
Solving Strategic Bargaining with Arbitrary One–Sided
Uncertainty

(Extended Abstract)

Sofia Ceppi
Politecnico di Milano

Piazza Leonardo da Vinci 32
Milano, Italy

ceppi@elet.polimi.it

Nicola Gatti
Politecnico di Milano

Piazza Leonardo da Vinci 32
Milano, Italy

ngatti@elet.polimi.it

Claudio Iuliano
Politecnico di Milano

Piazza Leonardo da Vinci 32
Milano, Italy

iuliano@elet.polimi.it

ABSTRACT
Bilateral bargaining has received a lot of attention in the
multi–agent literature and has been studied with different
approaches. According to the strategic approach, bargaining
is modeled as a non–cooperative game with uncertain infor-
mation and infinite actions. Its resolution is a long–standing
open problem and no algorithm addressing uncertainty over
multiple parameters is known. In this paper, we provide an
algorithm to solve bargaining with any kind of one–sided
uncertainty. Our algorithm reduces a bargaining problem
to a finite game, solves this last game, and then maps its
strategies with the original continuous game. We prove that
with multiple types the problem is hard and only small set-
tings can be solved in exact way. In the other cases, we
need to resort to concepts of approximate equilibrium and
to abstractions for reducing the size of the game tree.

Categories and Subject Descriptors
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1. INTRODUCTION
The automation of economic transactions through nego-

tiating software agents is receiving a large attention in the
artificial intelligence community. Autonomous agents can
lead to economic contracts more efficient than those drawn
up by humans, saving also time and resources [10]. We focus
on the main bilateral negotiation setting: the bilateral bar-
gaining. This setting is characterized by the interaction of
two agents, a buyer and a seller, who can cooperate to pro-
duce a utility surplus by reaching an economic agreement,
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but they are in conflict on what specific agreement to reach.
Several approaches for bargaining are currently studied. In
this paper, we focus on strategic bargaining where agents are
assumed to be rational and a bargaining situation is mod-
eled as a non–cooperative game [1]. The most expressive
model is the Rubinstein’s alternating–offers [9]: agents al-
ternately act in turns and each agent can accept the offer
made by her opponent at the previous turn or make a new
offer. Agents’ utility over the agreements depends on some
parameters: discount factor (δ), deadline (T ), reservation
price (RP ). In real–world settings, the values of these pa-
rameters are private information of the agents who have a
Bayesian prior over the values of the opponent.

The game theoretic study of bargaining with uncertain in-
formation is an open challenging problem. Although it has
been studied for about 30 years, no work presented in the lit-
erature so far is applicable regardless of the uncertainty kind
(i.e., the uncertain parameters) and degree (i.e., the number
of the parameters’ possible values). The literature provides
several heuristics–based approaches generally applicable to
any uncertain setting, while the optimal approaches work
only with very narrow uncertainty settings. In particular,
no algorithm works with uncertainty over multiple parame-
ters.

2. PROPOSED APPROACH
We consider the alternating–offers protocol [9] with dead-

lines in which there are two agents, a buyer b and a seller
s, who can play alternatively at discrete time points t ∈ N.
We focus on one–sided uncertain settings where the buyer’s
parameters are uncertain to the seller (the reverse situation
is analogous). According to [3], our game is an imperfect–
information game in which the buyer can be of different
types, each one with different values of RPb, δb, and Tb.
Uncertainty is over the actual type of the buyer.

The appropriate solution concept is the sequential equi-
librium [5]. It is a couple a = (µ, σ), also called assessment,
in which µ is a belief system that specifies how agents must
update their beliefs during the game and σ is the agents’
strategy profile that specifies how they must act. µ must be
consistent with σ and σ must be sequentially rational given
µ.

Since bargaining with uncertainty may not admit any equi-
librium in pure strategies, as shown in [2], we directly search
for equilibria in mixed strategies. The basic idea behind our
work is to solve the bargaining problem by reducing it to a
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finite game, deriving equilibrium strategies such that on the
equilibrium path the agents can act only a finite set of ac-
tions, and then by searching for the agents’ optimal strate-
gies on the path. Our work is structured in the following
three steps.

1. We analytically derive an assessment a = (µ, σ) in
which the randomization probabilities of the agents are
parameters and such that, when the parameters’ values
satisfy some conditions, a is a sequential equilibrium.

2. We formulate the problem of finding the values of the
agents’ randomization probabilities in a as the problem
of finding a sequential equilibrium in a reduced bar-
gaining game with finite actions, and we prove that
there always exist values such that a is a sequential
equilibrium.

3. We develop an algorithm based on linear complemen-
tarity mathematical programming to solve the case
with multiple types.

3. SOLUTION WITH MULTIPLE TYPES
Due to space limitation, we report only how the game

tree is constructed and how the equilibrium strategy can be
found.

The construction of the game tree is accomplished accord-
ing to the following rules:

1. no buyer’s types makes offer strictly weaker than her
optimal offer in the complete–information game;

2. at time t > 0, no agent (buyer and seller) makes offers
strictly weaker (w.r.t. her utility function) than the
one made by the opponent at the previous time point
t− 1;

3. at time t > 0, no agent (buyer and seller) makes of-
fers that, if accepted at t + 1, provide her the same
utility she receives by accepting the offer made by the
opponent at t− 1;

4. no buyer’s type makes offers besides min{Tbi , Ts} and
the seller does not make offer besides min{max{Tbi}, Ts};

5. at time t > 0, an offer xi is not made if the buyer’s
type bi is out of the game (i.e., t >= Tbi or type bi has
been excluded because the buyer has previously made
an offer strictly weaker than the optimal complete–
information offer of bi).

It can be easily observed that the size of the tree rises ex-
ponentially in the length of the deadlines.

To compute an equilibrium, at first we represent the game
in the sequence form [4] where agents’ actions are sequences
in the game tree. The computation of Nash equilibria in
a game in sequence-form can be accomplished by applied
different algorithms presented in the literature. To find se-
quential equilibria, such algorithms should be extended by
introducing perturbations in their mathematical program-
ming formulation, as is shown in [7].

We implemented an ad hoc version of the Lemke’s algo-
rithm with perturbation as described in [7] to compute a
sequential equilibrium. The algorithm is based on pivoting
(similarly to the simplex algorithm) where perturbation af-
fects only the choice of the leaving variable. We coded the
algorithm in C language by using integer pivoting and the

same approach of the revised simplex (to save time during
the update of the rows of the tableau). We executed our al-
gorithm with a 2.33 GHz 8 GB RAM UNIX computer. We
produced several bargaining instances characterized by the
number of buyer’s types (from 2 up to 6) and the deadline
T = min{max{Tbi}, Ts} (from 6 up to 500). Tab. 1 reports
the average computational times over 10 different bargain-
ing instances; we denote by ‘–’ when execution exceeds one
hour.

T number of buyer’s types
2 3 4 5 6

6 < 0.01 s 0.06 s 0.29 s 3.47 s 929.73 s
8 < 0.01 s 1.32 s 32.94 s 1890.96 s –
10 < 0.01 s 15.16 s 2734.29 s – –
12 < 0.01 s 211.11 s – – –
14 < 0.01 s 3146.20 s – – –
50 0.22 s – – – –
100 1.55 s – – – –
500 175.90 s – – – –

Table 1: Computational times for solving a bargain-
ing game with linear complementarity mathematical
programming (T = min{max{Tbi}, Ts}).

As it can be observed, the computational times are ex-
ponential in the bargaining length and have the number of
types as basis and only small settings can be solved by using
linear–complementarity mathematical programming.
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