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ABSTRACT
In this paper, we propose to guide reinforcement learning
(RL) with expert coordination knowledge for multi-agent
problems managed by a central controller. The aim is to
learn to use expert coordination knowledge to restrict the
joint action space and to direct exploration towards more
promising states, thereby improving the overall learning rate.
We model such coordination knowledge as constraints and
propose a two-level RL system that utilizes these constraints
for online applications. Our declarative approach towards
specifying coordination in multi-agent learning allows knowl-
edge sharing between constraints and features (basis func-
tions) for function approximation. Results on a soccer game
and a tactical real-time strategy game show that coordi-
nation constraints improve the learning rate compared to
using only unary constraints. The two-level RL system also
outperforms existing single-level approach that utilizes joint
action selection via coordination graphs.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, Search

General Terms
Algorithms, Performance, Experimentation

Keywords
Reinforcement learning, guiding exploration, coordination
constraints, factored Markov decision process

1. INTRODUCTION
Expert knowledge is commonly employed in large-scale re-

inforcement learning (RL) in a variety of ways. In particular,
hierarchical RL handles single agent Markov decision pro-
cesses (MDPs) by recursively partitioning them into smaller
problems using a task hierarchy [19, 7, 1]. The task hierar-
chy constrains the solution space (policies) of the learning
problem so that only relevant actions for a task can be se-
lected at each time step. Learning a good task selection
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policy will direct exploration towards the more promising
parts of the MDP.

For multi-agent problems, each agent has a set of actions
whose Cartesian product forms the joint action space. This
space is exponential in the number of agents and therefore,
RL with naive exploration is slow. Hierarchical RL has been
adapted to multi-agent problems [15, 9] by having one task
hierarchy per agent where the actions are selected jointly.
Once each individual agent’s task is selected, it will have a
constrained (reduced) set of actions to consider. However,
this framework cannot be easily extended to incorporate co-
ordination behavior among multiple agents.

Consider Fig. 1 which depicts a state in a soccer game and
player P1 has the ball. Let N , S, E, W , be the four com-
pass directions. P1’s action set is A1 = {S,E, pass2, pass3,
shoot} where pass2 and pass3 denote passing the ball to
players P2 and P3 respectively, and shoot denotes the action
to kick the ball into the goal. Players P2 and P3 have the ac-
tion set A2 = {N,S,E,W} and A3 = {N,W} respectively.
We denote a joint action as 〈a1, a2, a3〉 ∈ A1 × A2 × A3.
The size of this joint action space is 5× 4× 2 = 40. A closer
examination reveals that much of this space does not need
be explored as they are unlikely to lead to a winning state.
For example, P1 certainly should not pass the ball to P2 if
P2 is moving adjacent to an opponent as the ball can easily
be intercepted. With this simple coordination strategy, the
set of disallowed joint actions is {pass2} ×{S,E,W} × A3.
Similarly, P1 should not pass the ball to P3 and the set of
disallowed joint actions is {pass3}×A2 ×A3. Immediately,
the size of the joint action space is reduced by 35%.
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Figure 1: Example states in a simplified soccer
game. The white . versus black J players.

In this paper, we focus on a central learner with multiple
agents where communication is free. This corresponds to the
scenario of a computer player managing an army in real-time
strategy (RTS) games or a team of players in soccer. We aim
to exploit coordination knowledge for improving the learning
rate of good policies by modeling coordination among agents



as hard constraints. We refer to these hard constraints as
coordination constraints (CCs), and use CCs to limit the
joint action space for exploration. Unary constraints defined
on single agents are a special case of CCs.

We propose a two-level RL system where the top level
learns to choose the CCs to constrain the bottom level’s
learning of joint actions. The RL system learns to guide
itself, i.e., deciding which CCs to use in various states is
part of the learning process. This is a necessary flexibility
because not all CCs are always useful in every state. For
example, in Fig. 1a, the CC that P1 should not pass the
ball to P2 is appropriate since there are opponents close to
P2. However, this CC may not be suitable, e.g., in Fig.
1b, where P2 is standing directly in front of the goal as it
may be better to pass to P2 so that P2 can try to score.
Such a two-level system is different from RL for constrained
MDPs [8] as the two-level system dynamically learns to use
different constraints to improve learning, instead of using
static constraints to prevent failure.

The proposed CCs are useful in addition to existing meth-
ods of modeling coordination with a communication struc-
ture such as a coordination graph (CG) for joint action selec-
tion [11, 12]. Unlike task-based methods where single agents
are restricted based on individual tasks, CCs define these
restrictions based on expert knowledge of multi-agent coor-
dination. Such coordination is not easily expressed within
single agent tasks. Existing works usually delegate them
to the CG structure as features (basis functions) [15] or as
static rules [16]. This further motivates us to investigate the
potential of CCs in a more active role for improving learning
performance.

Using CCs for online RL has three challenges. First, the
system must be able to efficiently learn to activate the var-
ious CCs from its interaction with the environment. How-
ever, different combinations of activated CCs lead to large
number of bottom level value functions to be learned. We
address this by formulating learning equations that exploit
similarities among the bottom level components of our sys-
tem. Second, choosing CCs at the top level introduces an
exponential top level joint action space to explore. We over-
come this by identifying those CCs which can never be vio-
lated in a given state. Once identified, these CCs are deac-
tivated, reducing the top level action space for exploration.
Last, the system must integrate well with other useful meth-
ods for multi-agent learning in large state-action spaces.

To the best of our knowledge, this is the first online RL
system that uses coordination to guide learning in multi-
agent problems with a central controller. Our model-free ap-
proach frees the user from designing models for large MDPs
with many variables. A major benefit of our system is that
existing predicate definitions of features can be reused to
specify CCs. This sharing of predicate components between
CCs and features aids the user in encoding knowledge for
the top level of the system. Experiments show that CCs
give better results compared to having unary constraints or
with coordination knowledge encoded only as a CG. For do-
mains that require heavy coordination, using CCs leads to
better policies, and hence better overall goal achievement.

2. TWO-LEVEL RL SYSTEM
An MDP is a 4-tuple 〈S,A,P,R〉 where S is a set of

states, A is a set of primitive actions, P(s′|s, a) is a tran-
sition probability model that gives the probability of going

from state s to s′ when action a is taken, and R(s, a, s′) is
a reward model that gives the reward of taking a in s and
reaching s′. The set of available actions at state s is written
as A(s). With N agents, the joint action space is factored
as A = A1 × ...× AN , where An is the action variable that
corresponds to the n-th agent. S may also be factored into
multiple variables in a similar way.

A solution to the MDP is a policy π : S 7→ A and the
optimal policy π∗ is one that maximizes the expected to-
tal discounted reward in any given state. Let the expected
discounted sum of rewards when taking a in s at time t,
observing reward rt, and following π thereafter with dis-

count rate γ be Qπ(s, a) = Eπ{
∑∞
t′=t γ

t′−trt′ |s, a}. Then
π∗(s) = argmaxa∈A(s)Q

∗(s, a). By learning Q∗ directly, we
obtain π∗ without learning P and R [18].
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Figure 2: Two-level learning system

Fig. 2 depicts the proposed two-level learning system.
The top level determines which CCs are relevant to the cur-
rent state. The top level action space A0 consists of the
activation or deactivation of each CC. With K constraints,
the size of A0 is 2K . However, in practice, the number of
CCs that may be activated is typically small. The activated
CCs restrict the bottom level to a sub-MDP, i ∈ [1, 2K ], as
shown in Fig. 2. Therefore, sub-MDP i corresponds to a
unique top level action in A0. The joint action space of sub-
MDP i, denoted by Ai, is a subset of the original joint action
space A. This allows the bottom level to learn the original
joint actions quickly. After the bottom level has taken an
action in the environment, execution returns to the top level.
Details of the learning equations, action selection and spec-
ification of CCs are given in Sections 2.1, 2.2 and 2.3. We
also discuss how A0 can be reduced in Section 2.4.

2.1 Learning Equations & Updates
To model the system’s two-level learning, we augment the

original MDP’s state space with an index i that keeps track
of the position within the hierarchy. The top level corre-
sponds to i = 0, and i ∈ [1, 2K ] refers to one of the sub-
MDPs. Note that when i ∈ [1, 2K ], it also refers to a unique
top level action in A0. The augmented MDP’s state space is
S ′ = [0, 2K ]×S, and 〈i, s〉 ∈ S ′ is an augmented state. The
augmented action space is the union A′ = A0 ∪ A. Let an
action in A′ be ã. Then, the transitions between levels in
the hierarchy are deterministic while those between original
states follow P, resulting in the transition model,

P ′(〈i′, s′〉|〈i, s〉, ã) =


P(s′|s, ã) if i 6= 0 ∧ i′ = 0 ∧ ã ∈ A
1 if i = 0 ∧ i′ = ã ∧ ã ∈ A0

0 otherwise

(1)



and the reward model is

R′(〈i, s〉, ã, 〈i′, s′〉) =

{
R(s, ã, s′) if i′ = 0

0 otherwise
(2)

that is, the original reward model R is used when transiting
between original states, all other transitions are zero. Note
that the augmented MDP is also an MDP.

Fig. 3 illustrates the dynamics of the augmented MDP
from the system’s point of view and that of the original en-
vironment. Solid arrows indicate deterministic transitions
while dotted-dashed arrows indicate non-determinism. Num-
bers describe a sequence of transitions between two original
states. In Fig. 3a, the RL system operates as if the top level
is part of the environment. Conversely in Fig. 3b, the origi-
nal environment only receives original joint actions from the
central controller that consists of multiple agents.
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Figure 3: Interactions between RL system, aug-
mented MDP, and environment (MDP).

Let the hierarchical policy, π : S ′ 7→ A′, that solves the
augmented MDP be represented by a set of policies {πi} in-
dexed by i such that π(〈i, s〉) = πi(s). That is, π0 denotes
the top level policy, and πi>0 denotes a policy constrained to
the action spaceAi(s) of the sub-MDP i. The Bellman equa-
tion of the action value function for the augmented MDP is,

Qπ(〈i, s〉, ã) =
∑

〈i′,s′〉∈S′

P ′(〈i′, s′〉|〈i, s〉, ã)

× [R′(〈i, s〉, ã, 〈i′, s′〉) +Qπ(〈i′, s′〉, πi(s′))]. (3)

Suppose we only use discounting (γ) for transitions between
original states, we can rewrite and simplify Eq. 3 into two
parts, ∀i > 0, for the top level,

Qπ(〈0, s〉, i) =
∑
s′∈S

Pi(s′|s, πi(s))[R(s, πi(s), s
′)

+γQπ(〈0, s′〉, π0(s′))] (4)

and for the bottom level,

Qπ(〈i, s〉, a) =
∑
s′∈S

Pi(s′|s, a)[R(s, a, s′)

+γQπ(〈0, s′〉, π0(s′))]. (5)

Note that i in Eq. 4 refers to a unique top level action
in A0, and we subscript P with i to indicate primitive ac-
tions that are disallowed based on i. Eq. 4 expresses the
expected reward of taking a top level action i and follow-
ing πi for one step before returning to the top and follow-
ing π0 thereafter. Eq. 5 expresses the expected reward

at the bottom level that returns to the top level imme-
diately after one step and following π0 thereafter. Now
we can select greedy primitive actions in s by separately
computing π0(s) = argmaxi∈A0(s)

Qπ(〈0, s〉, i), followed by
πi(s) = argmaxa∈Ai(s)

Qπ(〈i, s〉, a).

Updating the 2K Qπ(〈i, ·〉, ·) functions at the bottom level
requires exponential space and time. However we observe
that, although Pi and Pj for two sub-MDPs have different
domains as their actions are from Ai and Aj respectively,
their probabilities are contained in the original MDP’s P.
This is because the transition probability is a conditional
probability where values are normalized over the state space
but not the action space. Hence, given 2K sub-MDPs, ∀s ∈
S, i, j ∈ [1, 2K ], a ∈ Ai(s) ∩ Aj(s), we have

Qπ(〈i, s〉, a) = Qπ(〈j, s〉, a). (6)

Consequently, the various sub-MDP functions are the same
for their intersected domains. This leads to a single bottom
level function definition: ∀i > 0, a ∈ Ai(s),

Uπ(s, a) = Qπ(〈i, s〉, a) (7)

that is independent of i. Incidentally, Uπ is similar to the
action value function for the original MDP but constrained
to the joint actions in Ai(s) by the two-level policy π.

We use linear function approximation to learn the value
functions Qπ(〈0, ·〉, ·) and Uπ. This employs a linear combi-
nation of m number of features (basis functions), φp, with
weights, wp, to be learned. In other words, given a func-
tion F (s, a), we want to find ~w = 〈w1, ..., wm〉 such that,

F (s, a) ≈ ~w · ~φs,a, where ~φs,a = 〈φ1(s, a),· · · ,φm(s, a)〉.
To obtain ~w for each optimal value function, we perform

on-policy temporal difference (TD) updates using the hierar-
chical policy π given by {πi}, where each πi is a GLIE policy
[7], and online samples of the form 〈〈0, s〉, i, 〈i, s〉, a, r, 〈0, s′〉〉.
The first two entries in the sample denote that the top level
is in the augmented state 〈0, s〉 and it chooses the action
π0(s) = i ∈ A0(s). The next two entries in the sample in-
dicate the state 〈i, s〉 of the bottom level and the primitive
action πi(s) = a ∈ Ai(s) taken by it. The final two entries
indicate that both levels observe reward r and go to next
state s′. Note that when the bottom level policy chooses an
exploratory action, i.e., πi(s), it does so by choosing a ran-
dom action within the constrained joint action space Ai(s)
as specified by the top level action i.

Let Qπ(〈0, s〉, i) ≈ ~w0 · ~φ0s,i, U
π(s, a) ≈ ~wU · ~φUs,a, and α

be the step size parameter that decreases over time. Then,
the weights ~w0 and ~wU are updated as follows:

~w0 ← ~w0 + α[r + γQπ(〈0, s′〉, π0(s′))

−Qπ(〈0, s〉, i)] ~φ0s,i (8)

~wU ← ~wU + α[r + γQπ(〈0, s′〉, π0(s′))

−Uπ(s, a)] ~φUs,a (9)

2.2 Action Selection
Applying the policies πi often requires selecting some prim-

itive action within Ai(s) that maximizes the value functions.
For example, the ε-greedy bottom level policy is to select a
maximal action πi(s) = argmaxa∈Ai(s)

Uπ(s, a) with 1 − ε
probability, or a random action within Ai(s) with ε proba-
bility. In our system, Ai(s) is subjected to the constraints
activated by the top level. This implies that the problem



of finding a maximal action, argmaxa∈Ai(s)
Uπ(s, a), can be

modeled as a constraint optimization problem (COP) over
the full original action space A as follows:

argmax
a∈A

Uπ(s, a), subject to: (10)

ci,1(s, a), ..., ci,p(s, a) c0,1(s, a), ..., c0,q(s, a)

where the constraints ci,j(s, a) are activated by the top level
action i, termed dynamic CCs, and the constraints c0,j(s, a)
are always activated regardless of i, termed static CCs.

Let each constraint be a function on a subset of variables
in S and A that returns −∞ if violated, or 0 otherwise.
Then the objective function to maximize for the COP is

Uπ(s, a) + C0(s, a) + Ci(s, a) (11)

where C0 and Ci are the sum of their respective constraints
c0,j and ci,j . Note that to switch to selecting random ac-
tions within Ai(s), we can simply replace Uπ with a random
function. Likewise, the selection of action for the top level,
e.g., argmaxi∈A0(s)

Qπ(〈0, s〉, i), can be similarly modeled.
Depending on the characteristics of the COPs, we employ

different strategies to solve them. If the problem consists
of features and constraints that can be additively decom-
posed into component functions involving up to two action
variables, we can utilize the coordination graph (CG) [11]
with bucket elimination for sparse CGs, or the Max-plus
algorithm [14] for dense CGs. CGs are formed by having
one vertex for each agent (action variable) and an edge be-
tween two agents that have a non-zero component function
involving them. We further employ domain reduction tech-
niques to prune A. If the problem involves higher arity
features and constraints, more generalized solvers can be
employed [17]. Furthermore, if top level actions activating
CCs are presumed to be independent, we may use features
for Qπ(〈0, ·〉, ·) that only involve the state and one action
variable corresponding to one CC. Consequently, top level
actions can be selected independently in O(K) time while
bottom level actions are selected jointly. This turns out to
be sufficient for good performance shown in Section 3.

2.3 Features & Constraints
Next, we show how existing predicate definitions of fea-

tures can be reused to specify the CCs. We further describe
how the top and bottom levels’ BFs may share predicate
components in their design and highlight a type of features
that may be useful for certain multi-agent problems.

Predicates are a natural way to encode expert knowledge
as features for RL. For example, the expert knowledge of a
bad pass can be written as the predicate:

BadPass(s, ax, ay) := HasBall(Px) ∧ IsPass(Py, ax)

∧MoveNextToOpp(s, ay),

where HasBall(Px) is true if player Px has the ball,
IsPass(Py, ax) is true if the action of player Px, ax, is to
pass the ball to Py, and MoveNextToOpp(s, ay) is true if
the action of player Py is to move next to an opponent.

With this predicate BadPass, we can derive the corre-
sponding list of propositional features (PFs) by binding the
variables Px, Py to specific players. For example, for P1, P2

we have the PF, φBadPass1,2(s, a) = BadPass(s, a1, a2), for
brevity we write BadPass1,2. The value of a PF is in {0, 1}.

PFs are commonly employed in existing RL systems to
approximate the value function [15, 13, 2]. We also uti-

lize PFs for the bottom level function Uπ. An immediate
advantage is that the predicates for PFs can be reused for
specifying CCs. For each PF φρ(s, a), we can formulate it
into a constraint that disallows the proposition ρ, i.e.:

cρ(s, a) = −∞ · φρ(s, a). (12)

If φρ(s, a) = 1, cρ(s, a) returns −∞, signifying that the con-
straint cρ that represents the condition ¬ρ is violated.

Reusing PFs in Uπ as CCs has an added advantage during
bottom level action selection. Instead of specifying individ-
ual constraints ci,j to sum for Ci in the objective function
in Eq. 11, we can simply set the corresponding PFs’ weights
of the activated CCs to −∞. In so doing, the set of actions
that are disallowed by the CCs will never be chosen due to
its −∞ weight.

Note that we restore the original weights of these PFs
during the updates (Eq. 9). This is because in practice, in-
complete COP solvers like Max-plus may still select actions
that violate certain activated CCs. When this happens, we
can learn the weights for the violated constraint PFs that are
useful for updating other weights. Hence PFs can be used
both as constraints for guiding exploration and for function
approximation.

The top level value function Qπ(〈0, ·〉, ·) is also a linear
approximation. Here, we describe how the predicates for
bottom level PFs can be reused for the top level features. We
observe that the activation of a constraint is often dependent
on the state of the environment. Hence, we encode such
state-dependent activation knowledge as the top-level PFs in
the following manner: Let Activated(c) be true if constraint
c is activated. For each c corresponding to some PF for the
bottom level, we conjunct Activated(c) or its negation with
selected state predicates of agents involved in c.

For example, in the soccer scenario, we would like to de-
activate the BadPass1,2 constraint if the receiving player
P2 is near the enemy goal, i.e., NearGoal(P2) is true as
shown in Fig. 1b. This is because it may turn out to be
better to take a chance at scoring. Hence, we define a predi-
cate NearGoal(Py)∧¬Activated(BadPassx,y) for each pair
of players to capture this condition in the top level value
function. This simple strategy allows us to design top level
features easily by reusing bottom level features’ predicates.

For applications where the agents are homogeneous or
their quantity changes over time, a new class of features
called relational features (RFs) can be utilized [20]. Here,
we modify the relations used in [10, 2] for function approx-
imation by aggregating PFs that share the same predicate
into RFs. RFs are additively decomposable into components
involving a subset of agents, e.g. an RF of BadPassx,y
can be the count of true bound predicates for each pair
of players, Px, Py. A weight is learned for the RF instead
of one for each of the PFs, i.e., the update by observing
the true proposition BadPass1,2 will have its effect gen-
eralized to other pairs of players for BadPass. RFs can
greatly reduce the number of weights for the top level PFs
relating to multi-agent CCs. For example, the predicate
NearGoal(Py) ∧ ¬Activated(BadPassx,y) can be used to
construct an RF to reduce N(N−1)/2 weights to one weight.

2.4 Top Level Learning Efficiency
Finally, we discuss how the 2K top level action space can

be reduced for exploration and consequently, faster learning.
In many domains, we observe that the top level action space,



A0, may be heavily constrained based on the current state, s.
This yields a smallerA0(s) to explore. In fact, this reduction
to A0(s) can be directly derived from the predicates used to
create the CCs. If it can be inferred that a CC cannot be
violated in the current state s, then the CC need not be
activated. This can be done in O(K) time as we only need
to inspect the predicates of each of the K CCs.

Consider the BadPass2,3 CC. Since only player P1 has
the ball (see Fig. 1), HasBall(P2) is false and CC for
BadPass2,3 can be deactivated. We can also deactivate
BadPassx,y CCs for other pairs of players where Px does
not have the ball, thus reducing the quadratic number of
BadPassx,y CCs to a linear number of BadPass1,y CCs.

Another observation is that agents who are very far apart
do not need to coordinate. We can define a Nearbyx,y pred-
icate that is true if two agents are within a given distance
and conjunct it with those predicates involving them. This
simple strategy has proven effective in reducing A0 for di-
recting top level exploration in practice.

3. EXPERIMENT RESULTS
We carried out experiments to evaluate the proposed ap-

proach on two domains: simplified soccer (Fig. 1) and tacti-
cal real-time strategy (RTS) [4]. The environments are fully
observable and episodic. All learning is online as no expe-
rience is saved and replayed. We compare four RL players.
Independent player – each agent selects their own action in-
dependently and learns a separate policy [6]. Flat player
– RL using single level on-policy learning with coordination
graph (CG) defined by features for joint action selection [12].
Solo player – a representative of having individual task hi-
erarchies for each agent. Only unary constraints are used.
Coordinated player – uses our full two-level learning system.
For function approximation, the solo and coordinated play-
ers use the same features as the flat player for their bottom
level value function. Hence they have the same CGs defined
by the features. The independent player has only features
that involve single agents.

We design three types of experiments to investigate the
performance of the two-level learning system. Each experi-
ment progressively includes other methods that make RL in
multi-agent domains practical. A video of the sample runs
of our policies can be viewed at: http://youtu.be/aloAOTBEUZ4.

3.1 Simplified Soccer Domain
In soccer, the objective is to score the first goal in the

shortest time. The soccer field is a grid world. Soccer players
can stay, move in 4 directions, or the player with the ball
may pass or shoot with a probabilistic chance of success
weighted by distance. The ball changes ownership to the
opposing team if the player with the ball collides with any
player or if a pass fails. A failure to score a goal results
in the ball going to the nearest player to the goal. In each
time step, submitted player actions are randomly shuffled
and executed. Rewards are 1 for winning, and −1 for losing.

There are three types of scripted opponents in order of
difficulty: random players select actions at random; defen-
sive players stay around the home quarter of the field and
move to intercept the ball if it enters, the player with the
ball does a solo counter-attack; aggressive players always go
for the ball, once attained, the player with the ball heads for
the goal while each of the other players stays near (marks)
their respective enemy players. In soccer, good policies may

require agents to have specific roles.
In addition to unary CCs, for pairwise CCs in soccer, we

used a predicate for static collision CCs and three predi-
cates for dynamic CCs including: BadPass, not jointly in-
tercepting as opponent with the ball, and jointly blocking
opponents’ movements.

3.1.1 Only Exact Methods
For the first type of experiments, we examine our proposed

two-level RL system without any approximation, using ex-
act tabular functions and action selection via enumeration.
This is to investigate if the extra top level is indeed useful
for learning performance. A tabular function is equivalent
to a linear function approximation where each feature is a
boolean variable corresponding to an entry in the table. We
only compare tabular flat and coordinated players.

The soccer field is 6× 4 units and the RL players have 2
soccer players versus 1 player for each type of scripted op-
ponent. RL players used discounting (γ = 0.99), ε-greedy
policies with constant ε = 0.1, and constant step size (α =
10−3). The coordinated player used only pairwise CCs and
no unary CCs for this experiment. Its top level has 3 dy-
namic CCs giving a top joint action space of size 23. With
tabular functions the number of parameters to learn are
more than 10,000 for each RL player. Hence we run the
experiments for many episodes.

Fig. 4 shows the results for the three scripted opponents.
1 million episodes are used against random, and 10 mil-
lion episodes against both defensive and aggressive oppo-
nents. From the results we see that learners have poorer goal
achievement against harder opponents. The coordinated
player performs consistently better than the flat player. This
verifies that the top level of our system is stable and im-
proves learning performance when there are no other factors.

3.1.2 With Function Approximation
For the second type of experiments, we evaluate the RL

system using propositional features (PFs) for linear value
function approximation and exact action selection through
bucket elimination. Top level action selection is independent
(see Section 2.4). The soccer field is 12 × 8 units. The RL
players have 4 soccer players versus 6 players each using the
defensive and aggressive scripts. The size of the state space
is at least 1013 and the size of the action space is 84. The top
level has 6 static CCs and 18(= 6×3) dynamic pairwise CCs.
The learners used discounting with γ = 0.99, and ε-greedy
policies with decaying step size (α) and exploration (ε) pa-
rameters written as param = 〈initial, final, decay rate〉: all
players used ε = 〈1.0, 0.01, 0.998〉, the flat player used α =
〈0.2, 0.1, 0.998〉, and the rest used α = 〈0.1, 0.01, 0.998〉.

Fig. 5 shows the cumulative average discounted rewards
for the soccer setup against the two different scripted strate-
gies. Note that the plots start from the tenth episode. For
all opponents, the flat player performs better than the inde-
pendent player, indicating that coordination is important for
simplified soccer. The solo and coordinated players’ policies
converged and performs better than the flat and indepen-
dent players. This shows that our proposed system results
in better policies than flat RL with coordination graphs.
The coordinated player performs better than the solo player
against both the defensive and aggressive opponents. Its
benefit came from good early exploration compared to the
other RL players. This indicates that CCs are effective in
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Figure 4: Soccer results for Section 3.1.1, each plot
averaged over 10 runs.

the online setting where it is generally harder to improve
better policies due to the exploration-exploitation trade-off.

3.2 Tactical RTS Domain
The goal in tactical RTS is to eliminate the enemy team

of marines quickly in a 240 × 240 point based map. Each
marine occupies a point on the map with a fixed radius and
a number of hit points. When its hit points reaches zero,
it is destroyed. A marine’s action domain consists of the 8
compass directions, an attack action for each possible enemy,
and idle. The size of the action space is at least 1010 while
the huge state space consists of all the possible marines’
positions and hit points.
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Figure 5: Soccer results for Section 3.1.2. 10K
episodes averaged over 10 runs each.

We pit the RL players against two scripted opponents:
aggressive marines head for the nearest enemy and shoot
enemies in range, unpredictable marines move in random
directions and shoot enemies in range. The unpredictable
opponent may be strong if its marines move in the same
direction towards the enemy, or weak if they scatter. Oppo-
nents’ marines are able to shoot and move at the same time
giving them an advantage. RL players must quickly learn
to shoot and exploit teamwork as marines die easily. This
makes it difficult to explore winning episodes. Rewards are
−0.1 per time step and 103 for opponent team elimination.

3.2.1 Relational Features & Inexactness
The final type of experiment integrates methods to deal

with large multi-agent problems where the number of agents
change over time. We incorporate the use of relational fea-
tures (RFs) for generalization of learning and approximate
primitive action selection using the Max-plus algorithm.

Four setups are used in our experiments: (a) 10 RL marines
versus 10 aggressive marines, (b) 10 RL marines versus 13
unpredictable marines, (c) 10 RL marines versus 13 aggres-
sive marines, (d) 10 RL marines versus 5 unpredictable super
marines. The super marines in setup (d) have twice the fire-
power and hit points, hence coordination for the RL players
is very crucial for success.

For each setup, the RL players use γ = 1 with the same
decaying parameters. Setup (a), (c), (d) used ε = 〈1, 0.01,
0.998〉, α = 〈0.01, 10−4, 0.998〉, while (b) used ε = 〈1, 0.1,
0.998〉, α = 〈0.01, 10−6, 0.998〉. Setup (b) was given more
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Figure 6: RTS results for Section 3.2.1. 10K episodes averaged over 10 runs each.

exploration due to the unpredictable nature of the oppo-
nent. Agents need to coordinate if they are within 30 points
of each other, otherwise their pairwise features are set to
zero. RFs are useful for RTS as the number of agents vary
over time, except for the independent player that learns sep-
arate policies. We used 45 static collision CCs and 90 dy-
namic CCs from predicates for troop formation to maximize
overlapping firepower, and to protect wounded teammates.

Fig. 6 shows the cumulative average reward for the RTS
setups. We also included a new RL player, coord-static,
which utilized only the static collision CCs in addition to
the capabilities of the solo player. Total percentage wins
are shown in brackets. We observe that all the RL players’
policies converged over time. As seen in soccer, all two-level
players: solo, coord-static, and coordinated; out-performed
existing approaches of independent, and flat players. The
coordinated player was able to learn quickly in all the four
setups. The flat player experienced few winning episodes
and ended up trying to lose as fast as possible to reduce the
total negative reward obtained from each time step. The
independent player managed to learn some strategy in Fig.
6a and wins more episodes than the flat player in the other
setups. However, its reward is less than the flat player in
those setups.

The results for the coord-static and solo players are mostly
comparable. This is because the coord-static’s marines tend
to spread out more often and are destroyed easily when iso-
lated. This occurs while ε is high and it has yet to learn

a good formation. After sufficient exploration, the coord-
static player is competitive with the solo player, although it
learned a poorer policy in (d).

Conversely, the performance gains by the coordinated
player with dynamic pairwise CCs are large compared to the
others. Hence CCs are obviously crucial for tactical RTS. It
is clear that most learning benefits came from the dynamic
CCs. The coordinated player has more coordination than
the solo player. This is also confirmed in our video which
shows the coordinated player overcoming the enemy force
simply by having better coordination among its marines.
The results indicate that allowing the RL system to guide
its exploration via dynamic CCs is effective for improving
the learning rate in MDPs with large joint action spaces.

4. DISCUSSION & RELATED WORK
Previous works in task-based RL for multiple agents [15,

9, 16] require users to define tasks, terminating conditions,
reward decomposition among tasks and agents, and new fea-
tures for every level in the task hierarchy to represent them.
They learn high level actions to constrain the exploration of
the original MDP’s actions based on single agent tasks. But
it is not straightforward to incorporate coordination among
agents to aid exploration. In contrast, the proposed two-
level RL system employs declarative CCs and allows exist-
ing predicates for features to be reused as CCs to guide
itself. Our results show that the two-level learning system
outperforms task-based RL with coordination graphs when



comparing their ability at constraining exploration. This
demonstrates that dynamic multi-agent CCs are important.

The work in [16] presented a two-level method where the
top level assigns tasks and the bottom level learns with the
task restrictions. Our work differs as our top level explores
CC activations that are defined on multiple agents, and
learns a value function that eliminates the need for a costly
nested maximization when selecting CCs to activate. The
proposed CCs are distinct from methods that learn coordi-
nation structure [13] within the value functions themselves.
In our work, we use CCs to direct exploration by specify-
ing subsets of the joint action space to be pruned. This
is dynamically learned by our two-level system. The work
in [5] presented a method that used constraints involving
multiple agents. They require an offline phase for learning
with constraints, and the constraints are static. Our work is
fully online from the onset and learns to use CCs in different
states. In [21], fixed heuristic supervisor agents biased base
agents’ policies with a coarse-grained approach. In contrast,
ours employs fine-grained RL at the top level using the orig-
inal reward signal and state observations.

Another branch of works deal with zero communication
multi-agent problems known as Markov games where the fo-
cus is on handling the non-stationary environment due to
independent learning and the setting is mostly adversarial
[22]. In [3], heuristics can be provided to influence learning
when the policy selects a maximal action. Their heuristics
do not affect exploratory actions and are used in an adver-
sarial setting with a much smaller action space.

5. CONCLUSION
We have investigated the use of expert coordination knowl-

edge to improve RL via CCs for multi-agent MDPs from a
centralized perspective. The proposed system’s top level
learns to activate CCs to guide the bottom level’s explo-
ration towards better experience. Learning to activate CCs
allows flexibility in discovering good policies. Conversely,
having only static CCs may lead to over-constraining the
policy. We conducted experiments that progressively inte-
grate our system with other useful methods for multi-agent
problems. Our results on different domains demonstrate
that the two-level RL system leads to better policies com-
pared to existing approaches. Further, RL with CCs makes
better use of early exploration, especially with multi-agent
CCs. This is advantageous for online applications as overall
higher goal achievement is attained. Future work involves
automating the construction of CCs to reduce reliance on
expert knowledge. Others include decentralized learning for
distributed applications with communication costs, and fus-
ing our method with task-based methods.
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