
Decentralised Channel Allocation and Information Sharing
for Teams of Cooperative Agents

Sebastian Stein∗
ss2@ecs.soton.ac.uk

Simon A. Williamson†

swilliamson@smu.edu.sg
Nicholas R. Jennings∗
nrj@ecs.soton.ac.uk

∗University of Southampton, SO17 1BJ, Southampton, UK
†School of Information Systems, Singapore Management University, Singapore

ABSTRACT
In a wide range of emerging applications, from disaster manage-
ment to intelligent sensor networks, teams of software agents can
be deployed to effectively solve complex distributed problems. To
achieve this, agents typically need to communicate locally sensed
information to each other. However, in many settings, there are
heavy constraints on the communication infrastructure, making it
infeasible for every agent to broadcast all relevant information to
everyone else. To address this challenge, we investigate how agents
can make good local decisions about what information to send to
a set of communication channels with limited bandwidths such
that the overall system utility is maximised. Specifically, to solve
this problem efficiently in large-scale systems with hundreds or
thousands of agents, we develop a novel decentralised algorithm.
This combines multi-agent learning techniques with fast decision-
theoretic reasoning mechanisms that predict the impact a single
agent has on the entire system. We show empirically that our algo-
rithm consistently achieves 85% of a hypothetical centralised opti-
mal strategy with full information, and that it significantly outper-
forms a number of baseline benchmarks (by up to 600%).

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed AI—multi-agent systems

General Terms
Algorithms

Keywords
teamwork, multi-agent learning, communication

1. INTRODUCTION
It is envisaged that teams of heterogeneous software agents will be
increasingly used to tackle complex real-world problems. These in-
clude intelligent sensor networks, autonomous vehicles that explore
hostile environments and portable devices that provide emergency
responders with situational awareness during a disaster situation.
In all these multi-agent systems, and many others besides, coor-
dination is typically achieved through communication between the
agents, who share their beliefs about the state of the problem so
that together they can find a better, coordinated response.

However, communication infrastructures in real-world problems
often have considerable constraints. As dedicated high-bandwidth

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

networks are costly to develop and deploy, or may simply be un-
available in an emergency situation, agents often need to rely on
very limited existing communication means. These may include
using mobile ad hoc networks [3], power line communications [13]
or cognitive radio [1], where agents compete to utilise the spare ca-
pacity of other communication networks via spectrum sharing and
channel allocation [11]. Now, using any of these constrained me-
dia introduces a new coordination challenge: how to best utilise the
available capacity to communicate information effectively across
agent teams.

To date, research on such systems has largely concentrated on
finding a fair division of bandwidth between competing, self-inter-
ested agents in a decentralised setting. For example, there are pro-
tocols such as FDMA (Frequency Division Multiple Access) [1]
and approaches that model the problem as a multi-armed bandit
[12, 2] or as a congestion game [10]. However, all these solutions
assume identical information needs and that each agent is only in-
terested in maximising its own bandwidth.

Hence, existing work neglects the fact that a constrained com-
munication system may be used by cooperative teams of agents
to solve a joint problem whose global utility is not maximised by
giving each of them fair access. To exemplify this challenge, we
ground our work on a disaster management scenario where teams
of ambulance, fire brigade and police agents must respond to an
earthquake in an urban area (such as seen in the RoboCupRescue1

competition [8]). Here, the overall joint problem is to contain the
disaster and minimise damage to civilians and property. However,
the individual capabilities of agents are very specific — ambulance
agents rescue civilians, police agents clear roads and fire brigades
control fires. Therefore, while agents may discover any type of
information (e.g., an ambulance may discover a new fire), their
individual information needs are highly heterogeneous (e.g., fire
brigades are mostly interested in detailed information about the lo-
cation and severity of fires), and to solve the overall problem effec-
tively, relevant information needs to reach the right agents.

Now, in this setting, agents can communicate such information
using a limited set of channels, which represent different parts of
the radio spectrum or even entirely different communication me-
dia. However, communication on these channels is severely con-
strained, both in the number of channels an individual agent can ac-
cess simultaneously (due to technological or cognitive constraints)
and in the available bandwidth on each channel. Moreover, these
constraints typically preclude the use of explicit or centralised co-

1Another application is distributed sensor optimisation, where dif-
ferent types of sensors for tracking environmental phenomena are
coordinated, whilst trying to share an underlying restricted com-
munication infrastructure. Also, to reduce deployment costs, ubiq-
uitous computing often utilises existing communication media,
which are shared between applications, e.g., in a smart house.

ordination, due to time constraints and because coordination mes-
sages would themselves congest the channels. Examples of such
coordination approaches include decentralised task allocation mod-
els such as Max-Sum [7], reward shaping [15] or auctions [9],
which consider how to optimally allocate tasks and distribute dis-
parate beliefs. However, these models often make heavily restric-
tive assumptions about the communication infrastructure and net-
work topology, which do not hold in the settings we consider (such
as assuming that neighbours in a network can communicate with
each other at zero cost).

Another option is to solve the communication problem optimally,
by casting it as a decentralised POMDP [14]. Here, both centralised
and decentralised algorithms can be used, which analyse the future
impact of sending a specific message on a given channel [4]. How-
ever, this approach is computationally intractable [5] and not appro-
priate for a scalable solution in systems with hundreds of agents.

To address this setting, we propose a new decentralised approach
that converges to a good overall channel allocation, which, un-
like previous work, considers the asymmetric information needs
of agents. Specifically, it generally allocates agents that are inter-
ested in certain types of information to specific channels (such that,
e.g., all fire brigades use a specific channel to share information
about fires). However, in doing this, our approach considers sub-
tle synergies between different agents, potentially placing several
heterogeneous types of agents on the same channel if they share
common information needs. It also takes into account bandwidth
availability and team sizes to select appropriate channels, and it
deals flexibly with low channel availability by sometimes allowing
even agents with no common information needs to share the same
channels. Crucially, this behaviour is based on principled calcu-
lations that predict the overall impact of a channel allocation on
the global system utility, and it requires no a priori coordination or
channel assignment. Furthermore, agents in our approach continu-
ously monitor and learn the value of information locally to decide
when to break from a given allocation, either temporarily (to pass
on information to other types of agents) or permanently (to find a
better overall allocation).

In addressing this problem, we make several key contributions.
First, we present a novel decentralised channel allocation problem
and show that solving it is inherently hard. Then, we develop our
new decentralised algorithm that uses local learning and decision
rules to solve it. Finally, we show empirically that this converges
to a good solution that is typically within 85% of a hypothetical
centralised optimal approach and outperforms a number of standard
benchmarks (achieving a 6-fold improvement in some cases).

The remainder of this paper is structured as follows. In Sec-
tion 2, we formalise the channel allocation problem we solve in
this paper and then discuss how this problem could be solved in a
centralised manner in Section 3. This discussion then informs our
decentralised learning solution, which we outline in Section 4. In
Section 5, we evaluate our approach experimentally and conclude
in Section 6.

2. CHANNEL ALLOCATION PROBLEM
We begin by formally outlining the channel allocation problem
(CAP) we address in this paper. Specifically, we consider a sys-
tem that consists of heterogeneousagentsthat need to sharefacts
about the world with each other. These facts constitute key items
of information about the state of the world that help the agents in
solving their joint problem. Generally, these facts could include
sensor readings, locations of other agents and new tasks that have
been discovered. Normally, we assume these facts are known with
complete certainty (but they could also represent probabilistic in-

formation that improves the agents’ decisions). Critically, not all
facts are equally important and some may only be of interest to a
subset of agents.

More formally, A = {a1,a2, . . . ,aA} denotes the set of agents,
each of which has a type given bym:A → S , whereS = {s1,s2, . . . ,
sS} is the set of all types (we will sometimes refer to the agents of
a specific type as ateam). Furthermore,F = { f1, f2, . . .} is the set
of all possible facts, with each fact having a deadlined : F → N

+
0 ,

which refers to a specific time step (we assume discrete time steps),
after which the fact is no longer relevant to any agent. For example,
such a deadline could represent when a building on fire burns out
or when an injured civilian can no longer be saved.

Now, in our model, agents derive an explicit reward for knowing
about facts. This describes the relative importance of those facts
and captures the intrinsic value that knowledge of them adds to the
problem-solving ability of an individual agent. We assume these
rewards are known a priori, representing the domain knowledge
of the system designer, although in practice, they could be proba-
bilistic estimates rather than deterministic values. In more detail,
r : (F × S)→ R

+ describes the reward per time step that an agent
of a particular type generates for knowing a specific fact (this func-
tion is available to all agents, e.g., a fire brigade is aware of the
value of a civilian position to an ambulance). Thus, the total re-
ward an agent generates per time step is the sum of the rewards (for
its specific type) of all facts that it knows about and that have not
exceeded their deadlines yet. Similarly, the overall reward gener-
ated in the system is the sum of all the agents’ individual rewards,
and this is the key objective we seek to maximise in our work.

We assume that new facts are discovered gradually over time by
individual agents at the beginning of each time step (according to
some random process), and they immediately start to generate re-
wards. However, to maximise rewards, agents can communicate
the facts they know about on a set of highly constrained communi-
cation channels,C = {c1,c2, . . . ,cC}. Importantly, due to cognitive
or technological constraints, agents can only use a limited number
of channels each time step, as given byl : S →N

+
0 . When an agent

decides to use a channel, it can post a single fact on that channel
and listen to the facts that other agents have posted on that channel.
Each channel has a finite bandwidth,c : C → N

+
0 , the number of

facts that the channel can carry in a single time step. Any surplus
facts are discarded uniformly at random.

Given this, the choice for the agents is which channels to sub-
scribe to and which facts to send on these channels. This is done
in two steps — first, all agents simultaneously choose the subset of
channels they wish to subscribe to (up to their channel limitl and,
critically, without knowledge of the others’ choices), they then dis-
cover who else subscribed to the chosen channels, and finally all
agents choose simultaneously what facts, if any, to post on those
channels. At the end of the time step, agents are informed of all
facts that were successfully posted on their subscribed channels and
these now become shared knowledge among all subscribers (start-
ing to generate rewards from the next time step).

Now, making these two decisions — first, deciding which chan-
nels to subscribe to, and, second, which facts to post on the chan-
nels — comprise the key channel allocation problem we consider
in the paper. Its difficulty lies in the fact that agents cannot co-
ordinate a priori on their choice of channels (and may therefore
subscribe to channels that will contain no interesting facts) and be-
cause they do not know what facts others may post to the channel
(and may therefore post low-value facts that displace other more
valuable ones). Our overall aim here is to solve this problem in
a decentralised manner with agents that use only local knowledge.
However, to gain a better insight into what a good solution looks

like, we will first discuss a (hypothetical) centralised solution in the
next section.

3. CENTRALISED SOLUTION
In this section, we present two centralised solutions for the prob-
lem of maximising the overall reward during channel allocation —
one is optimal, but tractable only in small problems and the other
is locally optimal and scales to larger problems. Although cen-
tralised solutions are infeasible in realistic settings, defining these
provides us with useful benchmarks to compare our approaches
against. Specifically, they constitute upper bounds for the perfor-
mance of decentralised approaches, as they assume full information
and control over all agents. Furthermore, examining the optimal
centralised solution will guide our decentralised approach.

Now, as solving the CAP to maximise long-term rewards is in-
tractable due to the huge search space (as in a decentralised POM-
DP), we here (and in our decentralised approaches) concentrate on
myopic solutions. These consider only the actions available in the
current time step and do not plan ahead. In small environments,
where a long-term optimal can be found, we observed that the my-
opic performs close to this, as there is often little benefit in planning
ahead and it is usually optimal to send facts that immediately gen-
erate large rewards.

However, we first show the complexity of the optimal solution.

3.1 Complexity Result
We will show that even the myopic version of the centralised CAP
is NP-complete.

DEFINITION 1 (MYOPIC CENTRALISED CAP (MCCAP)).
Given the model in Section 2 and the agents’ current beliefs (here,
we let Bi denote agent i’s belief, i.e., the facts that it is aware of),
are the agents able to generate a total reward of at least x, for a
given x∈R, assuming that no more facts are generated or commu-
nicated in future time steps?

First, recall the well-known NP-complete Hitting Set problem:

DEFINITION 2 (HITTING SET). Given a collection S′ of sub-
sets of some universe U and a constant k∈ N, is there a subset
X ⊆U, such that X intersects every element of S′ and|X| ≤ k?

THEOREM 1. MCCAP is NP-complete.

PROOF. We need to show that MCCAP is both in NP and also
NP-hard. The first is straight-forward — given a solution of which
channels each agent should subscribe to and what facts to send, we
can calculate the reward generated by all agents in subsequent time
steps in linear time and verify this is at leastx.

To show that MCCAP is NP-hard we show that any instance of
HITTING SET can be reduced in polynomial time to an instance
of MCCAP. To do this, defineF = U , such that every fact cor-
responds to an element inU and set its deadline to 1,d(f j) = 1
(assuming the current time is 0). Now, for each elementI ∈ S′,
create an agentaI with an empty belief (BI = /0) and a unique type
for that agent,sI , i.e., m(aI) = sI . Limit the agent to subscribing
only to one channel,l(sI) = 1. Then, for each elementi ∈ I , set the
reward foraI knowing the corresponding fact to 1, while all other
rewards for that agent are 0, i.e.,r(fi ,sI) = 1 if i ∈ I , otherwise
r(fi ,sI) = 0. Finally, define an agenta0 with types0 that knows all
facts (with beliefB0 = F), but set all its rewards to 0 (r(fi ,s0) = 0
for all i). Set its subscription limit tok, i.e.,l(s0) = k. Finally, there
arek channels,C = {c1,c2, . . . ,ck}, each with a bandwidth of 1.
We now set the value threshold tox= |S′|.

Given this transformation, which can be performed in polyno-
mial time in the size of the original instance, the solution of the
original HITTING SET instance isyes, if and only if the solution to
the new MCCAP instance is alsoyes. This is because each of the
agents corresponding to the elements inS′ generates a reward of 1
if and only if a fact corresponding to an element of its associated
set I ∈ S′ is placed on one of thek channels (no more than 1 can
be generated by each agent due to their subscription limits and the
channel bandwidth constraints). Since at mostk facts can be placed
on the channels, all of these agents generate a reward (i.e., the over-
all value generated is|S′|), if and only if there is a subset ofX ⊆U
with |X| ≤ k, such that it intersects all elements inS′.

Given this, it is trivial to show that the non-myopic version of
CAP is NP-hard, as the same transformation can be applied. This
indicates that a centralised myopic solution is generally intractable,
especially for larger problems. For this reason, we next present two
algorithms: an optimal one that can be used in smaller settings and
a suboptimal one that scales to larger problems. This allows us to
see how close our decentralised algorithms are to optimal in small
problems, and also have a good idea in larger problems.

3.2 Centralised Myopic Optimal
In the centralised myopic optimal solution (OPTIMAL), at every
timestepx, a centralised authority gathers information about the
facts held by each agent and solves the MCCAP instance optimally
before distributing the allocation and facts to send to each agent.
We achieve this by formulating MCCAP as an integer linear pro-
gram and solving it using ILOG CPLEX.

Whilst this algorithm provides the optimal myopic solution, it is
far from scalable. Specifically, even when looking for a myopic
solution, the search space is doubly exponential in the number of
agentsA and the number of channels that can be subscribed tol .
Next, we address the scalability of this solution.

3.3 Centralised Myopic Local Search
In the centralised myopic local search solution (CMLS), the same
centralised authority gathers all information and distributes an allo-
cation as forOPTIMAL. However, rather than considering the entire
search space as inOPTIMAL, we start with a random solution and
then carry out local improvements.

More specifically, given an initial allocation where agents ran-
domly send facts to channels, we apply the single best deviation
that an agent could perform (by switching or removing a fact to
send, switching a subscribed channel or both). Then, we iteratively
apply such deviations until a local optimum is reached and no more
deviations yield a higher utility. The resulting allocation is then se-
lected as the overall solution.

Clearly, this algorithm is suboptimal since it only allows a fi-
nite step size in the improvement phase. If this was relaxed, then
combinations of new partial allocations could be considered in or-
der to find a global optimum. However, the reduction in the state
space used here does result in a substantially more scalable algo-
rithm which is still guaranteed to find a local optimum for the my-
opic case. That said, the algorithms presented in this section are
centralised and also compute solutions over all agents, facts and
channels. However, it is useful to consider what an optimal solu-
tion to the channel allocation problem looks like, in order to inform
our decentralised approach, as we do next.

3.4 Analysis
By examining actual channel allocation decisions made by the cen-
tralised solution, we can make several general observations about

c1 c2 c3

2

2

5

1

5

7

3

7
3

5
5

3

1

4

Fact posting

Listening

Fire Brigade

Ambulance

Figure 1: Example optimal channel allocation.

desirable behaviour in our problem domain. First, we note that gen-
erally it is beneficial for agents of the same type to use a dedicated
channel for facts that they are interested in. That way, the over-
all reward generated by a posted fact is maximised as all interested
agents receive it immediately, and there is typically no incentive for
such a group to split up and use several channels. Conversely, it is
usually not beneficial for agents of different types to share the same
channel for their respective facts (unless the posted facts are rele-
vant to both types), as this reduces the effective bandwidth of each
team. Thus, our decentralised algorithm will dynamically desig-
nate channels to certain types and post only relevant facts to these.

Second, however, it is clearly suboptimal to restrict agents to
posting and listening only to their designated channels. As each
agent may find out about facts that are relevant to agents of other
types, they need to occasionally communicate these by posting
them to other channels (e.g., when an ambulance discovers a fire).
However, this also means that the sending agent generates no addi-
tional reward by listening to more relevant facts on its own channel.
For this reason, our algorithm will solve a local decision problem
that explicitly balances the reward that the agent expects to generate
by staying on its own channel with that generated by communicat-
ing a fact for a different agent type.

This general decision-making behaviour is reflected by the ac-
tions of the hypothetical centralised optimal strategy. To illustrate
this, Figure 1 shows an optimal decision in an example scenario
from RoboCupRescue. Note that this is the best allocation the
agents could choose if they could perfectly coordinate their actions
and had full knowledge of each others’ available facts. Clearly, this
is unrealistic, but we use it to illustrate what a good allocation looks
like. In this example,2 there are two types of agents, fire brigades
and ambulances (shown as shaded and white circles, respectively).
These can only subscribe to one channel each, but they have in-
formation about a variety of newly discovered facts that they can
communicate to the others — these comprise information about
both injured civilians (white squares) and fires (shaded squares).
Ambulances are interested in injured civilians, while fire brigades
derive rewards from finding out about fires (all rewards are notedin
the figure). There are three channels with a bandwidth of two each.

In the optimal channel allocation shown here, we first note that
channels are used exclusively for a particular type of fact (c1 is
used for facts about civilians andc2 is used for fire), and most of
the agents only listen to the channels for their respective type. The
only exception to this is the ambulance in the centre (with one fire
fact worth 7 and a civilian fact worth 3), which posts information
about a particularly critical fire to the channel of the fire brigades.
Although this means that this ambulance does not gain any reward

2An equivalent example from sensor networks sees two types of
sensor: a ground based static sensor for detecting troops and UAVs
for tracking faster-moving vehicles. These may detect targets for
each other but would not take any direct action, instead communi-
cating them to the respective agent. In ubiquitous computing, en-
ergy management devices need to communicate information about
power usage with each other; however, the security system may
need to track a threat and switch on high power devices over that
same channel.

Algorithm 1 Basic Decentralised Learning Algorithm
1: while truedo
2: Observe new facts and update fact beliefs.
3: Choose channels and facts to post using local beliefs.
4: Subscribe to channels and post facts.
5: Update channel beliefs.

itself from hearing about civilians, the value of its information to
the fire brigades is high enough to warrant this decision. We note
also that the third channel,c3, is completely unused, because mov-
ing any of the agents and posting further facts there does not in-
crease the overall rewards generated.

We will use these observations in the construction of a decen-
tralised algorithm which avoids the complexity issues of the cen-
tralised approaches, but still performs well in comparison.

4. DECENTRALISED SOLUTION
In this section, we develop a decentralised learning algorithm to
solve this problem in realistic settings. With this, agents use only
local information and previous observations to decide which fact to
send on which channel. More specifically, we assume agents know
only the facts they have discovered themselves and those they have
heard on channels, but they do not know what facts are known by
others. They also know the channels and their characteristics, and
they know what other agents are present in the system and their
types (although our algorithm can easily be extended to discover
this at run-time).

As we argued in Section 1, this problem can be solved optimally
by casting it as a decentralised POMDP. However, that methodol-
ogy is intractable for even small agent teams. Further to this, that
solution still requires a complex coordination mechanism (or com-
munication) to execute the decentralised policies and full knowl-
edge of the fact generating function in order to obtain the policies
in the first place. Consequently, we look towards reinforcement
learning of the underlying problem, together with a simple coordi-
nation mechanism, as an efficient means to finding a decentralised
solution. Now, this section will first describe the overall approach
we take in our solution, followed by its individual components and
finally the overall algorithm is presented.

4.1 High-Level Approach
Our problem requires that the agents find a common agreement on
how to divide the channels into their respective types, and then,
agents need to decide when they should send facts (or listen) to
their own channel and when they should communicate facts to other
types. We address these two challenges separately, focusing first on
the channel division and then on the fact communication problem.

Before considering the details, Algorithm 1 shows the high-level
approach used in our decentralised solution. To make good deci-
sions, our algorithm maintains beliefs about the system, including
fact beliefs about the characteristics of the fact generation process
in the system, andchannelbeliefs, which include historical fre-
quencies over what types of agents have been observed on the var-
ious channels and some information about the value of facts that
have been posted to the channels in the past. These beliefs are
updated regularly at every time step based on new facts that are
observed (line 2) as well as the agents and facts that are seen on
channels (line 5).

The key decision about what channels to subscribe to and what
facts to post is made in line 3. This is clearly critical, but it is im-
portant here to note that this can depend only on the agent’s local
beliefs, without knowing the beliefs of other agents or their future

decisions. However, these local beliefs (in particular the channel
beliefs) are shaped by the past actions of other agents in the sys-
tem. As such, our algorithm constantlylearnsandadaptsto the
actions of others, allowing it to respond better in the future. This is
very similar to fictitious play [6], which has been used successfully
in more competitive settings, such as congestions games. However,
although our setting is cooperative in nature, fictitious play has sev-
eral desirable properties — it is known to converge to Nash equilib-
ria, and it represents a simple, tractable learning technique (rather
than resorting to complex optimal approaches, such as POMDPs).
This makes it suitable for our problem.

As part of making the decision about what channels to subscribe
to and what facts to post, an agent needs to first know what teams
are assigned to what channels. We will consider this question in
Section 4.2. Second, given that it has this channel allocation, it then
needs to decide what facts to post (if any) and on what channels.
We treat this problem in Section 4.3. Finally, we present an overall
algorithm in Section 4.4.

4.2 Channel Division
Dividing the channels effectively between the agent types is a cen-
tral part of our algorithm. The aim of this is to find a function
division : S → P(C), which maps each agent type to the set of
channels used by that type (note these can overlap). All agents
need to agree on this and the mapping needs to also consider the
bandwidth of channels (it may be more beneficial to share a single
channel with a large bandwidth between several types than have
one type use a very small channel).

To quickly find a consensus for thedivision function, the agents
treat their own type and other types differently. Specifically, they
assign other types simply to the channels that have the highest par-
ticipation by those agents, based on previous observations made
when subscribing to channels, up to the channel limit of that type.
For its own channel assignment, each type first designates a leader,
who decides on the best channels for its type.3

The leader’s decision is based on probabilistic knowledge about
arrivals of new facts (its fact beliefs), which it uses to calculate the
expected utility of choosing a particular channel. In more detail,
we denote by ¯u(S ′,si), with S ′ ⊆ S andsi ∈ S , the total reward an
agent of typesi expects to gain from a randomly chosen fact, given
that the fact has a non-zero reward for at least one of the members
of S ′. With this, the expected utility generated by a particular set
of agent typesS ′ using channelci is estimated as:

r̄(S ′,ci) = c(ci) · ∑
sj∈S ′

ū(S ′,sj) ·

(

size(sj)−
size(sj)

total(S ′)

)

, (1)

where size(sj) is the total number of agents of typesj and total(S′)=
∑sk∈S ′ size(sk). As such, it is the expected reward all agents on
channelci expect to generate through communication per time step,
given that the channel is always fully utilised for sending new facts,
that agents choose to send facts randomly from among those that
are relevant to at least one other agent on the channel and that all
agents in the team subscribe to the channel. These are simplifying
assumptions, but they serve to allow an agent to quickly compare
the relative merit of choosing a particular channel over another. In

3This can be achieved without explicit communication, using, e.g.,
unique identifiers, such as IP or MAC addresses of the agents en-
countered so far. Throughout this section, we will assume that an
agent has a priori knowledge of all other team members and their
identifiers, but even when this is not available, a simple adaptive
leader election protocol based only on team members observed so
far could be designed. We leave this, and the re-assignment of miss-
ing leaders, to future work.

doing so, the calculation considers the relative sizes of a team on a
channel (as all agents but the sender benefit from a posted fact), the
bandwidth of the channel, as well as taking into account the rela-
tive frequencies of facts, e.g., when facts for a particular type are
more frequent than those for another type (this is intrinsically part
of ū(S ′,sj)).

Given this, the leader then uses Equation 1 to evaluate the overall
impact of choosing a particular channel for its type (keeping the al-
locations of other types constant, as given by thedivisionfunction),
and greedily chooses the channels with the highest respective util-
ities, up to the channel limit for its type. Its other team members,
in turn, also adopt these chosen channels (if necessary by searching
for the channels the leader subscribes to, as will be explained later).
Assigning a single leader agent in this way allows the team to con-
verge quickly to a set of channels, which can be easily recomputed
at any time, e.g., to take into account dynamically changing reward
distributions, team sizes or available channels.

4.3 Fact Communication
So far, we have described how agents reach consensus about a con-
sistent channel division between the agent types. However, the
agents only derive value from actually sending facts to channels.
As we argued in Section 3.4, agents will generally send facts only
on their own channels, unless they have a particularly valuable fact
for a different type. To determine which facts to send to which
channels, we use a decision-theoretic approach and estimate the ex-
pected total reward that an agental would contribute to the system
by sending a given factfi at timet to channelc j :

E(rsend(al , fi , t,c j)) = ∑
sk∈onChannel(c j)

size−l (sk)

· (r(fi ,sk) · (d(fi)− t)− (1− total−l (c j)
−1) · s̄(sk)), (2)

where onChannel(c j) is the set of agent types that are mapped to
channelc j by the division function, size−l (sk) is the number of
agents of typesk excludingal , total−l (c j) is the total number of
agents of the types given by onChannel(c j) excludingal ands̄(sk)
is the reward that a single bandwidth unit on a channel for the given
typesk is expected to generate (again, based on previous observa-
tions, and, to avoid bias, excluding the facts the agent previously
posted itself). Thus, this equation is positive if the fact improves
on what is otherwise expected to be posted on the bandwidth unit
it would occupy.

As this assumes that posted facts are new to all agents on the
channel, we allow agents to only post facts they themselves have
discovered and that have not been sent successfully to this chan-
nel (or other channels occupied by the same types) before — this
greatly simplifies the decision problem, as agents do not need to
keep track of the belief states of other agents.

Apart from E(rsend(fi , t,c j)), agental expects to benefit from
listening when posting to a particular channelc j (if this is one of its
own channels). We denote this expected benefit asE(r listen(al ,c j))
and note that it is 0 when the channel is not one of its own (i.e.,
m(al) /∈ onChannel(c j)), otherwise it is ¯s(m(al)) · (l(c j)−1).

Thus, we can obtain an overall valuation for an agental of send-
ing a fact fi at timet to channelc j :

E(roverall(al , fi , t,c j) = E(rsend(al , fi , t,c j))+E(r listen(al ,c j))
(3)

Using Equation 3, the agent can now greedily choose the best facts
to post, or stay silent and listen to its own channels when this is
more beneficial (the utility of this is ¯s(m(al)) · l(c j) — slightly
higher thanE(r listen(al ,c j)) because the agent potentially hears one
additional fact).

4.4 Overall Algorithm
Our approaches for choosing a consistent channel allocation and
deciding what facts to post on what channels constitute the core of
our decentralised algorithm. In addition to these decision-making
procedures, however, it is important for the agents to sometimes
choose actions that allow them to better update their beliefs, rather
than simply maximise their expected rewards through posting facts.
This is because our algorithm relies on some statistical knowledge
that is learnt at run-time, but when this is inaccurate, an agent
may lack the incentive to further subscribe to the affected channels
and update its knowledge. This exploration/exploitation tradeoff is
common in learning problems, and we adopt an approach that is
often employed there:ε-greedy. More specifically, with a small
probability4 ε = 0.01, agentsrandomlypick a subset of channels
to subscribe to, rather than considering all possible channels. This
ensures both that thedivisionfunction is updated when other teams
move channels, and, similarly, that ¯s is learnt.

Given this, Algorithm 2 summarises the overall decision-making
mechanism each agent follows. In brief, each agent starts a time
step by observing its environment and gathering new facts about
the world (line 5). These are used to update the agent’s local ¯u
function (line 6). Next, the agent calls a procedure depending on
whether it is a leader or not (line 9).

As a leader, it first re-evaluates the current channel division with
a small probability,ϕ = 0.05. Here, the FINDBESTDIVISION pro-
cedure (line 16) finds the best channels to use for the agent’s own
type, given the currentdivision for all other types (as described
previously), and returns this only if it is at leastδ = 5% better than
the current choice. Note thatϕ andδ are included here to prevent
the agent from switching channel divisions too quickly. If no ex-
ploration takes place, and the leader has not subscribed to its own
channels for at leastmaxAbsence= 5 time steps, it is forced to
only consider its own type’s channels (line 18), which allows other
agents to easily detect when the leader has chosen to change chan-
nels (hence, a longer absence indicates that the leader has changed
channels). If this is not the case, the leader chooses random chan-
nels with probabilityε, where RANDOMCHANNELS returns a set
of random channels of size equal to the agent’s subscription limit
(line 20).

As a follower, if the leader has not been observed for more than
maxAbsencetime steps, the agent starts searching, where SEARCH-
CHANNELS returns channels that have not been visited recently
(line 23). Otherwise, the follower also chooses random channels
with probabilityε (line 25).

Next, the agent chooses the best facts to post to the eligible set of
channels(line 10). This is done using the procedure described in
the previous section. The agent then follows this, first subscribing
to channels and then posting facts (lines 11 and 12). Finally, it uses
information observed on its subscribed channels (i.e., participating
agents and posted facts) to update a number of statistics (line 13).

Concluding this section, as we noted earlier, our algorithm can be
seen as a form of fictitious play, i.e., each agent effectively plays the
best response to the other agents’ actions (as learnt by thedivision
and s̄ functions). This allows our strategy to adapt to a dynamic
environment. For example, when only a few, low-value facts are
sent to a particular channel (as indicated by a low average reward
per bandwidth, ¯s), agents decrease their threshold for sending facts,
but when congestion is high, only very valuable facts are sent.

4We stress our algorithm does not depend on the exact choice of
this parameter and others mentioned in this section. However, we
list the parameters used in our implementation for completeness.

Algorithm 2 Decentralised CAP Algorithm (DecCAP)
1: ai ←myself ⊲ Agent executing this
2: leaderAbsent← ∞ ⊲ When was the leader last seen?
3: ownFacts← /0 ⊲ Facts discovered by this agent
4: while truedo ⊲ For each time step
5: newFacts← OBSERVEENVIRONMENT() ⊲ Gather new facts
6: ū← UPDATEFACTSTATS(newFacts) ⊲ Update fact statistics
7: ownFacts← ownFacts∪newFacts
8: channels← C ⊲ Channels to consider
9: LEADERLOGIC() / FOLLOWERLOGIC() ⊲ Depends on whether leader

10: decision← CHOOSEBESTFACTS(channels,ownFacts) ⊲ Facts to post
11: SUBSCRIBE(decision) ⊲ Subscribe to chosen channels
12: heardFacts← POSTFACTS(decision) ⊲ Post facts
13: division, leaderAbsent, s̄← UPDATECHANNELSTATS(heardFacts)

14: procedure LEADERLOGIC() ⊲ Leader’s decision-making logic
15: if Random(0,1)≤ ϕ then ⊲ Explore new channel division?
16: division← FINDBESTDIVISION(division,δ)
17: else if leaderAbsent≥maxAbsencethen ⊲ Stick to own channels?
18: channels← division(m(ai))
19: else ifRandom(0,1)≤ ε then ⊲ Random exploration?
20: channels← RANDOMCHANNELS()

21: procedure FOLLOWERLOGIC() ⊲ Follower’s decision-making logic
22: if leaderAbsent> maxAbsencethen ⊲ Search for leader?
23: channels← SEARCHCHANNELS()
24: else ifRandom(0,1)≤ ε then ⊲ Random exploration?
25: channels← RANDOMCHANNELS()

5. EMPIRICAL RESULTS
In this section, we comprehensively evaluate the performance of
our algorithm,DecCAP, against the interesting space of problems
captured by our model. To measure its performance, we compare it
to a number of benchmarks:

• OPTIMAL/CMLSis the centralised optimal5 algorithm from
Section 3. As such, it is clearly not realistic in practice, but
rather serves as anupper bound.

• RANDOM subscribes to random channels placing a single
random fact from its current beliefs on each channel.

• BEST-FACTsubscribes to random channels and then places
the fact that promises to generate the highest reward on each
channel. This is based on the agent’s local beliefs about what
facts are already known by others.

• EPSILON-GREEDY(ε) generally subscribes to the channel
that has generated the highest overall average reward for that
agent (based on past observations), but with probabilityε, it
picks a random channel instead for exploration. When sub-
scribed, it behaves as theBEST-FACTstrategy. As such, it
represents a common solution approach to work that models
the channel allocation problem as a multi-armed bandit [2].

In the following, we restrict our analysis to a problem setting
from the recent RoboCupRescue competition (since this was cre-
ated to be a taxing problem with all of the challenges discussed
earlier) and then explore some interesting parameters within this
domain. Specifically, we first consider the standard setting from
RoboCupRescue with three types of agents: ambulances, police
and fire brigades. These are interested in three types of informa-
tion: new civilians, road blocks and fires. We assume facts are dis-
covered randomly, such that each agent discovers one new fact on
average every four time steps (using a Poisson distribution), each
fact is of a random type, has a reward drawn uniformly at ran-
dom from [0,1], and a deadline drawn uniformly at random from

5Due to the complexity of this, we use myopic optimality here, and,
for more than 10 agents, we replace theOPTIMAL by the greedy
CMLS, which achieves thesameperformance asOPTIMALon the
smaller settings.

 0

 5

 10

 15

 100 200 300 400 500

Number of Agents

Average Realised Reward (per Time, per Agent)

OPTIMAL/CMLS
DecCAP

EPSILON−GREEDY(0.1)
BEST−FACT

RANDOM

Figure 2: Performance as the number of agents is increased.

{2,3, . . . ,10} (to represent buildings that burn out or civilians that
die). We also consider a highly constrained communication infras-
tructure with five channels that can contain only two facts each.

Given this setting, we are first interested in establishing the rela-
tive performance of our approach to the benchmarks and to evaluate
whether it scales to large systems.

5.1 Basic Benchmarks
To first establish howDecCAPperforms in increasingly large set-
tings, Figure 2 shows the results6 with increasing numbers of agents.
It is clear here thatDecCAPsignificantly outperforms the two base-
line benchmarks,RANDOMandBEST-FACT, improving on them
by up to 600%, as it is able to select a good channel allocation and
communicate the best facts to the right agents. The learning ap-
proachEPSILON-GREEDYis also outperformed byDecCAP(we
only plot ε = 0.1 here as one of the best performing parameter
choices). This is because the former quickly converges to a local
optimum, in which all agents communicate on the same channel.

Finally, we observe thatDecCAPalso consistently achieves 85%
or more ofOPTIMALandCMLS. This is a significant result, given
that those assume full information and complete control over all
agents’ actions. Finally, we note that we could only runCMLSup
to 100 agents, beyond which it became exceedingly slow, while
DecCAPstill made fast decisions in less than 0.5 ms per agent and
time step with 1000 agents, using a Java implementation on an Intel
2.2GHz laptop (not shown on the graph for readability).

5.2 Explicit Coordination
While we argue that theOPTIMAL/CMLScentralised approach is
unrealistic in most settings, it could be achieved in practice through
the use of explicit coordination between agents. In order to do this,
agents need to exchange coordination messages, which places an
additional burden on the communication infrastructure and thereby
reduces the effective bandwidth that can be used to exchange facts.

To capture this class of coordination approaches, exemplified by
the Max-Sum algorithm [7] or auctions for resource allocation [9],
we define a new benchmark,COORD(c), which behaves as the cen-
tralised approach, but incurs a small communication cost ofc per
agent in the system. Here,c can be seen as the size of a single coor-
dination message that each agent needs to send in order to achieve
a fully coordinated response. More specifically, the costc is an
expected loss of bandwidth on every channel at each time step per
agent, such thatc= 0.01 in a system of 50 agents implies that one
fact less can be posted on each channel every other time step.

6The reward is the average achieved per time step during steps 2000
– 2050, to give our learning algorithm time to converge in settings
with hundreds of agents. For statistical significance (at thet < 0.01
level), we sample each point 500 times.

 0

 5

 10

 10 20 30 40 50 60 70 80 90 100

Number of Agents

Average Realised Reward (per Time, per Agent)

OPTIMAL/CMLS
DecCAP

COORD(c=0.01)
COORD(c=0.02)
COORD(c=0.05)

Figure 3: Performance with explicit coordination.

 0

 5

 10

 15

 100 200 300 400 500

Number of Agents

Average Realised Reward (per Time, per Agent)

DecCAP(listen,switch)
DecCAP(listen)

DecCAP(switch)
DecCAP(none)

Figure 4: Performance ofDecCAP variants.

The results for representative costs 0.05, 0.02, 0.01 and 0 (the
latter being equivalent toOPTIMAL/CMLS) are shown in Figure 3.
These demonstrate that approaches using explicit communication
perform well in smaller settings, but as soon as the number of
agents grows, the communication costs for coordination become
non-negligible, and they begin to be outperformed byDecCAP.

5.3 Strategy Components
To highlight the benefits of the various components ofDecCAP, we
here briefly evaluate a number of variants ofDecCAP. As described
in Section 4.3,DecCAPsometimes forces agents tolisten to their
own channels, i.e., stay silent when this appears more beneficial,
while other times agents activelyswitchto channels used by other
teams to post particularly valuable facts. We here examine the ben-
efits of these behaviours, usingDecCAP(listen,switch)to denote
a strategy that implements both behaviours, whileDecCAP(listen)
denotes one that implements only the listening, and so on.

The results are shown in Figure 4. This clearly highlights that
both the listening and the switching behaviours are key to achiev-
ing a high overall performance. Interestingly, the benefit of switch-
ing is more pronounced in settings with fewer agents, while lis-
tening becomes more important in settings with more agents. In-
tuitively, this is because fewer facts are discovered in the smaller
settings, and so agents benefit from disseminating information to
other teams, to fully utilise the available bandwidth. On the other
hand, when there are many agents and channels are typically con-
gested, agents gain more from simply listening to the high-value
facts posted to their own channels.

5.4 Convergence
Since our strategy relies on learning channel allocations and fact
distributions, it takes some time to converge to a good solution. To
evaluate how long this takes in practice, Figure 5 shows the perfor-
mance ofDecCAPover time, for a small problem with 30 agents

 5

 10

 15

 0 500 1000 1500 2000 2500 3000

Time Step

Average Realised Reward (per Time, per Agent)

DecCAP (250 Agents)
DecCAP (30 Agents)

Figure 5: Convergence ofDecCAP learning.

 0

 100

 200

 300

 400

 500

 1 2 3 4 5 6 7 8 9 10

Relevant Fact Types Per Agent Type

Average Realised Reward (per Time)

CMLS
DecCAP

Figure 6: Performance as heterogeneity increases.

and a larger problem with 250 agents. This shows that the strategy
converges in a reasonable amount of time. While the maximum
in the larger setting is reached after around 2000 time steps, it al-
ready achieves 50% of the maximum after 200–300 time steps. In
the smaller setting, the maximum is reached more quickly, after
around 300 time steps.

5.5 Heterogeneity and Team Synergies
Finally, we consider a more heterogeneous setting where some facts
are of interest to multiple types of agents (these synergies also exist
in some RoboCupRescue strategies, e.g., when an ambulance uses
information about fires to identify particularly critical civilians).
We also increase the heterogeneity of the setting under considera-
tion. Thus, we now assume there are five agent types, and each is
interested inn out of 10 different types of facts, where we varyn
from 1 to 10. Asn increases, so do the synergies between teams
(more are likely to be interested in the same facts). We also ran-
domly vary the bandwidth of channels, ranging from 0 to 5, we
consider 30 agents, and randomly vary the size of agent teams. We
choose these parameters to test a more heterogeneous environment
where the best performance is not necessarily achieved by allocat-
ing each team to a single channel.

The results are given in Figure 6. First, this shows an overall
increase in rewards, as each generated fact is increasingly likely to
benefit several agent types. Here,DecCAPachieves a performance
that is within 80–85% ofCMLS. There is a small drop in reward
(relative toCMLS) aroundn= 5. This is becauseCMLScan benefit
here from re-assigning agents instantaneously between time steps,
depending on the overlap of currently known facts. Clearly, such
a strategy is not feasible without a central coordinator with full in-
formation about all agents (as assumed forCMLS). Despite this,
DecCAPachieves 80% of the centralised near-optimalCMLS, in-
dicating that it chooses a suitable channel allocation that performs
well in the long run. In more detail, examining the decisions made

by DecCAPshows that it initially (forn = 1) separates different
agent types into different channels, but, as fact synergies increase,
they increasingly converge to shared channels. This confirms our
algorithm flexibly adapts to the problem parameters and communi-
cation constraints.

6. CONCLUSIONS
In this paper, we presented an algorithm for channel allocation and
information sharing in cooperative agent teams with a highly con-
strained communication medium. This setting requires the agents
not only to reason about who to communicate with and about what,
but also how to allocate a restricted communication resource. We
present a tractable and fully decentralised learning approach which
uses reinforcement learning ideas to learn a channel allocation and
then principled decision-theoretic approaches to evaluate the utility
of sending pieces of information to others, or even to break from
the previously adopted channel allocation, which cannot be done
using existing techniques, e.g., in cognitive radio. We compared
our approach to benchmarks and showed that it converges quickly
to a solution that typically achieves 85% of a centralised optimal
strategy.

With this established, we intend to explore the relationship with
existing congestion game models including investigating if a finite
improvement policy exists, which would allow simple local tech-
niques to converge to Nash equilibria here. This is important since
it would allow us to bound our solution quality (which is only em-
pirically demonstrated at present).

AcknowledgementThis work was funded by the ALADDIN and
ORCHID projects (www.aladdinproject.org andwww.orchid.
ac.uk).

7. REFERENCES
[1] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty. Next

generation/dynamic spectrum access/cognitive radio wireless networks: A
survey.Computer Networks, 50(13):2127–2159, 2006.

[2] A. Alaya-Feki, E. Moulines, and A. LeCornec. Dynamic spectrum access with
non-stationary multi-armed bandit. InSPAWC 2008, pages 416–420, 2008.

[3] S. Basagni, M. Conti, S. Giordano, and I. Stojmenovic.Mobile Ad Hoc
Networking. Wiley-Blackwell, 2004.

[4] R. Becker, A. Carlin, V. Lesser, and S. Zilberstein. Analyzing Myopic
Approaches for Multi-Agent Communication.Computational Intelligence,
25(1):31–50, February 2009.

[5] D. S. Bernstein, S. Zilberstein, and N. Immerman. The complexity of
decentralized control of markov decision processes. InUAI 2000, pages 32–37,
Stanford, USA, 2000.

[6] G. W. Brown. Iterative solution of games by fictitious play. In T. C. Koopmans,
editor,Activity Analysis of Production and Allocation, pages 374–376. New
York, 1951.

[7] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings. Decentralised
coordination of low-power embedded devices using the max-sum algorithm. In
Proc. AAMAS-08, pages 639–646, May 2008.

[8] K. Hiroaki. Robocup rescue: A grand challenge for multi-agent systems. In
Proc. ICMAS 2000, pages 5–12, Boston, MA, USA, 2000.

[9] S. Koenig, P. Keskinocak, and C. Tovey. Progress on agent coordination with
cooperative auctions. InProc. AAAI-10, pages 1713–1717, 2010.

[10] M. Liu, S. H. A. Ahmad, and Y. Wu. Congestion games with resource reuse and
applications in spectrum sharing. InProc. GameNets’09, pages 171–179, 2009.

[11] U. Mir, L. Merghem-Boulahia, and D. Gaiti. A cooperative multiagent based
spectrum sharing.Proc. AICT 2010, pages 124–130, 2010.

[12] A. Motamedi and A. Baha. Optimal channel selection for spectrum-agile
low-power wireless packet switched networks in unlicensed band.EURASIP
Journal on Wireless Communications and Networking, 2008.

[13] N. Pavlidou, A.J. Han Vinck, J. Yazdani, and B. Honary. Power line
communications: state of the art and future trends.IEEE Commun. Mag.,
41(4):34–40, 2003.

[14] L. Peshkin, K. Kim, N. Meuleau, and L. Kaelbling. Learning to cooperate via
policy search. InProc. UAI 2000, pages 307–314, San Francisco, USA, 2000.

[15] S. A. Williamson, E. H. Gerding, and N. R. Jennings. Reward shapingfor
valuing communications during multi-agent coordination. InProc. AAMAS–09,
pages 641–648, Budapest, Hungary, 2009.

