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ABSTRACT
In this paper, we propose that bounded rationality of an-
other agent be modeled as errors the agent is making while
deciding on its action. We are motivated by the work on
quantal response equilibria in behavioral game theory which
uses Nash equilibria as the solution concept. In contrast,
we use decision-theoretic maximization of expected utility.
Quantal response assumes that a decision maker is approx-
imately rational, i.e., is maximizing its expected utility but
with an error rate characterized by a single error parameter.
Another agent’s error rate may be unknown and needs to
be estimated during an interaction. We show that this error
rate can be estimated using Bayesian update of a suitable
conjugate prior, and that it has a sufficient statistic of fixed
dimension under strong simplifying assumptions. However,
if the simplifying assumptions are relaxed, the quantal re-
sponse does not admit a finite dimensional sufficient statis-
tic, and a more complex update is needed.
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1. INTRODUCTION
In AI, an agent’s (perfect) rationality is defined as the

agent’s ability to execute actions that, at every instant, max-
imize the agent’s expected utility, given the information it
has acquired from the environment [8]. Modeling others as
rational has a long tradition in AI and game theory, but
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modeling other agents’ departures from rationality is diffi-
cult and controversial. This paper builds on an approach to
modeling bounded rationality called quantal response [2, 6,
7]. It is a simple model which uses a single error parameter.
Quantal response does not attempt to model the procedures,
and their possible limitations, the agent may use to decide
on its action; instead, it abstracts away the unobservable pa-
rameters specific to implementation and treats them as noise
which produces non-systematic departures from perfect ra-
tionality. Quantal response specifies the probabilities of an
agent’s actions with the logit function of their expected util-
ities and the agent’s error parameter, λ. Thus actions that
are suboptimal are possible, but their probabilities increase
with their expected utilities. Usually, an agent’s error pa-
rameter is not directly observable and must be inferred by
observing its behavior. We take a Bayesian approach to this
and propose that the modeling agent maintain a probability
distribution over possible values of λ for the modeled agent,
and that this probability be updated when new actions are
observed. This paper shows that, in simple special cases,
the error rate admits a sufficient statistic of fixed dimen-
sion, and thus there exist conjugate prior families for these
cases; however, in more general cases, there is no finite di-
mensional sufficient statistic and no conjugate prior over λ.

2. LOGIT QUANTAL RESPONSE
For simplicity, we assume that a modeling agent, called i,

is considering the behavior of one other agent, j. The logit
quantal response is defined as follows [2, 6, 7]:

P (aj) =
e
λuaj∑m

l=1 e
λual

, (1)

where {al : l = 1, 2, ...,m} is a set of possible actions of agent
j. P (aj) is the probability of agent j taking action aj . uaj ∈
R is the expected utility of action aj to agent j and λ ≥ 0 is
the (inverse) error rate of agent j. λ represents how rational
agent j is: greater λ makes it more likely that j takes actions
with higher utilities. When λ → +∞, P (aj) = 1 for the
action with the highest expected utility1 and P (aj) = 0
for all other actions. When λ = 0, P (aj) = 1/m, ∀j =
1, 2, ...,m, which means agent j chooses actions at random.

Usually the error rate λ of agent j is not directly observ-
able to agent i. Bayesian approach allows agent i to learn

1If there are many, say h, optimal actions with the same
expected utilities, then P (aj) = 1/h for each of them.
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this rate during interactions. To do this agent i needs a
prior distribution, f(λ), which represents i’s current knowl-
edge about agent j’s error rate, and to observe agent j’s
action, aj at the current step. The updated distribution is:

f(λ|aj) =
P (aj |λ)f(λ)∫∞

0
P (aj |λ′)f(λ′) dλ′

. (2)

Equation (2) may not be easy to apply because repeatedly
updating f(λ) makes its form more and more complicated.
To overcome this it is convenient to look for a conjugate
prior family. In Bayesian probability, if the posterior distri-
bution is in the same family as the prior distribution, then
this prior is called a conjugate prior [3, 4]. Conjugate priors
are convenient because one just needs to update the param-
eters of the conjugate prior distribution (hyperparameters)
to realize the Bayesian update.

3. STATIC EPISODIC ENVIRONMENTS
We first consider the simplest case, when agent j’s ex-

pected utilities ual for all actions are known to agent i and
remain the same during the interaction. In other words,
agent j is not updating his beliefs since the environment is
static and episodic [8] and i is observing j acting in the same
decision-making situation repeatedly. The derivation below
follows techniques in [3, 4].

Consider the following family of distributions over λ:

f(λ;u, n) =
eλu/(

∑m
l=1 e

λual )n∫∞
0
eλ′u/(

∑m
l=1 e

λ′ual )n dλ′
, (3)

where n and u are hyperparameters. Here n = 0, 1, ..., and
u is restricted by u < nmaxl ual . (3) is a valid probability
density function since integral of the denominator converges
if and only if u < nmaxl ual . We claim that the family of
distributions f(λ;u, n) in (3) is a conjugate family of distri-
butions over λ in static episodic environments with known
utilities of actions. It can be proven that the update of the
hyperparameters of this conjugate prior after observing that
agent j executed his action aj , with expected utility uaj is:

f(λ;u, n)
aj−→ f(λ;u+ uaj , n+ 1). (4)

One can verify that once there is a valid prior, all the pos-
teriors are always valid.

4. SEQUENTIAL DYNAMIC ENVIRON-
MENTS

We extend our approach to more complex case of dynamic
sequential environment [8]. Again, we assume that expected
utilities of j’s actions are known to i, but now, since agent
j may be updating his beliefs, the expected utilities of his
actions do not remain constant but can take a finite number
of values. We refer to each of the beliefs of agent j, together
with his payoff function and other elements of his POMDP,
as j’s type, θj . Thus, the set of possible types of agent j, Θj ,
has K possible elements 1, 2, ...,K. We denote U(aj |θj =
k) = uaj ,k, where k = 1, 2, ...,K, and assume that index
k is observable (or computable) by agent i. Then the logit
quantal response (1) for the probability of agent j taking
action aj given his kth type is:

P (aj |k, λ) =
e
λuaj,k∑m

l=1 e
λual,k

. (5)

Now Consider the following family of distributions:

f(λ;u, n1, n2, ..., nK)

=
eλu/

∏K
k=1(

∑m
l=1 e

λual,k )nk∫∞
0
eλ′u/

∏K
k=1(

∑m
l=1 e

λ′ual,k )nk dλ′
,

(6)

where nk = 0, 1, ..., ∀k = 1, ...,K; u <
∑K
k=1(nk maxl ual,k).

(6) is valid since integral of the denominator converges if and

only if u <
∑K
k=1(nk maxl ual,k). We claim that the family

of distributions f(λ;u, n1, n2, ..., nK) in (6) is a conjugate
family of distributions over λ in a sequential dynamic envi-
ronment with perfect observability of finite number of types.
The update of the hyperparameters of this conjugate prior:

f(λ;u, n1, n2, ..., nK)
aj ,k−→

f(λ;u+ uaj ,k, n1, n2, ..., nk−1, nk + 1, nk+1, ..., nK).
(7)

Once there is a valid prior, all the posteriors are always valid.
Now let us consider an even more general case, in which

the expected utilities ual are not limited to a finite number
of values but can lie in some interval or even on the real line:

P (aj |u, λ) =
e
λuaj∑m

l=1 e
λual

, (8)

where ul < ual < ul
′, l = 1, 2, ...,m, ul ≥ −∞ and ul

′ ≤ ∞
are lower and upper bounds of the expected utilities ual , and
where u is a vector of expected utilities of all m actions,
u = (ua1 , ua2 , ..., uam). Again assume ual are known to
agent i, and he observes agent j’s action aj .

Forming a conjugate prior in this case may be impossible.
The reason is that the construction of conjugate prior distri-
butions [3, 4] is based on the existence of sufficient statistics
of fixed dimension for the given likelihood function (equation
(8)). However, under very weak conditions, the existence of
fixed dimensional sufficient statistic restricts the likelihood
function to the exponential family [1, 5]. Unfortunately, (8)
does not belong to the exponential family when m ≥ 2.
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