
Incremental DCOP Search Algorithms
for Solving Dynamic DCOPs∗

(Extended Abstract)
William Yeoh

Computer Science Department
University of Massachusetts

Amherst, MA 01003
wyeoh@cs.umass.edu

Pradeep Varakantham
School of Information Systems

Singapore Management University
Singapore 178902

pradeepv@smu.edu.sg

Xiaoxun Sun, Sven Koenig
Computer Science Department

University of Southern California
Los Angeles, CA 90089

{xiaoxuns,skoenig}@usc.edu

ABSTRACT
Distributed constraint optimization problems (DCOPs) are well-
suited for modeling multi-agent coordination problems. However,
most research has focused on developing algorithms for solving
static DCOPs. In this paper, we model dynamic DCOPs as se-
quences of (static) DCOPs with changes from one DCOP to the
next one in the sequence. We introduce the ReuseBounds pro-
cedure, which can be used by any-space ADOPT and any-space
BnB-ADOPT to find cost-minimal solutions for all DCOPs in the
sequence faster than by solving each DCOP individually. This
procedure allows those agents that are guaranteed to remain un-
affected by a change to reuse their lower and upper bounds from
the previous DCOP when solving the next one in the sequence.
Our experimental results show that the speedup gained from this
procedure increases with the amount of memory the agents have
available.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed AI

General Terms
Algorithms; Experimentation

Keywords
ADOPT; BnB-ADOPT; DCOP; Dynamic DCOP

1. INTRODUCTION
Distributed constraint optimization problems (DCOPs)

are problems where agents need to coordinate their value
assignments to minimize the sum of the resulting constraint

∗This material is based upon work supported by NSF (while Sven
Koenig was serving at NSF). It is also based upon work supported
by ARL/ARO under contract/grant number W911NF-08-1-0468,
ONR in form of a MURI under contract/grant number N00014-
09-1-1031 and DOT under contract/grant number DTFH61-11-C-
00010. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the sponsoring
organizations, agencies or the U.S. government.

Cite as: Incremental DCOP Search Algorithms for Solving Dynamic
DCOPs (Extended Abstract), W. Yeoh, P. Varakantham, X. Sun, S. Koenig,
Proc. of 10th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 2011), Tumer, Yolum, Sonenberg and Stone
(eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 1069-1070.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

costs. DCOPs are well-suited for modeling multi-agent co-
ordination problems where the interactions are primarily be-
tween subsets of agents. Most research has focused on devel-
oping algorithms for solving static DCOPs, that is, DCOPs
that do not change over time. In this paper, we model dy-
namic DCOPs as sequences of (static) DCOPs with changes
from one DCOP to the next one in the sequence. The objec-
tive is to determine cost-minimal solutions for all DCOPs in
the sequence, which could be done with existing DCOP al-
gorithms by solving each DCOP individually. Such a brute
force approach can be sped up because it repeatedly solves
DCOP subproblems that remain unaffected by the changes.
We therefore introduce the ReuseBounds procedure, which
allows any-space ADOPT and any-space BnB-ADOPT to
reuse information gained from solving the previous DCOP
when solving the next one in the sequence.

2. BACKGROUND
DCOPs: A DCOP is a tuple 〈A,D,F 〉. A = {ai}n0 is
the finite set of agents. D = {di}n0 is the set of finite
domains, where domain di is the set of possible values
for agent ai. F = {fi}m0 is the set of binary constraints,
where each constraint fi : di1 × di2 → R+ ∪∞ specifies its
non-negative constraint cost as a function of the values of
two different agents ai1 and ai2 that share the constraint.
A solution is an agent-value assignment for all agents. Its
cost is the sum of the constraint costs of all constraints.
Solving a DCOP optimally means finding a cost-minimal
solution. DCOPs are commonly visualized as constraint
graphs, whose vertices are the agents and whose edges
are the constraints. Most DCOP algorithms operate on
pseudo-trees, which are spanning trees of fully connected
constraint graphs such that no two vertices in different
subtrees of the spanning tree are connected by edges in the
constraint graph.

DDCOPs: We define a DDCOP to be a sequence of (static)
DCOPs with changes from one DCOP to the next one in
the sequence. Solving a DDCOP optimally means finding a
cost-minimal solution for all DCOPs in the sequence. This
approach is a reactive approach since it does not consider
future changes. The advantage of this approach is that
solving DDCOPs is no harder than solving multiple DCOPs.

DCOP Algorithms: ADOPT [2] and BnB-ADOPT [3]
transform the constraint graph to a pseudo-tree and then

1069



Any-space ADOPT Any-space BnB-ADOPT
Cache Factor 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
With ReuseBounds (cycles) 86301 21395 9207 5117 3386 2615 1653 1573 1556 1481 1427 1383
Without ReuseBounds (cycles) 86401 22096 9825 5618 3810 2976 1654 1578 1577 1573 1570 1568
Speedup (%) 0.12 3.17 6.29 8.92 11.13 12.13 0.06 0.32 1.33 5.84 9.10 11.80

Table 1: Experimental Results

search for a cost-minimal solution. ADOPT uses best-
first search while BnB-ADOPT uses depth-first branch-and-
bound search. For ADOPT and BnB-ADOPT, each agent
ai maintains at all times one context Xai and lower bounds
LBaiXai (d) and upper bounds UBaiXai (d) for all values d ∈ di
and the context Xai . For any-space ADOPT and any-space
BnB-ADOPT, each agent maintains multiple contexts and
the bounds for these contexts [4]. A context is the assump-
tion of agent ai on the agent-value assignments of all of
its ancestors in the pseudo-tree. The bounds LBaiXai (d) and
UBaiXai (d) are bounds on the optimal cost OPTaiXai (d), which
is the cost of a cost-minimal solution in case agent ai takes
on value d and each of its ancestors takes on its respective
value in Xai . The optimal cost OPTaiXai (d) is defined by

OPTaiXai (d) = δaiXai +
X

c∈C(ai)

OPTcXai∪(ai,d) (1)

OPTaiXai
= min
d∈di

OPTaiXai (d) (2)

where δaiXai is the sum of the costs of all constraints between
agents whose values are defined in context Xai , and C(ai)
is the set of children of agent ai in the pseudo-tree.

3. REUSEBOUNDS PROCEDURE
When solving the next DCOP in the sequence, one con-

structs the pseudo-tree for the next DCOP, uses the Reuse-
Bounds procedure to identify the lower and upper bounds
that were cached by any-space ADOPT or any-space BnB-
ADOPT when solving the previous DCOP and can be reused
for the next DCOP, initializes the other bounds and finally
uses any-space ADOPT or any-space BnB-ADOPT to solve
the next DCOP optimally. The ReuseBounds procedure
identifies affected agents, which are those agents whose opti-
mal costs can be different for the previous and next DCOPs.
They have one or more of the following properties:

• Property 1: Agent ai shares an added constraint,
deleted constraint or constraint with changed constraint
costs with another agent. If the agent shares the con-
straint with a descendant, then it is an affected agent (see
Property 3). If the agent shares the constraint with an
ancestor, then the cost δaiXai (d) for some value d and con-
text Xai can change, which in turn can change its optimal
cost OPTaiXai (d) (see Equation 1).

• Property 2: Agent ai has a different set of children C(ai)
in the previous and next DCOPs, which can change its
optimal cost OPTaiXai (d) (see Equation 1).

• Property 3: Agent ai has a descendant aj that is
an affected agent, which means that the optimal cost
OPT

aj

X
aj (d) for some value d and context Xaj can change,

which in turn can change the optimal cost OPT
aj

X
aj (see

Equation 2) and thus also the optimal cost OPT
ak
Xak (d′)

of its parent ak (see Equation 1), and so on. Therefore,
the optimal costs of all ancestors of agent aj (including
the one of agent ai) can change.

The affected agents cannot reuse their lower and upper
bounds for the next DCOP because the optimal costs can be
different for the previous and next DCOPs and the bounds
on the optimal costs of the previous DCOP might thus no
longer be bounds on the optimal costs of the next DCOP.

4. EXPERIMENTAL RESULTS
We now compare the runtimes of any-space ADOPT and

any-space BnB-ADOPT with and without the ReuseBounds
procedure. We use the distributed DFS algorithm with the
max-degree heuristic [1] to construct the pseudo-trees. We
measure the runtimes in cycles [2], vary the amount of mem-
ory of each agent with the cache factor metric [4] and use
the MaxEffort and MaxPriority caching schemes [4] for any-
space ADOPT and any-space BnB-ADOPT, respectively.
We consider the following changes: (1) change in the costs
of a random constraint, (2) removal of a random constraint,
(3) addition of a random constraint, (4) removal of a ran-
dom agent and (5) addition of a random agent. We averaged
our experimental results over 50 DDCOP instances with the
above five changes in random order and used a randomly
generated graph coloring problem of density 2, domain car-
dinality 5 and constraint costs in the range of 0 to 10,000 as
the initial DCOP for each DDCOP.

Table 1 shows our experimental results. The runtimes
of both DCOP algorithms decrease as the cache factor in-
creases. The reason for this behavior is that they reduce the
amount of duplicated search effort when they cache more
information [4]. The runtimes of both DCOP algorithms
are smaller with the ReuseBounds procedure than without
it, and the speedup increases as the cache factor increases.
The reason for this behavior is that the unaffected agents
can cache and reuse more lower and upper bounds from the
previous DCOPs as the cache factor increases.

5. REFERENCES
[1] Y. Hamadi, C. Bessière, and J. Quinqueton.

Distributed intelligent backtracking. In Proceedings of
ECAI, pages 219–223, 1998.

[2] P. Modi, W.-M. Shen, M. Tambe, and M. Yokoo.
ADOPT: Asynchronous distributed constraint
optimization with quality guarantees. Artificial
Intelligence, 161(1-2):149–180, 2005.

[3] W. Yeoh, A. Felner, and S. Koenig. BnB-ADOPT: An
asynchronous branch-and-bound DCOP algorithm.
Journal of Artificial Intelligence Research, 38:85–133,
2010.

[4] W. Yeoh, P. Varakantham, and S. Koenig. Caching
schemes for DCOP search algorithms. In Proceedings of
AAMAS, pages 609–616, 2009.

1070


