
Basis Function Discovery using Spectral Clustering and
Bisimulation Metrics

(Extended Abstract)

Gheorghe Comanici
Department of Computer Science

McGill University
Montreal, QC, Canada

gcoman@cs.mcgill.ca

Doina Precup
Department of Computer Science

McGill University
Montreal, QC, Canada

dprecup@cs.mcgill.ca

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms

Algorithms, Theory, Experimentation

Keywords

Markov Decision Processes, Spectral Clustering, Basis Func-
tion Learning

1. OVERVIEW
Markov Decision Processes (MDPs) are a powerful frame-

work for modeling sequential decision making for intelligent
agents acting in stochastic environments. One of the impor-
tant challenges facing such agents in practical applications
is finding a suitable way to represent the state space, so that
a good way of behaving can be learned efficiently. In this
paper, we focus on learning a good policy when function ap-
proximation must be used to represent the value function.
In this case, states are mapped into feature vectors, and a
set of parameters is learned, which allows us to approximate
the value of any given state. Theoretically, the quality of
the approximation that can be obtained depends on the set
of features. In practice, the feature set affects not only the
quality of the solution obtained, but also the speed of learn-
ing.

We focus on learning feature vectors in fully specified
MDPs by a set of states S, a set of actions A, a transi-
tion model P : S × A × S → [0, 1], and a reward func-
tion R : S × A → [0, 1]. Also, γ is a discount factor and
γ ∈ (0, 1). A policy π : S × A → [0, 1] specifies a way
of behaving for the agent, and we would like to evaluate
the long term behavior it generates. We do this using the
value function, which is defined (using matrix notation) as
V =

∑∞
i=0(γπP )i(πR) = π(R + γPV π). The last equal-

ity is known as the Bellman equation, and is at the heart
of most incremental sampling algorithms to find V . Our
goal is to linearly approximate intermediate computations

Cite as: Basis Function Discovery using Spectral Clustering and Bisim-
ulation Metrics (Extended Abstract), Gheorghe Comanici, Doina Precup,
Proc. of 10th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 2011), Tumer, Yolum, Sonenberg and Stone
(eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 1079-1080.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

of V ≈ Φθ, where Φ maps every state to feature vectors of
dimension much smaller than |S|, and attempt to minimize
||V − Φθ||2.

Two types of methods have been proposed in recent years
to tackle this problem. The first category of methods aims
to construct basis functions that reduce the error in value
function estimation[3, 5]. In this case, features are reward-
oriented, and are formed with the goal of reducing value
function estimation errors. The second approach, exempli-
fied by the work of Mahadevan and Maggioni [4] (and their
colleagues) relies on using data to construct a state connec-
tivity graph. Spectral clustering methods are then used to
construct state features. The resulting features capture in-
teresting transition properties of the environment (e.g. dif-
ferent spatial resolution) and are reward-independent. That
is, the features generated are eigenvectors of the Normal-

ized Laplacian [1]: L = D
− 1

2
W1(DW1 −W )D

− 1
2

W1, where Dx is
a diagonal matrix with entries x, and W ∈ M(|S|, |S|) is
a symmetric matrix representing diffusion models of transi-
tions in the underlying MDP using exploratory policies.

Our goal is to show how one can incorporate rewards in
feature discovery, while still using a spectral clustering ap-
proach. We use bisimulation metrics [2], as opposed to tran-
sition information, in combination with spectral clustering.
Bisimulation Metrics are used to quantify the similarity
between states in an MDP. Intuitively, states are close if
their immediate rewards are close, and they transition with
similar probabilities to close states. These metrics can be
iteratively computed, and the number of iterations deter-
mines the accuracy of the metric. The main result of [2],
and which we extend for function approximation, has usage
in clustering neighboring states:
THEOREM 1: Given a clustering map C, if Vagg is the
value function of the aggregate MDP, then
||CV ∗

agg−V ∗||∞ ≤ 1
(1−γ)2

|| diag(M∗CD−1
1T C

CT )||∞, where

M∗ is the exact bisimulation metric on the original MDP.
The above states that the approximation error is bounded

above by the maximum bisimulation error between a state
and the states included in the same cluster.

Eigenfunctions that incorporate reward informa-
tion are desired mainly because spectral methods provide
an important tool in reducing the size of representation:
real positive eigenvalues corresponding to each eigenfunc-
tion. If one would have a fixed policy π, under mild condi-
tions πP = ΦπDλ(Φπ)T for some orthogonal Φπ and eigen-
values λ of πP . Then V π = ΦπDαD−1

(1−γλ)1, where πR =
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Φπα. Normalized Laplacian methods use an exploratory
policy π̂, compute an efficient alternative of Φπ̂ based on W ,
then use as representation the eigenvectors in Φπ̂ with high-
order 1/(1− γλ). As noticed, Dα, the representation of the
reward using the proposed features, is completely ignored,
and bisimulation metrics are going to provide alternatives
to Φπ̂Dα, by combining reward and transition information
to generate measures of similarity.

Extending bisimulation bounds for general feature
maps: The main extension that allows one to use bisimula-
tion as a heuristic for feature generation is that feature sets
that are faithful to the bisimulation metric provide better
bounds on the approximation error.

Given a feature extractor with the property Q1 = 1,
we compute the optimal value function V ∗

φ of the induced

MDP with on the feature set: PΦ = D−1
ΦT 1

ΦT PΦ and RΦ =

D−1
ΦT 1

ΦT R. This can than be used to obtain the largest rep-
resentable value function as ΦV ∗

φ . The following theorem
generalizes previous results on clustering:

THEOREM 2: Given an MDP, let Φ be a set of feature
vectors with the property Φ1 = 1. Then the following holds:

||ΦV ∗
Φ − V ∗||∞ ≤ || diag(M∗ΦD−1

1T Φ
ΦT )||∞/(1− γ)2

2. EMPIRICAL RESULTS
One is free to use any kind of feature selections, but if

these impose a relationship faithful to the bisimulation met-
ric, then one has theoretical guarantees that the error in
approximation is bounded. To illustrate this, we modify the
spectral decomposition methods presented in [4] to use the
bisimulation metric. In this end, we use a similarity matrix
WK , which is the inverse exponential of M∗, normalized in
[0, 1]. We compare it to previous methods based solely on
state-topology (i.e. WT (s, s′) = 1 if and only if one can
transition s→ s′ or s′ → s).

We first compute the eigenvectors of D
− 1

2
W1(DW1−W )D

− 1
2

W1,
where W is either of WK or WT . We select the first k eigen-
vectors of F , based on the corresponding eigenvalues. The
exact value of V π is then computed as (I − γπP )−1πR, and
then compared to ΦV Φ. The later is simply V π’s projection
on an orthonormal basis of Φ, which in turn is an application
of the Gram-Schmidt procedure.

7x7 and 9x11 grid worlds (Figure 1) are controlled by 4
actions representing the four movement directions in a grid.
Upon using any action, the corresponding movement is per-
formed with probability 0.9, and the state does not change
with probability 0.1. If the corresponding action results in
collision with wall, the state does not change. Rewards of
10 are obtained upon entering goal states (labelled by dots).

Empirical Results are shown in Figure 2 as comparisons
between the best approximations possible using variable num-
ber of features. For a number of 300 randomly generated
policies, the presented method was used to compute the
best approximation to the value function using both bisim-
ulation and the accessibility matrix for state similarity (as
previously presented in Mahadevan and Maggioni [4]). The
graphs represent average L2-error in approximation. The
last two graphs were generated by running the same algo-
rithm at different numerical precision of the bisimulation
metric.

Figure 1: 7x7 and 9x11 Grid Worlds

Figure 2: Empirical Results

3. CONCLUSION AND FUTURE WORK
We presented an approach to automatic feature construc-

tion in MDPs based on using bisimulation metrics and spec-
tral clustering. The main aspect of this work is that we ob-
tain features that are reward-sensitive, which proves quite
important in practice, according to our experiments. Even
when the precision of the metric is reduced, to make com-
putation faster, the features we obtain still allow for a very
good approximation. The use of bisimulation allows us to
obtain solid theoretical guarantees on the approximation er-
ror. These are obtained by extending previous results on
clustering using bisimulation to more general function ap-
proximation settings. However, the cost of computing or
even approximate bisimulation metrics may be prohibitive
for some domains. The results presented here are meant
as a proof-of-concept to illustrate the utility of bisimulation
metrics for feature construction. We are currently exploring
more efficient reward-based feature construction methods.
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