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ABSTRACT

Norms or conventions can be used as external correlating
signals to promote coordination between rational agents and
hence have merited in-depth study of the evolution and eco-
nomics of norms both in the social sciences and in multia-
gent systems. While agent simulations can be used to gain
a cursory idea of when and what norms can evolve, the es-
timations obtained by running simulations can be costly to
obtain, provide no guarantees about the behavior of a sys-
tem, and may overlook some rare occurrences. We use a
theoretical approach to analyze a system of agents playing a
convergence game and develop models that predict (a) how
the system’s behavior will change over time, (b) how much
time it will take for it to converge to a stable state, and (c)
how often the system will converge to a particular norm.
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1.2.11 [Artificial Intelligence]: Distributed Artificial In-
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1. INTRODUCTION

The systematic study and development of robust mecha-
nisms that facilitate emergence of stable, efficient norms via
learning in agent societies promises to be a productive re-
search area that can improve coordination in agent societies.
Correspondingly, there has been a number of recent, mostly
empirical, investigations in the multiagent systems literature
on norm evolution under different assumptions about agent
interaction frameworks, society topology, and observation
capabilities [1, 2]. There is an associated need to develop an-
alytical frameworks that can predict the trajectory of emer-
gence and convergence of society-wide behaviors. Toward
this end, we mathematically model the emergence of norms
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in societies of agents who adapt their likelihood of choosing
one of a finite set of options based on their experience from
repeated one-on-one interactions with other members in the
society. The goal is to study both the process of emergence
of norms as well as predict the likely final convention that is
going to emerge if agents had preconceived biases or inclina-
tions for certain options. We develop two different mathe-
matical models under different interaction assumptions and
validate model predictions using extensive simulations.

2. PREDICTING NORM EMERGENCE

Consider a population of agents faced with a scenario
where an agent interacts with exactly one other agent and
each selects one of two actions (for example, driving on the
right side of the road or the left). The goal for the agents is
to interact in a coordinated manner; based on the outcome
of their interaction (coordination or conflict), they adjust
their predispositions to their selected actions.

In our models, an agent consists solely of a single num-
ber, p;, representing the bias or probability of selecting one
particular action. Agents select the other action with the
complementary probability, (1 — p;). In our first model, ev-
ery agent interacts with one other agent on every time step
via n/2 random pairings for a population of n agents.

Based on the outcome of the interaction, the agent’s bias
is updated according to an update rule: p;(t+1) = p;(¢t) =z,
where x, 0 < x < 1.0, may be thought of as the learning rate
and is typically small (e.g., 0.01). This constant update
is added so as to increase the likelihood of the action just
chosen when it led to coordination, and is subtracted to
decrease the action likelihood when it led to a conflict.

2.1 Full pairwiseinteraction

The expected fraction of agents from a population that
will be coordinating with one another can be computed as
C = %Z?ﬂ ¢;, where ¢; is the probability that an agent ¢
coordinates. In turn, we can define ¢; = p;p; +(1—p;)(1—p;),
where p; is the probability agent ¢ drives on the right and p;
is the corresponding average likelihood across the population
after removing the contribution of p; from the population’s
average, p. Note, p; can be calculated as p; = %

We can solve the recurrence relation for the mean bias in



160

11g=551, 04=.028, sim —— |
theory
Ho=.647, 05=.030, sim ------
theory & 1
Ho=.752, 04=.030, sim /
theory

140

120

100

Number of steps

60 [
40 b 4

20 | 4
w

0 L L L
0.5 0.6 0.7 0.8

Convergence threshold

0.9 1

Figure 1: Comparing the number of time steps
needed in the simulator and as given by the analysis
as a function of initial population mean and conver-
gence target.

the population at time ¢ as follows:
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where y = (2z + 1). Since we want to know the number of
time steps until the population settles on either driving on
the right or the left, let us solve the above expression for ¢.
By ignoring the % that is added at the end of the expression
we translate our interest from the range [0,1] to [-.5,4.5]. If
we let s = p(0) — 1, we want to see when the translated
value exceeds 0.5 (or -0.5 for p(0) < 0.5)). If we allow some
tolerance, € (¢ > 0), then we care how the expression above
relates to some limit, [T, where T = % — € for populations
converging to 0.5 in our translated frame of reference:

—* (50) - 3
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For validating the theoretical predictions, we ran 50 simu-
lations each with three populations of 100 agents each with
initial bias means of 0.55, 0.65 and 0.75 (with z = 0.01).
Figure 1 shows the number of time steps required as a func-
tion of a convergence threshold. Inspection of the figure
indicates that the model accurately describes our empirical
observations up to a convergence threshold of about 0.9.

2.2 Two-agent interaction

In the second model, we take a finer-grained look at the
norm emergence process by selecting two agents, a; and aj,
to interact on any given time step. The selected agents each
calculate a random real number 75 (k € {i,5}) from U[0, 1].
Based on these random numbers, they each choose an action
+1, 7l <pl
_17 TZ 2 pi
dicates that the agent will choose to drive on the right side
of the road, while a value of —1 corresponds to driving on
the left side. If their actions did not coordinate, then each

value actf, = . An action value of +1 in-
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agent reduces the frequency with which it plays its chosen
action. Mathematically, this can be expressed by:

p?’l = max{0, min{1, pj, + act} - actzv - Af(act)}},

where Af (acty) = x - acty.

If 1/x is an integer and an agent is initialized with a p value
that is a multiple of x, then we find that that agent’s p value
will always be a multiple of x. If there are n agents with
p values constrained this way, then the population average,
P, can only assume values that are multiples of =, or = +1
distinct values.

We can write an expression predicting the average conver-
gence time and value for a given p value. Let P(j) represent
the estimated average convergence value for any population
with an average bias of p, and T'(p) be the expected number
of time steps before converging. As with our treatment of
the full pair-wise interaction, we ignore the corrections for
values that fall below 0 or above 1. Consequently, we can
express the value of P(p) as a weighted average of the P
values for all distributions that could be reached at the next
time step. A similar expression can be used for T'(p), with
an additional term of 1 to represent the current time step.

P(p) = (1=p)°P (p— 25 ) +2(1-p)pP () +5°P (p+ 2% ),

T(p) = 1+(1=p)°T (p— 25 ) +20-p)pT(P)+°T (p+ 2 ) -

However, some values of P and T' must be given in order to
solve the system. Since p values of 0 or 1 indicate that the
population has converged, we have definite values of P and T’
at these points: P(0) =0, P(1) =1, T(0) =T(1) = 0. The
above equations for P and T form a nearly-diagonal linear
system of equations, which can be solved in O(n/z) time and
space due to the discretization of the sample space. Solving
this system of equations results in a close approximation
of the average convergence time and values obtained in the
simulations.

The predictions of the model were compared to the results
of simulations in which all agents were initialized with iden-
tical p values. Due to space considerations, the results of
this empirical evaluation are not shown here. However, for
any starting p value, we found that the model very closely
matched the simulation results for both average convergence
value and time.

Between the two analyses presented in this paper, we es-
tablish a broad foundation for several types of subsequent
work. For both analyses, we would like a better theoretical
handle on how increasing diversity in the population impacts
convergence time. In a similar vein, a more expansive anal-
ysis would provide insight into the effects that skewness in
the population has on convergence.
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