is pushed toward receptivestate
when the other agent is active. These two properties make a dyad of
agents have one stable state, phase-opposition (in dialog systems,
they speak alternately).

3.1 The oscillator
The oscillator is made of two neurons (Ni), whose activities are
bounded between−1 and 1.N1 is the state of the agent: in our case,
whenN1 = 1 the agent speaks, and whenN1 =−1 the agent listens.
These neurons activate and inhibit each other proportionally to the
parameterα. α controls the natural period of the agent’s oscillator,
i.e. the speed of oscillation between speaking and listening states.
This model fits the set of equation 1 (see also fig.2(a)):{

N1(t +1) = N1(t)−α ·N2(t)
N2(t +1) = N2(t)+α ·N1(t)

(1)

.

.

1
N

2
N

+1

+1

+α−α

(a)

(b)

Figure 2: (a) The oscillator is made of two neurons,N1, and
N2, with a self-connection weighted to1. A link with weight +α
connectsN2 to N1 , and a link with weight −α connectsN1 to
N2. (b) Activation of this oscillator when it is isolated from any
external influence.

We can make the approximationNi(t + 1)−Ni(t) = N′
i (t) if α

is small enough, i.e. ifN1(t) andN2(t) vary almost continuously:
with α < 0.2 they vary between−1 and+1 in more than 10 time
steps (see fig.11 for an illustration of this issue). Making this ap-
proximation, the system of equations 1 becomes:{

N′
1(t) =−α ·N2(t)
N′

2(t) = α ·N1(t)
(2)

By deriving these equations, we obtain the following set of dif-
ferential equations:{

N′′
1 (t) =−α2 ·N1(t)

N′′
2 (t) =−α2 ·N2(t)

(3)

Finally the general solutions of such equations,N′′(t)+α2 ·N(t),
are the oscillatory functions of equation 4:

N(t) = Asin(αt +φ) (4)

whereA is the constant oscillator amplitude andφ its phase: in
our case, when the oscillator is isolated, it starts with a null acti-
vation, A = 1 andφ = 0. The implementation of this oscillator in
the Leto/Prometheus simulator makes the neuronN1 produces the
sinusoidal signal plotted on fig.2(b).

3.2 The coupling
Let us consider a dyad of oscillatorsN andM. To enable mutual in-
fluence between them, the main neuron (N1 andM1) of each oscil-
lator should directly (weakly) inhibit the main neuron of the other,
see fig. 3. Theinhib parameter controls the sensitivity of the agent
to the other agent’s speaking turn: ifinhib is low, speech overlap-
ping is tolerated by the agent, whereas ifinhib is high the agent will
be quiet as soon as the other agent speaks.

For the oscillators,N andM, the set of equations 2 becomes:
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Figure 3: Architecture of the two agents influencing each other.
Each agent is driven by an internal oscillator and influencesthe
other depending on this oscillator. When real effectors (such as
robotic arms) or/and captors (such as camera) are used, noise
is added to signal by the environment. In simulation this noise
has to be simulated to enable the agent to anti-synchronize and
avoid oscillation death.{

N′
1(t) =−α ·N2(t)− inhib·M1(t−1)

N′
2(t) = α ·N1(t)

(5)

and {
M′

1(t) =−α ·M2(t)− inhib·N1(t−1)
M′

2(t) = α ·M1(t)
(6)

Fig. 4 shows an example of coupling when the oscillators inhibit
each other: the two oscillators start in phase,N1(t0) = N2(t0) =−1,
and after a period of mutual perturbation, they stabilize inanti-
phase. It is important to note here that, in simulation, noise must
be added to the signals exchanged between agents [39]: it is to be
contrasted with real situations where noise is naturally present in
the environment, effectors and captors; in simulation, if oscillators
have the exact same period and phase, and if there is no noise,they
stay in the unstable in-phase state and inhibit each other until death.

Figure 4: Activation evolution over time of each oscillatorof
the two systems, forα = β = 0.05, −inhib = −0.01. The two
systems start in the same state: at timet = 0 the activation of
their oscillator is 0. When the oscillators start to activate, they
inhibit each other and one takes the advantage. After a transi-
tion period, the oscillators are stabilized in phase opposition.

The dynamics of the dyad of oscillators is different from thesim-
ple sum of each oscillator dynamic. Even in the fig. 4 where thetwo
oscillators have the same natural period, the period observed after
coupling differs from this natural period: natural periodsis around
125 time steps for both oscillators whereas, the Dyad’s Natural Pe-
riod (DNP) once coupled is around 160 time steps. It depends on
both the natural periods of oscillators,α andβ, and on their recip-
rocal inhibitioninhib (see Section 4.2).

4. COUPLING ANALYSIS
Each dyad of agents is characterized by a set of three parameters:

α, the speaking/listening period of agentN,β the speaking/listening
period of agentM, andinhib, the reciprocal influence between these
agents. Coupling occurs between agents if they manage to reach a
shared stable state, even whenα andβ are different. Here coupling
occurs if agents speak alternately, i.e. if their internal oscillators
synchronize in anti-phase.

4.1 Evaluation methodology

For a given set of parameters (α, β, inhib), to determine if anti-
phase synchronization occurs between agents, we use a procedure
described by Pikovsky, Rosenblum and Kurths in their reference
book “Synchronization” [36]. This procedure consists in compar-
ing the phases of two signals to determine if they are synchronous
or not.

Let us recall that “the phase of narrow-band signal such as the
one produced by our oscillators (sinusoid) can be obtained by
means of the analytic signal concept originally introducedby Ga-
bor [11]” [36]. To implement this, we have to construct the com-
plex processζ(t) from the scalar signalN(t):

ζ(t) = N(t)+ iNH (t) = A(t)eiφ(t) (7)

whereNH(t) is the Hilbert transform ofN(t) [36].
The instantaneous phaseφ(t) and amplitudeA(t) of the signal

are thus uniquely determined from equation 7.

Figure 5: Signal and phase (moduloπ), α = β = 0.05 and
−inhib = −0.01. The almost sinusoidal signal is the original
signal N1(t) (shown in fig.4) and the almost linear (moduloπ)
signal is its associated re-built phase.

After that, when the phasesφN(t) and φM(t) of the signals
are obtained, we consider their difference modulo 2π: if φN(t)−
φM(t)(2π) = 0, signals are in phase; ifφN(t)−φM(t)(2π) = π, sig-
nals are in anti-phase (see fig.6). Horizontal plateaus in this graph
reflect periods of constant phase-shift between signals, i.e. syn-
chronization. Horizontal plateaus near one (1·π) reflect periods of
anti-phase synchronization.

(a)

(b)

Figure 6: (a) Internal activations of two agents (α = β = 0.05
and −inhib = −0.01). (b) Associated phase-shift∆φ1,φ2(t).
When agents synchronize in anti-phase, their phase-shift re-
mains near1·π.

For each 5000 time steps simulation, we define that phase-lock
occurs if the two following properties are satisfied:
- First, the phase-shift∆φN1,M1(t) becomes almost constant at time
tphaseLock(time defined in time steps), smaller than 4000 time steps
(1000 time steps before the end of the simulation), and remains
constant until the end.
- Second, iftphaseLockexists, the DNP (Dyad’s Natural Period) after
tphaseLockis finished (we noteTf inished = 1). It is not the case if
the inhibition between oscillators is too high (see Section4.2, fig.
8,(b)): ∆φN1,M1(t) becomes constant but oscillators do not oscillate
anymore; one remains high whereas the other remains low; DNPis
infinite (then we noteTf inished=−1).

We defined the locking speed asPhaseLockSpeed= (4000−
tphaseLock)/4000×Tf inished. If phase-lock is immediate with fin-
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ished DNP,PhaseLockSpeed= 1; if phase-lock occurs att =
4000, PhaseLockSpeed= 0; and if there is no finished DNP,
PhaseLockSpeed< 0. For instance, with the previous parameters,
α = β = 0.05 andinhib = 0.01, the phase-lock occurs with a speed
near 0.8 and for a phase shift equal toπ (i.e. anti-phase locking).

These automatic calculus ofPhaseLockSpeed, PhaseShi f tand
Period enable us to test the ability of a given dyad of agents (char-
acterized byα,β and inhib) to take turns (synchronize in anti-
phase).

4.2 Test of Parameters
The parameters usually tested in such a coupling between oscil-

lators are they natural periods ratioα/β and their mutual inhibition
−inhib [36]. We briefly test here these properties of the dyad of
oscillators.

Reciprocal influence.
For givenα = β = 0.05, we test the influence of reciprocal in-

hibition on the coupling: if inhibition is too low, no coupling is
possible (or after a very long time if the two oscillators have the
exact same period), and if inhibition is too high, the two oscillators
do not oscillate anymore, one stays high and the other stays low,
the dynamic of the dyad is disrupted (see fig.7).

Figure 7: The plain line represents the phase shift when phase-
lock occurs (a phase shift equal to 1 is for anti-phase,∆φN1,M1 =
π), and the dotted line represents the locking speed. Forinhib>
0.050, a phase lock equal toπ is shown but oscillators do not
oscillate, one remains high and the other remains low (see fig.
8,(b)).

Coupling occurs when phase-lock occurs, phase-shift is equal
to 1π and periods of oscillators are finite. For the oscillator pa-
rametersα = β = 0.05, the highest reciprocal inhibition between
oscillators which enables coupling without killing oscillations is
inhiblimit = 0.05 (see fig. 8, (b) and (c)). Actually,inhiblimit ≃ α,β,
i.e. inhibition should not be higher than the internal weights of os-
cillators.

Ratio between natural periods of oscillators.
Let us test the influence ofα/β variation on the coupling. The

reciprocal inhibition is fixed toinhib = 0.05, the oscillatorN’s pa-
rameter is fixed toα = 0.05 and the oscillatorM’s parameter varies
betweenβ = 0 andβ = 0.3 with a 0.002 step (see fig.8).

For reciprocal inhibitioninhib = 0.05, if α/β differs from 1 too
much, oscillators do not lock in anti-phase: whenα/β decreases
(β increases), the DNP increases until the second oscillator oscil-
lates several times during one oscillation of the first (forβ = 1.3);
conversely, whenα/β increases (β decreases), DNP decreases until
there is not anymore oscillation (forβ = 0.03) (see fig. 8,(a)).

5. TEST OF DELAY EFFECT
In order to test how a delay in the processing of signals affect the

ability of an agent to couple with another, we introduce in our dyad
of agents a delay in the reciprocal inhibition (see fig.9). This de-
lay will account for exactly what happens when we go from agents

interacting altogether in the same virtual environment to agents in-
teracting via the real world with other agents or with humans. Pro-
cessing of audio and video signal introduces delays betweenthe
perception and the availability of the information within the sys-
tem.

A null delay means that the signal is immediately transmitted, a
delayd means that the signal transmitted is the signal which oc-
curredd time steps before (see sets of equations 8 and 9). The
“delay box”, recordsd signals in a FIFO queue.

.

.

1
M

2
M.

1
N

2
N

.

+1

+1

+1

+1

+α +β−α −β

Noise

Noise

−inhib

−inhib

delay

delay

Figure 9: Architecture of the two agents influencing each other.
Each agent is driven by an internal oscillator and influences
the other depending on this oscillator. The signals exchanged
between agents are delayed byd time steps.

With the delayd, the two sets of equations 5 and 6 become:{
N′

1(t) =−α ·N2(t)− inhib·M1(t−1−d)
N′

2(t) = α ·N1(t)
(8)

and {
M′

1(t) =−α ·M2(t)− inhib·N1(t−1−d)
M′

2(t) = α ·M1(t)
(9)

Test of the delay forα = β = 0,05.
To evaluate the effect of the delay, we test the coupling capability

of the dyad for different values ofd. We maked vary from 0 to 100
time steps and calculate for each experiment the speed of anti-phase
locking between the agents as well as the DNP (see fig.10).

Figure 10: α = β = 0.05 and the transmission delayd varies
between0 and 100time steps (inhib = 0.01). The plain line rep-
resents the phase lock when it occurs (a phase lock equal to 1 is
for anti-phase,∆φN1,M1 = π), and the dotted line represents the
locking speed.

Figure 10 shows that, withα = β = 0.05 andinhib = 0.05, as
soon as the delayd is above 18 time steps, the coupling is disrupted:
locking speed is null and the phase shift is around 0(2π). Agents
have the same natural period (α = β = 0.05) and start with the same
phase (∆φini = 0), by consequence their phase shift is naturally near
0 or 2π when no coupling is possible.

To test how this Maximal Tolerated-Delay (MTD) depends on
the three parameters of the dyad, we first test if it is proportional
DNP.

Test of the delay for0.00< α = β < 0.30.
For inhib= 0.03 and 0.01< α = β < 0.3 the DNP of the coupled

system obtained are displayed on fig.11.
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Figure 8: (a) α = 0.05 and β varies between0 and 0.3 (with a 0.002 step). The plain line represents the phase lock when it occurs
(a phase lock equal to 1 is for anti-phase,∆φN1,M1 = π), and the dotted line represents the locking speed. For reciprocal inhibition
inhib = 0.05, if α/β differs from 1 too much, oscillators do not lock in anti-phase anymore: for 0.5 < α/β < 1 there is still a phase
lock but with a phase shift varying from π to π/2; for α/β > 1.25 (β = 0.04) the two oscillators stop oscillating. (b)(c)(d)(e) Activation
of the two oscillators for the different natural periods of second oscillator: (b)β = 0.03; (c) β = 0.05; (d) β = 0.1, (e)β = 0.11.

Figure 11: DNP (Dyad’s Natural Period). Underα = β = 0.03=
inhib no coupling occurs. Aboveα = β = 0.21coupling appears
chaotic.

At this point, we can notice two things:
- Under α = β = 0.03 = inhib no coupling occurs:α and β are
lower than the reciprocal inhibitioninhib; The internal dynamics
of oscillators are disrupted as soon as agents are put together (we
observe the same phenomenon forinhib = 0.05).
- Above α = β = 0.2 coupling appears chaotic:N1(t) andM1(t)
cannot be considered as varying continuously (see Section 3.1);
they switch unpredictably between positive and negative values,
constant phase-opposition is not a stable state of the system.
These phenomenons are independent from the study of the delay
but they will influence our results.

In the same conditions (inhib= 0.03 and 0.01< α = β < 0.3) we
test the effect of delay, 0< d < 50. Figure.12 shows the phase-lock
speed obtained for every couple(α = β,d).

We can notice here that above a certain delay, the Maximal Tol-
erated Delay (MTD), coupling is disrupted. But when the delay is
a multiple of the DNP, coupling is enabled again.

For inhib = 0.03, coupling occurs betweenα = β = 0.03 and
α = β = 0.2. Between these values, the curves of the DNP and
the MTD are almost proportional:MTD = 0.15×DNP, with a
correlation coefficient equal to 0.99.

Doing the same simulations, extraction of phases, and calcula-
tions of phase-locking, for different coupling strengthinhib = 0.01
and inhib = 0.03, the DNP and MTD also appeared proportional.
For inhib = 0.01, MTD = 0.18×DNP with a correlation coeffi-
cient equal to 0.99, and forinhib= 0.05,MTD= 0.12×DNPwith
a correlation coefficient equal to 0.97.

The MTD appeared to be proportional to both the DNP and to
the coupling strength:MTD = (0.195− 1.5× inhib)DNP with a

Figure 12: Phase-lock speed obtained for couples(α = β,d)
with 0.01 < α = β < 0.3 and inhib = 0.03. A null phase lock-
speed account for no stable coupling, and a phase-lock speed
equal to1 accounts for a quick and robust anti-phase coupling.

correlation coefficient equal to 0.99.

6. DISCUSSION AND CONCLUSION
We have described the implementation of a dyad of agents con-

trolled by oscillators and influencing each other: this dyadenables
synchrony and turn-taking to emerge when coupling occurs. We
have then described the methodology used to evaluate coupling be-
tween these agents and tested the parameters of this dyad: the ratio
between the natural periods of agents behaviors; the reciprocal inhi-
bition between agents. Our results show two main facts concerning
oscillators modeled by neurons:
- First, that the internal variables of the oscillators (α for AgentN
andβ for AgentM) fix the maximal external influence the oscillator
tolerates without the death of their oscillations.
- Second, given the step by step update of the NN by the NN Simu-
lator, when the weight of the connection is over 0.20, the activation
of the neuron does not vary continuously anymore and becomes
chaotic.

Considering these results, we tested how a delay in the transmis-
sion of signal between agents impacts the capacity of the agents
to couple. We tested the set{0 < α < 0.3,0 < β < 0.3, inhib ∈
{0.01,0.03,0.05}} for 0 < d < 100.

The first result concerning delay is that it has an effect: a too long
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delay disrupts coupling. As conjectured in the introduction, when
agents interact in the wild world (e.g. Human-Agent interaction,
see fig.13), the complex computation of video signals they have
to perform introduces delays in agents communication whichmay
disrupt their coupling capabilities.

Figure 13: Experimental design for evaluation Human-Agent
interaction [5].

Second, delays appeared as having an all or none effect: coupling
occurred rapidly or did not occur at all.

The third result is that the Maximal Tolerated Delay (MTD, the
maximal delay enabling coupling of the dyad), depends propor-
tionally on both the Dyad’s Natural-Period (DNP, which depends
on α andβ) and the coupling strength (i.e. the reciprocal inhibition
inhib):
- For a given coupling strength, the MTD increases when the DNP
increases: If the coupling concerns long period phenomena such as
posture imitations, the MTD will be longer than if the coupling in-
volves fast phenomena such as smiles or gaze direction imitations.
- For a given DNP, the MTD increases when the coupling strength
decreases: If the DNP is fixed, when the mutual influence between
agents decreases, the effect of the delay decreases too (theMTD is
higher).

These results do not only concern interactions between agents
but they are also relevant for human-agent interactions andhuman-
human interactions. As we have seen in Section2, both psycholog-
ical and neurofunctional models of human-human interactions [25,
27, 28, 37, 45, 40, 22, 30, 31, 2] claim that dynamical coupling
between humans is an essential aspect of their communication: it
enables non-verbal interaction but it can also be seen as a comple-
mentary part of the verbal exchange [38] which leads to feelings
such as rapport and mutual engagement .

Based on the facts just listed, the design of agents dedicated to
interact with humans needs to integrate coupling dimension. As we
know, time constraints have to be satisfied when we speak about in-
teraction. The present paper gives a rough estimation of theMTD
according to the timescales of the considered coupled behavior. For
instance, during dialog between a speaker and a listener, ifthe
mean time between successive backchannels (listener’s acknowl-
edgments [47]) is about 3sec[1], the signals which may enable to
regulate this timescale cannot be delayed more than 18% of this
time scale (see Section 5), i.e. the timing of backchannels must be
accurate at more or less 500msec(i.e. more accurate than the verbal
reaction time to unpredictable signal [46]).

Considering these results obtained for agents interactingwithin
the same virtual environment and with an artificial delay, our future
work involves two directions:
- A theoretical way. The MTD should be quantified by adding delay
in mathematical models, such as the Kuramoto model of coupling
between oscillators [20].
- An experimental way. We propose to test the effect of a controlled
delay on the coupling between our agent and a human interacting
in a cooperative task, for instance the maze task of [6]. Thistask

involves two humans; A character is lost in a maze; One of the
subjects sees the maze and the character; the other has the com-
mands to control the character; Both have to cooperate to finda
way out the maze. This task induces rhythmic patterns of interac-
tion in which delays can be controlled. By replacing one of the two
humans by our virtual agent, the MTD can be estimated regarding
the task timescale. The significance of delay can be addressed: the
delay can be intentionally added in order to transmit information
concerning understanding [38] or in order to disrupt interaction in
case of disagreement.

In conclusion, we have seen in this paper that “handling of time”
is a matter of timescales when dealing with human-agent or agent-
agent interactions. It is crucial to take into account delays (ap-
pearing with computational time) in the coupling capacities of the
agents.
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