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ABSTRACT
I introduce a graphical representation for modeling multi-
agent systems based on different kinds of reasoning about
agent behavior. I seek to investigate this graphical model’s
predictive and representative capabilities across various do-
mains, and examine methods for learning the graphical struc-
ture from agent interaction data. I also propose to ex-
plore the framework’s scalability in large real-world scenar-
ios, such as social networks, and evaluate its prediction per-
formance with existing network behavior models.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Distributed Artificial Intelli-
gence

General Terms
Design, Experimentation
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1. INTRODUCTION
Large complex multiagent systems, such as financial mar-

kets, social groups, and computer networks, present great
challenges to multiagent system researchers seeking to com-
pactly represent these systems’ dynamics and effectively pre-
dict their outcomes. Although modeling agents as perfectly
rational decision makers is a common starting point in many
efforts, we still need to account for agents’ bounded ratio-
nality in real-world scenarios. There is also the question of
which equilibrium agents will converge on, if there are more
than one such equilibrium. The computational complexity
of inferences in large systems further renders behavior mod-
eling for such systems intractable.

These observations motivate my probabilistic approach to
modeling multiagent systems of decomposable structure. As
multiagent scenarios often exhibit localized effects of agent
interactions, graphical models have played an important role
in exploiting these conditional independencies, as illustrated
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in the graphical game models [6]. In the graphical game ap-
proach, the model is a factored representation of a normal-
form game, on which special-purpose techniques, such as the
mapping of a graphical game onto a Markov random field
(MRF) [1], operate to identify approximate or exact Nash
equilibria. I combine game-theoretic principles and graph-
ical models in a novel representation framework: graphical
multiagent models (GMMs) [4]. The GMM representation
takes advantage of the locality in agent interactions to en-
able efficient reasoning about collective behavior based on
game-theoretic solution concepts, which are formal rules for
predicting how the game will be played, and other kinds of
reasoning about agent behavior using knowledge unrelated
to game-theoretic analysis.

In my thesis work, I seek to investigate GMMs’ predictive
and representative capabilities across various domains, with
a focus on scenarios where information on different system
elements such as agent connections, their utility, or past ac-
tions, is limited or unavailable. I first examine the extent
of prediction improvement GMMs can gain from combin-
ing different beliefs about agent behavior. I further extend
the GMM framework to account for historical information
in time-variant scenarios, and empirically demonstrate its
robustness to the limitedness of information regarding past
actions and agent connections, respectively in two domains
of voting consensus and information diffusion. As graph-
ical structures capturing agent interactions are often only
partially observed or entirely missing, I also examine differ-
ent methods for learning agent connections from data about
agent interactions. To expand GMMs’ applicability, I will
explore their scalability in large real-world scenarios, such
as social networks, by introducing new GMMs for these sce-
narios, and evaluating their prediction performance with ex-
isting network behavior models.

2. GRAPHICAL MULTIAGENT MODELS
GMMs simply graphical models where each neighborhood

of nodes is associated with a potential function specifying
the likelihood that a particular action profile of the neigh-
borhood is included in the global action profile [4]. The
normalized product of these potentials induces the joint dis-
tribution of actions, which can be interpreted as an uncer-
tain belief (e.g., a prediction) about the agents’ play. Unlike
the aforementioned mapping from graphical games to MRFs,
the GMM framework allows beliefs to be based on various
solution concepts, models of bounded rationality or equilib-
rium selection, or for that matter knowledge that has noth-
ing to do with game-theoretic analysis. GMMs provide a
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flexible representation framework for graphically structured
multiagent scenarios, supporting the specification of proba-
bility distributions based on game-theoretic models as well
as heuristic or other qualitatively different characterizations
of agent behavior. They are capable of incorporating dif-
ferent knowledge sources in different forms such that the
resulting models have better predictive power than either
input source alone [4].

2.1 History-dependent GMMs
To capture dynamic behaviors over time, I extended the

static GMM framework to condition on history, creating
history-dependent graphical multiagent model (hGMM) [3].
Finite memory and computational power often preclude com-
plete retention of historic observations in inferring about
future actions. From the perspective of the system mod-
eler, only a partial view of the full history may be available.
Given a summarized or abstracted history representation,
agent decisions will generally appear correlated, even if they
are independently generated conditional on full history.

Unlike individual behavior models that assume indepen-
dence among agents’ decisions, GMMs and hGMMs directly
specify joint behaviors. Thus, hGMMs can account for cor-
relations in agent actions without full specifications of the
state history mediating agent interactions, and can answer
queries regarding the distribution of agents’ future actions
without sampling the entire system’s history. I empirically
showed [3] that hGMMs outperform individual behavior mod-
els in predicting data and answering inference queries in the
domain of voting consensus experiments [5].

2.2 Model Construction
The underlying graphical structures are often not readily

constructed for many real-world scenarios. In my thesis, I
provide system modelers with techniques for building GMM
representations of different scenarios, given knowledge from
different sources about the systems at hand. In particular, I
address the problem of learning graphical games given pay-
off observations, and evaluated an array of structural learn-
ing algorithms for graphical games [2]. I also extend that
study to propose and examine a greedy algorithm for learn-
ing both the model’s parameters and graphical structure of
some predetermined complexity, given action observations
in non-game scenarios.

3. FUTURE WORK

3.1 Extensions on Model Construction
Instead of imposing a predetermined hard constraint on

the maximum degree of each node, which is non-trivial to
estimate for unknown scenarios, I will incorporate cross-
validation into determining termination conditions of the
revamped learning algorithm. As a result, there will be no
need to impose a complexity constraint given little knowl-
edge about the multiagent system at hand. In a different
effort to address the problem of graphs’ complexity and im-
prove GMMs’ scalability, I plan to adopt community iden-
tification algorithms based on nodes’ properties [9] in con-
structing factored representations that specify joint behav-
iors within groups while assuming behavioral independence
among these groups.

3.2 Network Applications

Researchers have taken advantage of the availability of
massive amounts of data in analyzing and understanding
how information diffuses in different communities and social
networks, such as product marketing or movie recommen-
dations among online social network friends [8]. In actual-
ity, not all connections among different parties are visible
to the modelers. For instance, studies on online social net-
work often overlook a myriad of offline interactions. I will
address the problem of modeling information infusion on
networks with unobserved connections in two different ap-
proaches: constructing hGMMs that can compensate for this
lack of information by explicitly specifying joint behaviors,
and learning the underlying graphical structure using obser-
vation data. I will demonstrate each approach’s strengths
and weaknesses in different input settings.

While the application of GMMs in social network anal-
yses can potentially enrich the field, the GMM framework
can also benefit from exploring this problem domain. In
addition to studying how information diffuse in networks,
I will investigate how network connections are formed. By
treating the act of establishing a connection as an action,
a GMM representation can capture the network’s formation
and evolution, having the benefits of a joint behavior model,
as in the aforementioned problem of modeling information
diffusion. I will develop joint behavior hGMMs that employ
strategic elements in agents’ interactions based on existing
network formation models [7]. This application of GMMs
can potentially broaden the GMM framework’s applicabil-
ity for reasoning and understanding not only behavioral phe-
nomena on a network but the network’s evolution itself.
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