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ABSTRACT

We present CASE (complex adaptive systems evolver), a
framework devised to conduct the design of agent-based sim-
ulation experiments using evolutionary computation tech-
niques. This framework enables one to optimize complex
agent-based systems, to exhibit pre-specified behavior of in-
terest, through the use of multi-objective evolutionary algo-
rithms and cloud computing facilities.

Categories and Subject Descriptors

1.6.5 [Computing Methodologies]: Simulation and mod-
eling—Model Development; 1.2.8 [Computing Method-
ologies]: Artificial intelligence— Problem Solving, Control
Methods, and Search

General Terms

Performance, Experimentation

Keywords

Design of experiments, agent-based simulation, evolutionary
computation

1. INTRODUCTION

Agent-based simulations (ABSs) are increasingly being
employed to examine various complex adaptive systems [5].
Nevertheless, the study of such systems using ABSs is a com-
plicated and time-consuming task which is often conducted
in an iterative manner. During each iteration, the modeling,
design of experiments, execution and analysis of simulations
are conducted to progressively gain insights in the key fac-
tors leading to the emergence of target phenomena.

To facilitate the study of complex agent-based systems, we
propose a modular evolutionary framework, coined CASE for
“complex adaptive system evolver”, to perform the design of
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experiments using evolutionary computation techniques (a
similar approach was recently utilized for materials science
and catalysis experiments [2]). Indeed, conventional design
of experiments techniques cannot efficiently tackle complex
experimental spaces.

We employ Pareto-based multi-objective evolutionary al-
gorithms to automate the modeling and analysis of agent-
based simulation models. Moreover, cloud computing is also
utilized to assist with the scalability and reliability issues.
The latter are commonly met when conducting large-scale
experiments using distributed computing facilities.

2. THE CASE FRAMEWORK

An overview of the CASE framework is provided. CASE was
implemented in a modular manner (using the Ruby pro-
gramming language) to accommodate with relative ease the
user’s specific requirements (e.g. use of different simulation
engines or evolutionary algorithms, etc.). CASE is composed
of three main components which are distinguished as follows:

1. The model generator: This component takes as in-
puts a base simulation model specified in the eXtended
Markup Language and a set of model specification text
files. According to these inputs, novel XML simulation
models are generated and sent to the simulation engine
for execution/evaluation (CASE only supports simula-
tion models specified in XML).

. The simulation engine: The set of XML simulation
models is received and executed by the stochastic sim-
ulation engine. Each simulation model is replicated a
number of times to account for statistical fluctuations
(30 repetitions are typically conducted). A set of re-
sult files detailing the outcomes of the simulations (in
the form of numerical values for instance) are gener-
ated. These measurements are used to evaluate the
generated models, i.e., these figures are the fitness (or
“cost”) values utilized by the evolutionary algorithm
(EA) to direct the search.

FEvolutionary algorithm: The set of simulation results
and associated model specification files are received by
the evolutionary algorithm, which in turns, processes
the results and produce a new “generation” of model
specification files. The generation of these new model



specifications is driven by the user-specified search ob-
jectives (e.g. maximize/minimize some quantitative
values capturing the target system behavior). The al-
gorithm iteratively generates models which would pro-
gressively, through the evolutionary search, best ex-
hibit the desired outcome behavior. The model speci-
fication files are sent back to the model generator; this
completes the search iteration.

The list of evolvable simulation model properties are
specified given their XPath, name and numerical val-
ues ranges (min,max). In addition to (real) numerical
values, it is possible to evolve model property values in
the form of enumerable sets (e.g. low, medium, high,
etc.) to address model properties that cannot be ex-
pressed as numerical values. Finally, it is also possible
to evolve the structure of the simulation model (e.g.
adding/removing dynamically new agents) [3].

Moreover, the evolutionary search can be conducted
under constraints: This optional feature may be uti-
lized to introduce specific considerations when evolv-
ing particular model properties. For instance, the user
may devise interactions between properties to occur
according to some pre-defined conditions. These con-
straints aim at increasing the plausibility of gener-
ated simulation models (e.g. through introducing cost
trade-off for specific property values). The specifica-
tion of such constraints is carried out through the use
of a rule-based approach. Finally, constraints can also
be introduced through devising additional search ob-
jectives (e.g. minimize the value of some evolvable
property value).

Communications between the three components are con-
ducted via text files for simplicity and flexibility (for in-
stance, this enables the use of PISA evolutionary algorithm
modules [1]). Note that the flexible nature of CASE allows
one to develop and integrate different simulation engines (us-
ing models specified in XML), and evolutionary algorithms.

The experimental settings include: the selected simulation
engine, the selected evolutionary algorithm and associated
setting (e.g. population size, number of search iterations,
mutation probability, set of objectives, etc.), the number of
simulation replications, the number of CASE run replications
(similarly to ABSs, evolutionary algorithms are stochastic
processes, replications of the experimental runs may also be
necessary).

3. CLOUD COMPUTING

Cloud computing [4] is a high performance computing
(HPC) paradigm which has recently attracted considerable
attention. The computing capabilities (i.e., compute and
storage clouds) are typically provided as a service via In-
ternet. This web approach enables users to access HPC
services without requiring expertise in the technology that
supports them. The key benefits of cloud computing are
reliability (failed operations may automatically be resched-
uled), reduced cost (cloud computing infrastructures are
provided/managed by a third-party) and scalability (mul-
tiple clouds can be aggregated).

The implementation [4] was conducted using the MapRe-
duce programming model:

e Map: During the Map phase, the set of simulation
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models (to be executed) is partitioned into subsets and
distributed across multiple compute nodes. The sub-
sets are processed in parallel by the different nodes.
The set of intermediate files results resulting from the
Map phase are collected and processed during the Re-
duce phase.

Reduce: Multiple compute nodes process (i.e. evo-
lutionary selection of the most satisfactory/promising
candidate models) the intermediate files which are then
collated to produce the result data.

CASE may currently submit experiments to the cloud com-
puting facilities hosted at the Parallel and Distributed Com-
puting Center, Nanyang Technological University and Ama-
zon EC2.

4. DEMONSTRATION

The demonstration includes a case study, from the mili-
tary operations research field [3], examining the protection
of a maritime anchorage area against piracy threats. A brief
presentation of the employed simulation engine is first per-
formed. Following on from this, the CASE framework is pre-
sented in detail. An example experiment is then conducted
illustrating the typical usage of CASE.

5. ON GOING-WORK

On-going work focuses on developing further evolution-
ary optimization techniques such as: multi-objective co-
evolution (given two-sided competitive wargame scenarios),
niching (to diversify the solution models in the decision
space) and the evolution of nested simulation structure (to
dynamically add/remove agents and internal components,
e.g. course of actions waypoints).
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