
Bounded Optimal Team Coordination
with Temporal Constraints and Delay Penalties

(Extended Abstract)

G. Ayorkor Korsah
∗

Carnegie Mellon University
ayorkor@alumni.cmu.edu

Anthony Stentz
Carnegie Mellon University

axs@ri.cmu.edu

M. Bernardine Dias
Carnegie Mellon University
mbdias@ri.cmu.edu

ABSTRACT
We address the problem of optimally assigning spatially dis-
tributed tasks to a team of heterogeneous mobile agents
in domains with inter-task temporal constraints, such as
precedence constraints. Due to delay penalties, satisfying
the temporal constraints impacts the overall team cost. We
present a mathematical model of the problem, a benchmark
anytime bounded optimal solution process, and an analysis
of the impact of delay penalties on problem difficulty.
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1. INTRODUCTION
Multi-agent coordination problems span the spectrum from

loose coordination, in which agents independently perform
their assigned tasks, to tight coordination, where all actions
are synchronized. Between these two extremes are many
scenarios for which there are interdependencies between the
schedules of different agents, arising from inter-task tempo-
ral constraints such as precedence or synchronization con-
straints. Furthermore, the manner in which these inter-task
constraints are satisfied may impact the overall team cost,
as is the case if there is a cost associated with agent delays
needed to ensure that constraints are satisfied. We describe
such problems as having cross-schedule dependencies [4].

We address task allocation, scheduling and routing for a
team of heterogenous mobile agents in such scenarios. In
particular, the cross-schedule dependencies we focus on are
inter-task precedence constraints and delay penalties.
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Although task allocation, scheduling and routing prob-
lems are widely studied in multi-robot coordination and ve-
hicle routing, very little has been done to address such cross-
schedule dependencies. Some recent work has begun to in-
corporate inter-task temporal constraints [2, 3]. However,
this work does not consider situations where satisfying these
constraints has an impact on the overall team cost, a feature
of real-world problems in many domains, and a feature that
significantly complicates the coordination problem

2. PROBLEM AND APPROACH
A set of mobile agents, K, is available to perform a collec-

tion of tasks. Each multi-agent task can be decomposed into
simpler single-agent tasks. Each single-agent task j∈J re-
quires specific agent capabilities and consists of one or more
spatially distributed subtasks, i∈I. Subtasks of different
tasks may be related by temporal constraints, thus creating
dependencies between different agents’ schedules.

We formulate a set-partitioning mixed-integer program-
ming model, with side constraints, for this problem. Key
variables and constants in this model are summarized in Ta-
ble 1, while the model itself appears in Figure 1. A binary
variable, xrk represents whether a given agent k is assigned
to a particular route (single-agent plan), r, out of all fea-
sible routes Rk for that agent. Thus, solving the model
involves generating feasible routes and assigning values of
0 or 1 to route variables so as to maximize the difference
between task rewards and travel and delay costs (Eq. 1).
Furthermore, each agent must perform at most one route
(2), each task is performed on at most one route (3), and
precedence constraints are satisfied (4-5). Due to space lim-
itations, necessary constraints for computing task start and
delay times are not shown. Also omitted are additional prob-
lem features, such as task time windows. The full model is
presented in a technical report [5].

We develop a custom branch-and-price [1] algorithm, the
details of which are also presented in the technical report,
that computes progressively better solutions, with bounds
on quality, until it returns a provably optimal solution.

3. EXPERIMENTS AND RESULTS
Our test scenario is one in which individuals with special

needs must be sheltered in an emergency. Each client with
special needs must be visited by a medical agent and then
moved to an emergency shelter by a transportation agent.
There is a precedence constraint between the medical visit
and the client pickup. Furthermore, there are costs asso-
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Table 1: Defined variables and terms
Var. Definition Type

xkr Whether agent k performs route r Binary
dki Delay time of agent k for subtask i Real
ti Execution start time for subtask i Real
Term Definition Type
Rk Feasible routes for agent k∈K Set
P Pairwise precedence constraints Set
vj Value of completing task j. Real
ck1r Travel cost for route r∈Rk Real
ck2 Wait cost per unit time for agent k Real
πkjr Whether task j occurs on route r∈Rk Binary
λi Service duration for subtask i Real
τ∞ End of planning horizon Real
yj Whether task j is performed Binary
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r∈Rk

xkr ≤ 1 ∀k∈K (2)

∑
k∈K

∑
r∈Rk

πkjrx
k
r ≤ 1 ∀j∈J (3)

ytask(i) − ytask(i′) ≤ 0 ∀(i′, i)∈P (4)

ti′ − ti + λi′ + τ∞(ytask(i) − ytask(i′)) ≤ 0 ∀(i′, i)∈P (5)

Not shown are constraints ensuring the correct computation

of the ti and dki variables. The full model appears in [5].

Figure 1: Key aspects of mathematical model

ciated with agent travel and delay time. Thus, the prob-
lem requires joint coordination of transportation and medi-
cal agents, considering cross-schedule dependencies.

We focus on two interesting results: first, the anytime,
bounded optimal nature of the algorithm, and second, the
impact that including delay penalties has on problem diffi-
culty. In the discussion below, a delay penalty of 0 indicates
that only travel time is minimized. A delay penalty of 0.5
means that a weighted sum of travel and delay time is mini-
mized, with delay time weighted half as much as travel time.

Figure 2 (left) shows the best solution and best bound over
time for an example problem with 6 clients, 1 medical agent,
2 transportation agents, and a delay penalty of 0.5. The
algorithm is able to compute progressively better solutions
and bounds. Furthermore, it finds good solutions early, but
takes longer to prove the optimality of these solutions.

Figure 2 (right) shows the total time to find and prove
the optimal solution, averaged over 5 random instances of
problem configurations with 1 medical agent, 2 transporta-
tion agents, and between 2 and 10 clients. The combinatorial
nature of the problem is apparent in the rapid increase in the
time needed to prove solution optimality as the problem size
increases. Planning time was capped at 30 minutes, and the

bottom graph indicates the ratio of the terminating solution
to the terminating bound. A ratio of 1 indicates optimal-
ity. The figure also highlights the impact of delay penalties
on problem difficulty. It illustrates that in the presence of
precedence constraints, problems that optimize a weighted
sum of travel and delay time are significantly more difficult
than problems that optimize travel time alone. This is be-
cause the algorithm must essentially evaluate the trade-off
between travel time and delay time in potential solutions it
encounters during the solution process.
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Figure 2: Example solution profile (left) and overall
planning time (right)

4. CONCLUSIONS
We present a novel mathematical formulation and any-

time bounded optimal solution approach to heterogeneous
team coordination with precedence constraints and delay
penalties. Our follow-on work addresses additional types
of cross-schedule dependencies.
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