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ABSTRACT
We consider coalition formation problems for agents with an
underlying synergistic graph, where edges between agents
represent some vital synergistic link, such as communica-
tion, trust, or physical constraints. A coalition is infeasible
if its members do not form a connected subgraph, mean-
ing parts of the coalition are isolated from others. Current
state-of-the-art coalition formation algorithms are not de-
signed for problems over synergistic graphs. They assume
that all coalitions are feasible and so involve redundant com-
putation when this is not the case. Accordingly, we propose
algorithms, namely D-SlyCE and DyCE, to enumerate all
feasible coalitions in a distributed fashion and find the op-
timal feasible coalition structure respectively. When eval-
uated on a variety of synergistic graphs, D-SlyCE is up to
660 times faster while DyCE is up to 7 × 104 times faster
than the state-of-the-art algorithms. For particular classes
of graphs, D-SlyCE is the first to enumerate valid coalition
values for up to 50 agents and DyCE is the first algorithm
to find the optimal coalition structure for up to 30 agents in
minutes as opposed to months for previous algorithms.

Categories and Subject Descriptors
I.2.11 [Distributed AI]: Multi-Agent Systems

General Terms
Algorithms

Keywords
Coalition Formation, Networks

1. INTRODUCTION
Coalition formation is one of the fundamental approaches in
multi-agent systems for establishing collaborations among
agents, each with individual objectives and properties [10].
Key computational tasks in coalition formation involve cal-
culating the value of each potential coalition and finding
the best set of coalitions to be formed (i.e., the coalition
structure generation problem) [9]. To date, existing work
has typically studied coalition formation in abstract settings,
where every set of agents can be considered to be a potential
coalition [3, 5, 7, 10]. Such approaches are limited to solving
problems involving at most 30 agents (28 in the case of coali-
tion structure generation). However, this may be severely
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inefficient for problems where only some coalitions are fea-
sible. We believe that many real-world applications involve
constraints as to which coalitions can exist based on sparse
synergies (i.e., necessary peer-to-peer connections) between
individual agents in the system [2, 8]. These constraints may
be due to communication constraints (e.g., non-overlapping
communication loci or energy limitations for sending mes-
sages across a network), social or trust relationships (e.g.,
energy consumers who prefer to group with their friends
and relatives in forming energy cooperatives), or physical
constraints (e.g., emergency responders that have enough
fuel to join only specific teams or have life-saving capabili-
ties that match only a limited number of other responders).

Against this background, in this paper we provide efficient
algorithms to form coalitions in environments that have an
underlying synergistic graph, where edges in the graph rep-
resent vital synergistic links between agents that constrain
which coalitions may form. In more detail, we consider coali-
tion formation problems where each coalition is only feasible
if its members form the vertices of a connected subgraph of
the constraining graph. By taking advantage of these struc-
tures, we aim to improve on the performance of the current
state-of-the-art coalition formation algorithms which were
not designed with synergistic graphs in mind.

In this setting,1 we advance the state-of-the-art in the fol-
lowing ways. First, we provide a new exact coalition enumer-
ation procedure, SlyCE (Sequentially connected Coalition
Enumeration). Second, we provide D-SlyCE (Distributed
SlyCE), a variant which aims to evenly distribute the SlyCE
computation amongst agents at negligible communication
and computation cost. Third, building upon SlyCE, we
provide a complete algorithm, DyCE (Dynamic program-
ming for optimal connected Coalition structure Evaluation)
to find the optimal coalition structure. Fourth, we bench-
mark our solutions against the state-of-the-art algorithms
and show that D-SlyCE can be up to 660 times faster and
DyCE can be up to 7× 104 times faster. Moreover, for par-
ticular classes of graphs, our algorithms are the first to be
able to enumerate coalition values for 50 agents and find
the optimal coalition structure for up to 30 agents within
minutes compared to months for the state-of-the-art.

The rest of the paper is structured as follows. In Section
2 we discuss related work. Then, in Section 3, we formally
describe the problem of coalition formation with sparse syn-
ergies. In Section 4 we describe SlyCE and discuss its prop-

1The reader is referred to [2, 4] for a cooperative game the-
oretic analysis (which is not the goal of this paper) of our
setting for the case where agents are self-interested.



erties. We then propose the D-SlyCE algorithm in Section
5, to distribute the computation of SlyCE amongst agents
fairly. Then, we turn to the coalition structure generation
problem in Section 6 and describe our solution, DyCE. We
empirically benchmark D-SlyCE and DyCE in Section 7.
Lastly, Section 8 concludes.

2. BACKGROUND
The formation of coalitions within synergistic graphs (as de-
fined in this paper) has typically been studied in the field
of economics where the focus is on the definition of cooper-
ative game-theoretic solutions [2, 4]. In contrast, this paper
is concerned specifically with the coalition value calculation
and coalition structure generation problems over synergistic
graphs.

The challenge in coalition value calculation is to enumer-
ate all the feasible coalitions and efficiently distribute this
computation among the agents. The main algorithms that
deal with this specifically are Shehory et al.’s [10] and DCVC
[5]. The latter is the fastest and is able to enumerate coali-
tions for up to 30 agents in reasonable time. Under DCVC,
for each s = 1, . . . n, each agent calculates the coalition val-
ues for an nth share of a lexicographically ordered list of all
coalitions of size s. DCVC does this in such a way that ev-
ery coalition value is calculated precisely once, and no agent
communication is required. While DCVC also efficiently re-
computes coalition values where individual agents may be
removed or new agents added dynamically, it has no way of
avoiding infeasible coalitions.

Turning to the coalition structure generation problem (ef-
fectively a set partitioning problem), a number of recent
works in this area have attempted to solve the problem
in both centralised and distributed ways along with pro-
viding anytime quality guarantees [9, 6, 3, 7]. In particu-
lar, we note the two approaches taken in this area (i) low-
complexity (O(3n)) complete algorithms based on dynamic
programming, such as DP and IDP, that have guaranteed
run-times for arbitrary coalition value distributions (ii) high
worst-case complexity (O(nn)) complete algorithms, based
on branch-and-bound techniques, that have anytime prop-
erties but heavily depend on the coalition value distribution
in order to establish bounds on segments of the search space
and therefore prune huge parts during the search process.
While the latter algorithms have been shown to be faster
than the former given specific coalition value distributions,
their approach is undefined for cases where only some coali-
tions are feasible. Simply treating infeasible coalitions as
being feasible but with value −∞ would not be suitable,
as they use averages of coalition values to compute lower
bounds. In contrast, IDP (the fastest dynamic program-
ming approach) makes no requirements on coalition value
distributions and thus, we can treat infeasible coalitions as
being feasible coalitions with value −∞. This has no ef-
fect on the runtime of IDP, which only depends on n. We
therefore use IDP to benchmark DyCE.

Another candidate set of techniques to solve the coalition
structure generation problem is Integer Programming based
solvers. These have been shown to be particular inefficient
when all coalitions are deemed feasible (due to the size of
the input) but tend to be very efficient in solving other com-
binatorial optimisation problems (combinatorial auctions or
set packing problems). Hence, we also benchmark DyCE
against IBM’s ILOG CPLEX in Section 7.

Finally, another related algorithm to ours is Rahwan et
al.’s CCF algorithm [8] which does solve coalition structure
generation problems with constraints on which coalitions can
be formed but they consider a different constraint model to
ours.

3. MODEL
In this section, we model the problem of Coalition Formation
with Sparse Synergies (CFSS). We identify a set of agents
with the set of positive integers I = {1, 2, ..., n}, where n is
the total number of agents in the system. Agents can form
coalitions C ⊆ I , however the set of feasible coalitions, C,
is constrained by a graph G = (I,E), where E is a set of
edges between agents. We consider the situation where a
coalition of agents C is feasible if and only if there exists a
connected subgraph G′ = (C,E′) with edges E′ ⊆ E and
vertex set exactly equal to C. By forming coalitions, agents
can perform tasks in the environment and their effective-
ness in performing such tasks depends on the synergies in
their abilities generated by them being in the same coali-
tion. To capture such synergies, we define the value of a
coalition using a characteristic function v : C → R. The
function v(·) may be arbitrarily defined according to the do-
main, however coalition values are always independent of
any other coalitions that may exist. We address the prob-
lem of enumerating and evaluating all feasible coalitions for
CFSS problems by providing the SlyCE and D-SlyCE algo-
rithms, in Section 4. Now, given the coalition values, a key
challenge is to choose the best coalition structure, that is,
the best set of disjoint coalitions that collectively cover all
agents. This problem is termed the coalition structure gen-
eration problem. To find the optimal coalition structure in
CFSS, we need to consider the set of feasible coalition struc-
tures, F(G), that is, the set of coalition structures that only
contain feasible coalitions. The coalition structure genera-
tion problem which DyCE, given in Section 6, attempts to
solve is then to find argmaxCS∈F(G)

∑

C∈CS
v(C). In the

next section, we proceed with our description of the SlyCE
and D-SlyCE algorithms.

4. THE SLYCE ALGORITHM
The SlyCE algorithm proceeds by conducting a depth first
search over a tree representation of the set of feasible coali-
tions in G. At each point in the search, SlyCE maintains a
root node, R, which represents the current coalition being
evaluated, and a frontier set, F , that contains agents that
may be added to the root node to form a feasible coalition.
The individual steps of SlyCE are described in Algorithm 1,
where we use the function N(·, ·) which we define to be:

N(F,R) = {j|j > min(R ∪ F )} ∩N(F ) \ (N(R) ∪R ∪ F ),

for N(·) denoting the set of neighbours of a subset of I in
G, that is, N(R) = {j : ∃i ∈ R, (i, j) ∈ E}. The algorithm
recursively traverses the search tree in two phases. The first
phase, (lines 2 and 3), involves generating a new root node
R by combining the current root node with a subset of the
frontier set. Having updated the root node, (and evaluated
it on line 4), in the second phase, (line 5), a new frontier set is
created by choosing neighbouring agents to expand the root
with. The algorithm then calls itself (line 6) to continue the
recursive search. The key point here is that SlyCE chooses
those agents in the root creation and expansion phases so



that it will not recompute an already computed coalition.
We elaborate on these two phases next.
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Figure 1: Root expansion process emanating from
agent 1.

1. Root expansion — given an existing root R ⊆ I and a
frontier set F ⊆ I , form a new root node R′ such that
R′ = R ∪ F ∗ where F ∗ ⊆ F . Simply put, given an
existing root node, we expand it to include agents that
are not currently included and that lie at the frontier
of the existing root. Figure 1 shows an example of this.

2. Frontier expansion — given a new root node R′ =
R ∪ F ∗ formed from existing root node R ⊆ I and
set F ∗, we set the new frontier set F ′ to be the set
of agents j such that, j > min(R′), j /∈ R′, j /∈ N(i)
for all i ∈ R, and j ∈ N(k) for some k ∈ F ∗. That is,
the ids of all agents in F ′ should be numerically higher
than the id of the agent with the lowest id in R′, and
F ′ should consist of agents who are neighbours of F ∗,
but are neither neighbours nor members of R′.

Figure 1 shows how SlyCE expands to other root nodes,
starting with R = {1}. These are evaluated and their value
stored. The same process, starting from the other agents,
will generate totally different coalitions (e.g., 5 will only gen-
erate {5}, while 4 will generate {4} and {4, 5}).

Algorithm 1 slyce(R,F,m)

1: if F 6= ∅ and m > 0 then
2: for all F ∗ ⊆ F with 1 ≤ |F ∗| ≤ m do
3: R′ ← F ∗ ∪ R {Generate new root node.}
4: compute and store v(R′) {Evaluate new root node.}
5: F ′ ← N(F ∗, R) {Generate new frontier set}
6: slyce(R′, F ′,m− |F ∗|) {Recursive call.}
7: end for
8: end if

In order to enumerate all coalitions of size up to m, SlyCE
should search from each agent singleton, which can be achieved
by calling slyce(∅, {i}, m) for all i ∈ I .

4.1 Properties of SlyCE
We now elaborate on the key properties of SlyCE, in partic-
ular its correctness, completeness, and non-redundancy. We
first note that SlyCE only evaluates feasible coalitions. To be
more precise, we claim that, provided that R is feasible and
F ⊆ N(R), then for any m, slyce(R,F,m) only calls v(C)
for feasible coalitions C ⊆ I . To see this, note that for such
F and R, for any F ∗ ⊆ F , F ∗ ⊆ N(R) and so when v(R′) is
evaluated, R′ = F ∗ ∪R is a feasible coalition. Furthermore,

for F ′ = N(F ∗, R), F ′ ⊆ N(F ∗) ⊆ N(F ∗ ∪ R) = N(R′),
and so the recursive call to slyce(R′, F ′,m− |F ∗|) also sat-
isfies F ′ ⊆ N(R′). This recursively proves our claim. It
remains to note that when slyce(∅, {i}, m) is called for some
i ∈ I , after the first level of recursion, all subsequent F and
R satisfy F ⊆ N(R). Hence, SlyCE only evaluates feasible
coalitions and is thus, correct. It is also important to show
that SlyCE is complete, that is, that it can enumerate all
feasible coalitions. We do so in the following proposition.

Proposition 1. For each i ∈ I, and m ≥ 1, if the SlyCE
algorithm is called with parameters slyce(∅, {i}, m) then ev-
ery feasible coalition C ⊆ I such that i = min(C) and
1 ≤ |C| ≤ m will be evaluated.

Proof. First, we should note that since at least one agent
is added to R before it is passed to the next level of recursion,
we have that at the lth level of recursion, |R| ≥ l. Thus,
the algorithm cannot go beyond the mth level of recursion,
and must terminate. This means that if slyce(R,F, k) is
evaluated, the main for all loop reaches every subset of F
of size up to k.

Now, suppose C is a feasible coalition with i = min(C)
and 1 ≤ |C| ≤ m. Let E′ ⊆ E be the set of all edges
(j, k) ∈ E such that j, k ∈ C. For all j, k ∈ C, let d(j, k) be
the number of vertices in the minimal path between j and k
over the subgraph G′ = (E′, C), and let s be the maximum
value of d(i, j) for j ∈ C. If s = 1 then C = {i} and v(C) is
evaluated during the initial call of slyce(∅, {i}, m).

We now consider the case where s > 1. Let us define
the sets F1, F2, . . . , Fs as being Fl = {j : d(i, j) = l}, for
l = 1, . . . , s, and H0,H1, . . . ,Hs as being H0 = ∅, Hl = {j :
d(i, j) ≤ l} for l = 1, . . . , s. Consider the set Fl+1 for some
l = 1, . . . ,m − 1. Since i = min(C), we must have that, for
all j ∈ Fl+1, j > i. Furthermore, for all j ∈ Fl+1, j cannot
lie in Hl−1 nor can it be a neighbour of Hl−1, otherwise
there would be a path shorter than l+1 from j to i through
G′. So, the first step along the path of length l + 1 from j
to i through G′ must be from j to an agent in Fl and hence
j ∈ N(Fl). Thus, Fl+1 ⊆ N(Fl,Hl−1).

We now claim that during the operation of slyce(∅, {i}, m),
slyce(Hl, N(Fl,Hl−1),m − |Hl|) will be called for all l =
1, . . . , s − 1. This can be proved inductively. For l = 1,
we have H1 = F1 = {i}, and H0 = ∅. From the defini-
tion of the algorithm, slyce({i}, N({i}, ∅), m − 1) is called
as part of the main loop of slyce(∅, {i}, m). Now suppose
that for some l < s, slyce(i,Hl, N(Fl,Hl−1)) is called. Since
Fl+1 ∪ Hl ⊆ C, then |Fl+1| + |Hl| ≤ s and so |Fl+1| ≤
s − |Hl|. As shown above, Fl+1 ⊆ N(Fl,Hl−1), and so
slyce(i,Hl∪Fl+1, N(Fl+1, Hl)) must be called as part of the
operation of slyce(i,Hl, N(Fl,Hl−1)). As Hl ∪Fl+1 = Hl+1

this proves our claim by induction. It remains to note,
when slyce(Hm−1, N(Fm−1,Hm−2),m − |Hm−1|) is called,
the value of v(Fm ∪ Hm−1) = v(C) is evaluated, as re-
quired.

Thus, for every feasible coalition C ⊆ I , v(C) is evaluated
during the operation of slyce(∅, {min(C)}, n). It is also true
that SlyCE is non-redundant, that is, during its operation,
it never evaluates the same coalition twice. We can see that
this is true by noting that, when a subset F ∗ ⊆ F is chosen
during SlyCE and R ∪ F ∗ is set as a root, then, from that
depth of recursion onwards, the root will always contain R,
and thus the frontier nodes will never again contain any



agent in F ⊆ N(R). If we have two paths through the root
expansion process that diverge, at the point of divergence,
they must choose different root expansions, meaning that at
least one of the paths adds at least one agent that can never
be added at a later stage in the other path. Thus, there is no
way to reach the same coalition twice through the recursive
calls in SlyCE.

So, if the SlyCE algorithm is run as slyce(∅, {i}, m) for
each agent i ∈ I , then for every feasible coalition C (|C| ≤
m), v(C) is evaluated and stored precisely once, and no in-
feasible coalitions are evaluated. Indeed, this can be run in
parallel with each agent i ∈ I computing slyce(∅, {i}, m).
Thus, SlyCE may be implemented as a distributed algo-
rithm. Moreover we can use SlyCE to do more than simply
enumerate all feasible coalitions. As we describe in the fol-
lowing subsection, we can use SlyCE to cycle through feasi-
ble coalitions that are subsets of a given feasible coalition, a
process which will be useful in DyCE (see Section 6).

4.2 SlyCE Over Coalition Subsets
The SlyCE algorithm, as we have defined it, enumerates
all feasible coalitions of size up to some limit m for a given
graph G = (I, E). However, given a feasible coalition C ⊆ I ,
we can also use SlyCE to enumerate all feasible coalitions
that are subsets of C. We simply have to apply SlyCE to
the subgraph that G induces over the nodes of C. Since
this is, itself, a connected graph, the desirable properties of
SlyCE discussed above will still hold. For notational con-
venience, in preparation for our later description of DyCE,
we define the function nextslyce(·, ·, ·) to be such that, for
feasible coalitions C′ ⊆ C ⊆ I and integer m, with |C′| ≤ m,
nextslyce(C′, C,m) returns the subset of C that would fol-
low C′ during the process of SlyCE iterating through all
feasible coalition subsets of C of size at most m. Thus, if
we begin with C′ = {a}, for a ∈ C, then repeated calls to
C′ ← nextslyce(C′, C,m) will conduct the entire SlyCE it-
eration slyce(∅, {a}, m) over the subgraph induced by G on
C. If C′ is the last in this SlyCE iteration, we stipulate that
nextslyce(C′, C,m) should return the empty set.

Having elaborated on the properties of SlyCE above, we
next discuss how the SlyCE computation may be distributed
more fairly amongst agents, using our D-SlyCE algorithm.

5. THE D-SLYCE ALGORITHM
As noted above, SlyCE may be run as a distributed algo-
rithm by having each agent i ∈ I compute slyce(∅, {i}, m).
However, in that case, agents with higher ids will have fewer
computations than those with lower ids. Indeed, the agent
with the highest id, only computes the value of one coali-
tion, the singleton containing itself (agent 5 in Figure 1).
In contrast, the agent with the lowest id would evaluate
all feasible coalitions that contain it. Accordingly, in this
section, we propose the Distributed SlyCE algorithm (D-
SlyCE), under which the SlyCE algorithm is distributed
across the agents such that the task assigned to each agent is
determined with no communication overhead. Furthermore
it generates no repeated coalition evaluations and spreads
tasks reasonably fairly amongst agents (as shown in Sec-
tion 7).2 The full operation of D-SlyCE is defined in Algo-

2D-SlyCE is suitable for problems where evaluating v(·) is
not computationally intensive. If the operation of SlyCE is
a negligible overhead compared to the evaluation of v(·) for

Algorithm 2 dslyce(i,m)

1: compute and store v({i})
2: x← i− 1
3: for all agents a ∈ I do
4: F ← N({a}, ∅) {Assign frontier set.}
5: for all r = 1 . . . ,min(|F |,m) do

6: j ← ⌊
(|F |

r

)

× x/n⌋{Index of beginning of share.}

7: while j < ⌊
(|F |

r

)

× (x+ 1)/n⌋ do
8: F ′ ← L(F, j + 1, r) {Set next addition to root.}
9: j ← j + 1
10: compute and store v(F ′ ∪ {a}) {As in SlyCE.}
11: slyce(F ′ ∪ {a}, N(F ′, {a}), m− (r + 1))
12: end while
13: x← (x+ 1) mod n {Rotate share allocation.}
14: end for
15: end for

rithm 2. It uses some combinatorial functions, which we
define here. We use

(

m
r

)

to denote the number of sub-
sets of size r that may be drawn from a set of m unique
agents, so

(

m
r

)

= m!/r!(m − r)!. For any set of agents C,

for any r = 1, . . . , |C| and i = 1, . . . ,
(|C|

r

)

we let L(C, i, r)
denote the ith element of the set of all subsets of |C| of
size r under the lexicographic ordering induced by the ids
of the agents. For any such i, L(C, i, r) can be found easily,
and if L(C, i, r) is known then L(C, i + 1, r) can be found
quickly, using known lexicographic techniques that are de-
scribed in [5].

D-SlyCE is called with the agent’s id and the maximum
coalition size m it should generate (in a similar vein to
DCVC), such that if all coalitions must be generated, m = n.
It then divides up the computation of the SlyCE algorithm
amongst the agents by splitting up the operation of the first
two levels of recursion of slyce(∅, {i}, m) for all i ∈ I . This
division is done first by having each agent a ∈ I evaluate
v({a}) (line 1). Then, each agent a ∈ I is apportioned an
approximately equal share of the subsets of N({i}, ∅) for
each i ∈ I (line 6–7), that a must evaluate as per the main
loop in slyce({i}, N({i}, ∅),m−1) (lines 10–11). Since larger
frontier sets are likely to represent a greater computational
burden, in order to make sure a gets an approximately fair
allocation of tasks, for each agent i, a is given a 1/n share of
the lexicographically ordered list of subsets of N({i}, ∅) of
size r for all r = 1, . . . , |N({i}, ∅)| (lines 6–7). Each time this
dividing process occurs, the algorithm deterministically ro-
tates the order in which shares are allocated to agents (line
13). This is because lexicographically earlier frontier sets
contain lower id numbered agents, and thus are likely to rep-
resent a greater computational burden. As the full operation
of D-SlyCE covers precisely the calls to v(·) and slyce(·, ·, ·)
as in the first two levels of recursion of slyce(∅, {i}, m), for
all i ∈ I (lines 10–11), then D-SlyCE covers exactly the
same calls to v(·) as SlyCE. This means that D-SlyCE has
the same desirable properties as SlyCE, that is, D-SlyCE is
correct, complete and non-redundant.

An example of how the computational burden of SlyCE is

every feasible coalition, then the fairest way to distribute
these evaluations would be for each agent to use SlyCE to
create lists of all feasible coalitions, grouped together by size,
and then evaluate a fair share from each list.
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Figure 2: Distribution of coalition evaluation calcu-
lations under D-SlyCE.

divided up by D-SlyCE is given in Figure 2, which shows the
distribution of coalition valuations prescribed by D-SlyCE
for the graph given in Figure 1. Thus, we see that the first
generation of descendants from each of the single node sets
are divided up between the agents. Note that due to the way
the shares of the lexicographical lists of subsets are rotated,
agent 1 ends up computing {4, 5}. In general, the process
results in a much fairer distribution than if each agent was
simply allocated the frontier expansion tree that branches
from their respective singleton coalition (i.e., {2} and {2, 3}
for agent 2 or {5} for agent 5 in SlyCE). Indeed, on complete
graphs, D-SlyCE mimics the operation of DCVC, and thus
is optimally fair.

Since single vertex root nodes with the lowest id repre-
sent the greatest computational burden, and the D-SlyCE
distribution methods are most effective for root nodes with
many frontier sets, we can further increase the fairness of the
distribution by ensuring that the agents with highest degree
have the lowest id number. This may be done in a fast, de-
terministic manner by each agent before it runs dslyce. In
the next section, we move to solve the problem of coalition
structure generation in synergistic graphs, using SlyCE as
an important building block of DyCE.

6. THE DYCE ALGORITHM
In this section, we describe the operation of the DyCE algo-
rithm, and prove its correctness. DyCE operates in a similar
manner to IDP (see Section 2). However, it speeds up the
search for the optimal coalition structure by using SlyCE to
enumerate all feasible coalitions, thus allowing it to ignore
infeasible coalitions during the search. DyCE further im-
proves upon IDP by using SlyCE when evaluating feasible
coalition subsets of coalitions (using the procedure described
in Section 4.2).

DyCE solves a CFSS coalition structure generation prob-
lem by exploring the edges in the feasible coalition structure
graph of the synergy graph. For any graph G = (I,E),
we define the feasible coalition structure graph of G, to be
the directed graph with node set F(G), and directed edges
E(G), where there is an edge from each CS ∈ F(G) to ev-
ery CS∗ ∈ F(G) that can be formed by splitting a coali-
tion in CS into two smaller feasible coalitions. That is,
E(G) is equal to the set of (CS,CS∗) where CS \ {C} =
CS∗ \ {C′, C \ C′} for some C ∈ CS and some C′ ⊂ C.
Crucially, to improve tractability, we consider a reduced
set of edges, E∗(G) ⊂ E(G), where for (CS,CS∗) ∈ E(G)
with CS \ {C} = CS∗ \ {C′, C \ C′}, (CS,CS∗) ∈ E∗(G) if
|C′| ≤ n− |C| or C = I . In [7], a similar coalition structure
graph is considered, and it is shown that it is possible to
reach any coalition structure from {I} along a similar re-

duced set of edges. DyCE requires the corresponding result
to be true for our feasible coalition structure graph. This
cannot be derived from the result in [7] because, although
their set of reduced edges is similar to ours, paths along
their coalition structure graph may pass through interme-
diary coalition structures that contain infeasible coalitions
and thus are not in F(G). Instead, we prove the desired
result in the following theorem.

Theorem 1. For every feasible coalition structure CS ∈
F(G), there is a directed path of edges from E∗(G) that leads
from {I} to CS.

Proof. Let us suppose this result does not hold. Let CS
be the coalition structure with minimal |CS| out of those
CS ∈ F(G) that cannot be reached from {I} by following
the directed edges in E∗(G). We must have that |CS| >
1, otherwise CS would equal {I}. Further, |CS| > 2, as
otherwise ({I}, CS) would be in E∗(G).

Let C be the coalition in CS with maximal |C|. Suppose
there were two coalitions C′, C′′ ∈ CS \{C} such that there
is at least one edge in G between C′ and C′′. Let CS∗ be,

CS∗ = {C′ ∪ C′′} ∪ CS \ {C′, C′′}.

Since there is at least one edge between C and C′, C′ ∪ C′′

is feasible and so CS∗ ∈ F(G). Since |CS∗| < |CS| we
must be able to get from {I} to CS∗ by following edges
in E∗(G), by choice of CS. However, since |C′| ≤ |C| and
C ⊂ (I \ (C′ ∪ C′′)) we must have |C′| ≤ n− |C′ ∪ C′′| and
so (CS∗, CS) ∈ E∗(G). This leads to a contradiction, as we
can now go from {I} to CS∗ and then to CS.

Thus, no two coalitions in CS \ {C} have any edges be-
tween them. Since G is connected this means that there
must be at least one edge between C and each coalition in
CS \ {C}. Now, let C′ be the coalition in CS \ {C} with
minimal |C′|. Let CS∗ be,

CS∗ = {C ∪ C′} ∪ CS \ {C,C′}.

Since there is at least one edge between C and C′, C ∪C′ is
feasible and so CS∗ ∈ F(G). As |CS∗| < |CS|, by choice of
CS there must be a directed path from {I} to CS∗ consisting
of edges from E∗(G). As noted above, |CS| > 2, and so
there must be some C′′ ∈ CS \ {C,C′}. Since C′′ is disjoint
from C ∪ C′, we must have n − |C ∪ C′| ≥ |C′′| ≥ |C′|, by
choice of C′. Thus, (CS∗, CS) ∈ E∗(G), which leads to a
contradiction, as now we can go from {I} to CS∗ and then to
CS. Hence, no such CS can exist and the result follows.

In order to explain how the feasible coalition structure
graph relates to the operation of DyCE, we first need some
definitions. For a graph G = (I, E), and for any coalition
structure CS ∈ F(G), let D(CS) be the set of coalition
structures that can be reached from CS along directed paths
made up of edges from E∗(G) (including CS itself). Theo-
rem 1 shows that D({I}) = F(G). For a graph G = (I,E)
and a coalition valuation function v(·), we define the func-
tion w : C → R so that for any feasible coalition C, w(C)
is set equal to the maximum of:

∑

C′∈CS∗:C′⊆C
v(C′), over

CS∗ ∈ D(CS), for CS ∈ F(G) such that C ∈ CS. Infor-
mally, if C is in some feasible coalition structure CS, then
w(C) is the maximum total value of subsets of C for coali-
tion structures in D(CS). This is well defined and does
not depend on choice of CS containing C because the set
of splits that can occur as you move along edges in E∗(G)



only depend on the coalition being split. From Theorem 1,
w(I) must be equal to the maximum of

∑

C′∈CS v(C) over
all CS ∈ F(G). So, w(I) is the optimal feasible coalition
structure value. For notational convenience if C ⊂ I is not
a feasible coalition then we let w(C) = −∞.

The full operation of DyCE is described in Algorithm 3.
DyCE proceeds by recursively calculating w(·) for all feasible
coalitions, in increasing order of size. First, a memory block
large enough to contain all coalitions of I is initialised, with
every entry being given the value −∞ (Line 1–3). Then,
DyCE uses SlyCE to evaluate each feasible coalition (using
procedure nextslyce described in Section 4.2) and its value
is stored in memory, (lines 5–9). After initialisation, DyCE
goes through each coalition of size s for s = 1, 2, . . . n (lines
10–29). For each coalition C of size s, if C is feasible, then
DyCE calculates w(C) and replaces the value of v(C) in
memory with w(C). In order to calculate w(C) for a coali-
tion C 6= I , DyCE uses SlyCE to cycle through every feasible
coalition subset C′ ⊂ C that is smaller than n−|C| and |C|/2
(lines 11–14), and evaluates w(C′)+w(C\C′) (line 24). The
value of w(C) is then the maximum of these values and v(C)
(line 23). Note, we only go up to subsets C′ of size |C|/2 as,
for larger C′, if C \C′ is feasible then w(C \C′)+w(C′) will
be evaluated anyway. DyCE also records the most recent set
C′ ⊂ C such that w(C) = w(C′) +w(C \C′), if such exists.
Lastly, w(I) is calculated similarly by cycling through sub-
sets C ⊂ I with |C| ≤ n/2 and maximising w(C)+w(I \C).

The optimal coalition structure is then determined (us-
ing Algorithm 4) from w(I) by starting with CS = {I} and
then recursively replacing each coalition C ∈ CS with C′

and C \ C′ where w(C) = w(C′) + w(C \ C′), if such ex-
ist. Note, if no such replacement is possible for a coalition
C ∈ CS, then we must have that w(C) = v(C). Further-
more, each time a replacement occurs,

∑

C∈CS
w(C) does

not change. Hence the resulting coalition structure will be
such that w(C) = v(C) for all C ∈ CS (since the algorithm
only stops when no further subdivisions are possible) and
∑

C∈CS
v(CS) =

∑

C∈CS
w(CS) = w(I). Hence CS is op-

timal. We can reduce memory requirements by not storing
the particular subsets required to calculate this optimum,
but instead, finding them once the values of w(·) have been
found by searching through the subsets, as in [7].

To give an example of DyCE in operation, consider the
graph given in Figure 1 with some coalition valuation func-
tion v(·). DyCE begins by using SlyCE to go through each
feasible coalition C, evaluating v(C) and recording the re-
sult. Then it goes through all sets of size m = 1, 2, 3, 4, 5
evaluating w(C) for each feasible C, ignoring C if it is infea-
sible (i.e., if v(C) was not recorded during the initial phase).
For |C| = 1, w(C) = v(C), and so this phase does not re-
quire any work. For 1 < |C| ≤ 4, DyCE must go through
some subsets of C in order to evaluate w(C). DyCE has
to evaluate for subsets of size up to min(|C|/2, n − |C|)
which is < 2 for such C. Thus w(C) is the maximum of
v(C) and w({a}) + w(C \ {a}) for each agent a ∈ C such
that C \ {a} is feasible. Hence, for example, w({1, 4, 5}) =
max(v({1, 4, 5}), w({1})+w({4, 5}), w({5})+w({1, 4})). For
C = {1, 2, 3, 4, 5} = I , we evaluate w(C′) + w(C \ C′) for
all feasible coalitions C′ such that I \ C′ is also a feasible
coalition and |C′| ≤ n/2 = 2.5. This is the same as evaluat-
ing w(C′)+w(C′′) for all disjoint pairs of feasible coalitions
C′, C′′ with C′ ∪ C′′ = I . To give an example of why this
process works, let us consider the set C = {1, 2, 3, 4}. Now,

Algorithm 3 dyce()

1: for all C ⊂ I do
2: W (C)← −∞ {Initialise memory.}
3: end for
4: for all a ∈ I do
5: C ← {a}
6: while C 6= ∅ do
7: W (C)← v(C) {Store coalition value.}
8: B(C)← ∅ {Initialise best subset.}
9: C ← nextslyce(C,I, n) {Get the next coalition gen-

erated by SlyCE.}
10: end while
11: end for
12: for all s = 1 . . . n do
13: m← ⌊s/2⌋
14: if s < n then
15: m← min(m,n− s)
16: end if{Maximum subset size}
17: for i = 1, . . .

(

n
s

)

do
18: C ← L(I, i, s) {Go through sets of size s.}
19: if W (C) > −∞ then {Ignore C if infeasible}
20: for all a ∈ C do
21: C′ ← {a}
22: while C′ 6= ∅ do
23: if W (C′) +W (C \ C′) > W (C) then
24: W (C)←W (C′) +W (C \ C′)
25: B(C)← C′

26: end if{Evaluate subset}
27: C′ ← nextslyce(C′, C,m)
28: end while{Calculate w(C)}
29: end for
30: end if
31: end for
32: end for
33: return bestcs(I)

Algorithm 4 bestcs(C)

if B(C) = ∅ then
return {C}

else
return bestcs(B(C))∪ bestcs(C \B(C))

end if

when calculating w(C), all possible splittings into feasible
coalition subsets are considered, except {1, 4} and {2, 3}.
This means that w(C) could possibly be less than v({1, 4})+
v({2, 3}). However, the only coalition structure that con-
tains {1, 4} and {2, 3} is {{1, 4}, {2, 3}, {5}} and w(I) is still
greater than or equal to w({2, 3}) + w({1, 4, 5}) which is
greater than or equal to v({2, 3}) + v({1, 4}) + v({5}). So
even though not every subset of every subset is considered,
every coalition structure value is bounded by w(I).

7. EMPIRICAL EVALUATION
In this section, we evaluate D-SlyCE and DyCE on a num-
ber of synergistic graph topologies. We benchmark D-SlyCE
against DCVC, and DyCE against IDP and IBM’s ILOG
CPLEX (which solves the well known Integer Program for-
mulation for the set partitioning problem posed by CFSS).
Since our claim is that D-SlyCE and DyCE are particularly
good in problems involving sparse graphs, we experiment



with a variety of graphs of different densities. While, in the
case of D-SlyCE, as argued in Section 5, we expect the dis-
tribution of enumeration tasks among agents to depend on
the degree of the graph, in DyCE, we expect the degree of
the graph to affect the time to evaluate all feasible coalition
structures and the cost of checking the size of individual
coalitions (as in nextslyce).

In our experiments,3 we focus on those topologies most
commonly found in synergistic networks such as social net-
works, the internet, and peer-to-peer communication be-
tween emergency responders, as follows: (i) Scale-free graphs
— a network generated according to a power law. We use the
standard Barabási-Albert [1] preferential attachment gener-
ation model, with parameters k = 1, 2, 3. Thus, as the graph
is constructed, new agents are attached to k existing agents
such that each new agent is attached to existing agent j
with probability di∑

j dj
where dj is the degree of agent j for

all j ∈ I . (ii) Random trees – an acyclic graph rooted at a
vertex to simulate hierarchical organisations. These graphs
are constructed by attaching each new agent to a single ran-
domly picked existing agent and (iii) Complete graphs — an
edge exists between each pair of agents, and so all coalitions
are feasible. This is not a sparse graph and is unlikely to
arise as a social context for large numbers of agents, but we
include it as a worst case scenario. We next elaborate on
the experiment results for D-SlyCE and DyCE in turn.

7.1 Benchmarking D-SlyCE
In running D-SlyCE and DCVC on the graphs described
above, we recorded the individual runtimes of each agent
and computed the ratio between the mean runtime and the
maximum for different numbers of agents. This is used to
analyse the fairness of the computation distribution among
the agents. Using our setup, given this, we are able to run
DCVC for up to 40 agents in 2.6 hours. For complete graphs
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Figure 3: Runtimes for D-SlyCE (SFk = scale-free
with parameter k).

3All our experiments are carried out on a 64 bit, quad-core
PC with 12GB of RAM. In evaluating D-SlyCE, we repeated
each experimental run 100 times (except for 40 agents where
we ran only 20 times given the long runtimes) and for DyCE
(on the more complex coalition structure generation prob-
lem), we repeated all the experiments 50 times (except for
28 agents onwards for trees/scale free parameter 1 and 23
agents onwards for the rest, which we repeated 20 times).
In both sets of experiments, we recorded the mean, vari-
ance and 95% confidence intervals of the runtimes of the
algorithms under study.

(see Figure 3 for runtime results), our algorithm matches the
performance of DCVC, and, over sparse graphs (trees and
scale free), outperforms DCVC for all numbers of agents.
For trees and scale-free graphs, the worst case is 2.5 times
faster (3700s compared to 9300s for a scale-free graph with
k = 3 at 40 agents) and, in the best case, it is about 660
times faster (14s compared to 9300s for DCVC on a tree
with 40 agents)! We note that in the case of random trees,
D-SlyCE can evaluate all feasible coalitions for 40 agents
within about 14 seconds and indeed D-SlyCE easily runs on
trees of up 50 agents within 14 minutes! To date, no ex-
isting distributed coalition value calculation algorithm has
been shown to have comparable performance. Also, note
that as the density of the graph increases (i.e., as the num-
ber of connections per agent increases in k), the runtimes of
the D-SlyCE algorithm increase as expected. This confirms
that the density of the graph is a key determinant of the
improvement that D-SlyCE makes over DCVC. Turning to
the fairness of the computation distribution, as measured by
the ratio of mean agent runtime against maximum runtime
(such that 1 = equal computation distribution), the values
obtained were (with SFk = scale-free with parameter k) —
Trees: 0.09, SF1: 0.3, SF2: 0.6, SF3: 0.8, and Complete
graph: 1 respectively. In the case of trees, a number of ver-
tices that are well connected (e.g., high in the hierarchy)
create disproportionately large task shares. However, in the
increasingly dense scale-free graphs, all agents tend to get
an increasingly fairer share of the computation as their rela-
tive degrees get closer (with the complete graph generating
a perfect split of shares). When relating these results to the
runtimes, however, we can see that in the case of random
trees, the low overall computation time more than compen-
sates for the unfair distribution.

7.2 Benchmarking DyCE
In this section, we describe two experiments (Exp1 and Exp2
respectively), one to evaluate how DyCE, IDP, and CPLEX
compare in terms of runtime on the same instances and one
where we evaluate the performance of DyCE as the graph
density increases (see results in Figure 5). The latter is par-
ticularly important to consider since the number of feasible
coalition structures (and calls to nextslyce) increases with
graph density (see Algorithm 3). Thus, the gain from iden-
tifying feasible coalition structures is expected to tail off as
the number of redundant coalition structures decreases (as
graph degree increases).

Exp1: In terms of runtime, our results (see Figure 4) clearly
show that DyCE outperforms IDP and CPLEX significantly
on scale-free graphs and random trees. On complete graphs
(by up to 7 × 104 times on trees for 30 agents compared
to IDP), DyCE incurs an overhead that tails off (indicat-
ing a lower growth than that of the algorithm) and runs
slower than IDP by a small amount. Due to long runtimes
(and given that the trends are deterministic (i.e., growing
in O(3n) for IDP) we extrapolated the results as follows:
from 24 agents onwards for DyCE (Complete) and IDP, and
from 29 onwards for DyCE (SF3) and 30 agents for DyCE
(SF2). CPLEX, instead, is fast on small problems but sur-
prisingly runs only up to 27 agents on trees (19 on SF3,
20 on SF2, 25 on SF1) — we do not plot these graphs for
clarity). Moreover, we note that DyCE ran to completion
within 5.3 minutes for 30 agents on trees.
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Exp2: In this experiment, we evaluated DyCE with 20
agents on a scale-free graph with parameter k ∈ {1, 10},
where k > 5 results in a graph where each agent will be
connected to more than half the number of agents (hence a
dense graph). Given this, we note (from figure 5) that DyCE
outperforms IDP for values of k up to 5, beyond which the
graph is so dense that the coalition size checks in nextslyce
become slightly more costly than the gain in avoiding in-
feasible coalitions which renders DyCE slightly slower on
complete graphs (a fixed overhead which we believe could
be improved through a faster implementation of nextslyce).
Hence, it can be concluded that DyCE will work very well
for most domains which have reasonably sparse synergies.
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Figure 5: Runtime for k ∈ {1, 10} in SFk (n = 20).

When taken together, our results allow us to say that D-
SlyCE is the fastest distributed coalition enumeration algo-
rithm over constraining graphs, and can help solve problems
of more than 40 agents within reasonable time (in seconds,
minutes, or hours depending on the graph). Moreover, we
establish the benchmark for coalition structure generation
algorithms in constraining graphs as DyCE can solve prob-
lems for up to 30 agents within minutes as compared to
months for the state-of-the-art IDP.

8. CONCLUSIONS
In this paper we addressed the problem of coalition forma-
tion with sparse synergies where the set of feasible coalitions
is constrained by the edges of a graph. Our aim was to see
whether knowledge of the topology of an underlying social
or organisational context graph could be used to speed up
the task of coalition enumeration and structure generation.

We first developed the SlyCE algorithm and D-SlyCE to
enumerate and evaluate all feasible coalitions over any graph

in a distributed fashion such that agents end up with a fair
share of computation. Theoretical results showed that (D-)
SlyCE is correct, complete, and non-redundant. We then
turned to the more challenging problem of coalition struc-
ture generation and proposed the DyCE algorithm to solve
it using SlyCE as a building block.

Our empirical evaluation of D-SlyCE and DyCE, showed
that they both outperformed the state-of-the-art algorithms
by orders of magnitude (660 times for D-SlyCE and 7 ×
104 times for DyCE), and for the first time, managed to
enumerate coalition values for up to 50 agents in reasonable
time, and find the optimal coalition structure for 30 agents
within 5.3 minutes on random trees.

In general, our algorithms establish the benchmarks for
many multi-agent applications where sparse synergies exist
(e.g., decentralised coordination of sensors or emergency re-
sponders) where computing the optimal solution has, so far,
not been possible due to the exponential time required to
solve the coalition formation problems they generate. In fu-
ture work, we aim to further improve DyCE by combining it
with branch-and-bound techniques to further speed up the
search and prune the synergistic graph to render the search
feasible within reasonable time while providing quality guar-
antees on solutions returned. We also seek methods to au-
tomatically identify whether a problem has sparse synergies
(i.e., based on graph degree) and thus help in the choice of
the right algorithm to use.
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