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ABSTRACT
Many multi-agent applications may involve a notion of spa-
tial coherence. For instance, simulations of virtual agents of-
ten need to model a coherent group or crowd. Alternatively,
robots may prefer to stay within a pre-specified communica-
tion range. This paper proposes an extension of a decentral-
ized, reactive collision avoidance framework, which defines
obstacles in the velocity space, known as Velocity Obsta-
cles (VOs), for coherent groups of agents. The extension,
referred to in this work as a Loss of Communication Ob-
stacle (LOCO), aims to maintain proximity among agents by
imposing constraints in the velocity space and restricting the
set of feasible controls. If the introduction of LOCOs results
in a problem that is too restrictive, then the proximity con-
straints are relaxed in order to maintain collision avoidance.
If agents break their proximity constraints, a method is ap-
plied to reconnect them. The approach is fast and integrates
nicely with the Velocity Obstacle framework. It yields im-
proved coherence for groups of robots connected through an
input constraint graph that are moving with constant veloc-
ity. Simulated environments involving a single team moving
among static obstacles, as well as multiple teams operating
in the same environment, are considered in the experiments
and evaluated for collisions, computational cost and prox-
imity constraint maintenance. The experiments show that
improved coherence is achieved while maintaining collision
avoidance, at a small computational cost and path quality
degradation.
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Figure 1: Two agents navigating around a static ob-
stacle: (a) the agents split to reach their goals with-
out collisions, while in (b) the agents move together
as a coherent team. The second behavior must be
achieved in a decentralized manner.

1. INTRODUCTION
Many practical applications of decentralized collision avoid-

ance may involve a secondary objective, where teams of
agents need to maintain a certain level of coherence. Co-
herence often implies that the agents should remain within
a certain distance of one another. In games and simulations,
the agents may need to remain within a certain distance be-
cause of implied social interactions, or because they need to
reach their destination together so as to be more effective in
completing an objective at their goal. For instance, a team
of agents in a game will be more effective in attacking an en-
emy if all the units move together against the opponent and
do not split into multiple groups. In mobile sensor networks,
robots may have to respect radial communication limits.

The Velocity Obstacle (VO) formulation [8, 27, 22] is a
framework for reactive collision avoidance. It is fast as it op-
erates directly in the velocity space of each agent. It is also a
decentralized approach as each agent reasons independently
about its controls, as long as it can compute the position and
velocity of its neighbors. Current work in Velocity Obstacles
does not directly address the issue of coherence. Consider
the situation in Figure 1, where two agents are required to
avoid an obstacle and reach their desired destination. An
application of the basic VO framework may result in the two
agents splitting and passing the obstacle from opposite ends.
It would be desirable, however, for the agents to select, in
a decentralized manner, a single direction to follow so as to
avoid the obstacle and reach their goal while maintaining



coherence. The decentralized nature of the solution will be
especially helpful in robotic applications because no commu-
nication will be required between robots. It will also provide
improved scalability in simulations and games.

This paper proposes a method for maintaining team co-
herence within the VO framework in a decentralized manner.
The desired coherence for a problem can be defined as a
graph of dependencies between agents. An edge in the graph
implies that the corresponding agents should remain within
a predefined distance as they move towards their goal. Given
this input graph, an agent constructs an additional obstacle
in the velocity space for each neighbor with which it wants
to maintain connectivity. This construction is referred to in
this work as a Loss of Communication Obstacle (LOCO).

Building on top of the VO framework allows LOCOs to focus
on coherence maintenance, rather than obstacle avoidance.
In order to construct the LOCO, the assumption is that a
neighbor will maintain its current control, as in the origi-
nal VO framework. Then, a LOCO defines the set of velocities
that will lead the two agents to be separated beyond a de-
sired distance within a certain time horizon. A scheme is
proposed for integrating information from the multiple VOs
defined for collision avoidance and the LOCOs defined for co-
herence maintenance. If the set of velocities that satisfy
both constraints is not empty for a satisfactory time hori-
zon, then the velocity in this set that brings the agent closer
to its goal is chosen. A valid velocity implies that, given
the neighbor does not change control, following this velocity
will not lead the agent into a collision or violation of prox-
imity constraints for the given horizon. If the set of valid
velocities is empty, then the objective of maintaining coher-
ence is dropped in favor of guaranteeing collision avoidance,
which should be satisfiable, unless oscillations appear in the
selected controls of agents. If two agents that are supposed
to retain proximity end up violating the distance constraint,
the proposed method makes them move in a direction that
will allow them to reconnect.

This paper describes the LOCO method and provides sim-
ulations which show that, by reasoning about distance con-
straints, it is possible to solve decentralized collision avoid-
ance problems while improving the coherence of a team. The
approach is built on top of and compared against a formula-
tion of velocity obstacles proposed in the literature for teams
of agents that execute the same protocol, referred to as Re-
ciprocal Velocity Obstacles [27, 22]. The experiments con-
sider disk-shaped agents that move with a constant speed
in a holonomic manner, i.e., the agents can freely choose
to follow any direction instantaneously. First, a series of
static environments are tested with a single team of agents
navigating while maintaining coherence. Different types of
formations between the teams are considered. Then, tests
for multiple teams of agents navigating in the same environ-
ment while maintaining coherence are performed.

The organization of the paper is as follows. First, in Sec-
tion 2, the relevant work to this problem is reviewed. Sec-
tion 3 provides a formal description of the problem as well
as the applicable notation used throughout the manuscript.
The Velocity Obstacle framework is outlined in Section 4
together with the proposed approach for maintaining team
coherence. Section 5 describes relevant results on various
experimental setups. Lastly, Section 6 concludes the paper
with a discussion of the technique and possible future work.

2. BACKGROUND

2.1 Virtual Agent Applications
The need to move multiple agents as a coherent team

arises in many virtual agent applications [25, 18], ranging
from crowd simulation [17], to pedestrian behavior analy-
sis [16, 19], to shepherding and flocking behaviors [15, 29].
Many methods make use of “steering behaviors”, with the
objective of having agents navigate in a life-like and im-
provisational manner [20]. These steering behaviors can be
combined to achieve higher-level goals, such as “get to the
goal while avoiding obstacles”or“join a group of characters”.
Similar is the objective of the social force model [10].

2.2 Coupled Multi-Robot Path Planning
There is also extensive literature on motion coordination

and collision avoidance in robotics. The multi-robot path
planning problem can be approached by either a coupled ap-
proach or a decoupled one [12, 13]. The coupled approach
plans for the composite robot, which has as many degrees
of freedom as the sum of degrees of freedom of each individ-
ual robot. Integrated with complete/optimal planners, the
coupled algorithm achieves completeness/optimality. Nev-
ertheless, it becomes intractable due to its exponential de-
pendency on the number of degrees of freedom.

2.3 Decoupled Multi-Robot Path Planning
Decoupled approaches plan for each agent individually.

In prioritized schemes, paths are computed sequentially and
high-priority agents are treated as moving obstacles by low-
priority ones [6]. Searching the space of priorities can assist
in performance [4]. Such decoupled planners tend to prune
states in which higher priority agents allow lower priority
ones to progress, which may eliminate the only viable solu-
tions. Search-based decoupled approaches consider dynamic
prioritization and windowed search [21], as well as spatial
abstraction for improved multi-agent heuristic computation
[24, 30]. In particular, mobile robotic sensor networks re-
quire that robots move while maintaining communication.
Techniques which attempt to tackle this issue have to bal-
ance a trade-off between centralized and decentralized plan-
ning. There are techniques that create networks of robots
to compute plans in a centralized manner across distributed
systems [5] or in a fully decentralized manner [3].

2.4 Formations
There is a significant amount of work on formation con-

trol, which is a way of moving multiple agents as a coherent
team. One direction is to use a virtual rigid body struc-
ture to define the shape of a formation, and then plan for
this rigid body [14]. Other techniques attempt to have more
flexible structures, where interactions between robots are
modeled as flexible joints [1]. An alternative is to first gen-
erate a feasible trajectory for the group’s leader according
to its constraints and then use feedback controllers for the
followers [7, 2].

2.5 Reactive Obstacle Avoidance
Many techniques attempt to solve the problem of colli-

sion avoidance using reactive methods. One technique used
in robotics is the Dynamic Window approach, which oper-
ates directly in the velocity space of a robot, reasoning over
the achievable velocities within a small time interval [9]. An



Figure 2: Agents a and b share a proximity con-
straint dprox. Agent a moves with velocity va where
‖v‖ = s and can sense all agents within dsense.

alternative approach, known as the Velocity Obstacle (VO),
assumes that neighboring agents will keep following their
current control. Based on this assumption, it defines conic
regions in velocity space, which are invalid to follow, as they
lead to a collision with the neighbor at some time in the
future [8]. If the future trajectory of other robots is known,
non-linear VOs can be constructed [11]. The basic VO for-
mulation can result in oscillations in motion when multiple
agents execute the same algorithm. The reciprocal nature
of other robots can be taken into account in order to avoid
these oscillations, which leads to the definition of Reciprocal
Velocity Obstacles [27]. Using this idea of reciprocity, the
robots can attempt to optimally steer out of collision courses
with other robots using an extension of this framework called
Optimal Reciprocal Collision Avoidance (ORCA) [26]. This
technique was extended to 3D cases using simple-airplane
systems [23]. Further work extends the VO formulation to
work with acceleration constraints as well as many kinemat-
ically and dynamically constrained systems [28].

2.6 Contribution
This work uses a reactive technique to define new obsta-

cles in the velocity space, called Loss of Communication Ob-
stacles (LOCO). LOCOs are computed quickly and, when inte-
grated with Velocity Obstacles, allow robots to reactively
avoid static and dynamic obstacles while maintaining a bet-
ter sense of coherence. The new technique does not impose
communication requirements, yet maintains connectivity in
a decentralized manner. The approach still requires that
robots are able to sense the position and velocity of other
robots in the scene, as well as the position of static obstacles.

3. PROBLEM SETUP
Consider n planar, holonomic disks moving with constant

speed s. Let the set of all agents beA. Each disk agent a ∈ A
has radius ra and can instantaneously move with a velocity
vector va that has magnitude s. Agents are assumed to be
capable of sensing the position and velocity of other agents
in the environment within a sensing radius dsense. Further-
more, the agents have available a map M of the environment
that includes the static obstacles. The configuration space
for each agent is Q = R2, and it can be partitioned into two

sets, Qfree and Qobst, where Qfree represents the obstacle
free part of the space, and Qobst is the part of the space
with obstacles. Each agent follows a trajectory qa(t), where
t is time. Initially an agent is located at a configuration
qa(0) = qinita and has a goal location qgoala .

Consider the distance d(a, b, t) between agents a and b at
time t (Figure 2). If d(a, b, t) < ra + rb, then agents a and
b are said to be in collision at time t. Collisions with static
obstacles occur when qa(t) ∈ Qobst. An input graph G(A,E)
is provided that specifies which agents need to be in close
proximity. The vertices of graph G correspond to the set
of agents A and an edge (a, b) implies that agents a and b
must satisfy d(a, b, t) ≤ dprox, where dprox is a proximity
constraint.

The objective is for the agents to move from qinit to qgoal

without any collisions with obstacles or among them, while
satisfying as much as possible the proximity constraints spec-
ified in the input graph G. More formally, all agents should
follow trajectories qa(t) for 0 ≤ t ≤ tfinal, so that ∀a ∈ A :
• qa(0) = qinita ,
• qa(tfinal) = qgoala ,
• qa(t) ∈ Qfree, ∀t ∈ [0, tfinal],
• and ∀b : ra + rb < d(a, b, t) < D, where

- D = dprox, if ∃(a, b) ∈ E of graph G,
- and D =∞ otherwise.

4. APPROACH

4.1 Velocity Obstacle Framework
Velocity obstacles are defined in the relative velocity space

of two agents. V O∞
a|b can be geometrically constructed as

in Figure 3. Agent a’s geometry is reduced to a point by
performing the Minkowski sum of agent a and agent b: a⊕b.
Then, tangent lines to the Minkowski sum disk a ⊕ b are
constructed from agent a. These tangent lines bound a conic
region. This region represents the space of all velocities va
of agent a that would eventually lead into collisions with
agent b assuming that b has zero velocity. Given that agent
b has a velocity vb, the conic region needs to be translated
by the vector vb. This construction assumes an infinite time
horizon. In practice, it is often helpful to truncate the VO

based on a finite time horizon τ . This VO represents all
velocities va, which will lead into a collision within time
t ≤ τ , given that agent b keeps moving with velocity vb.

This work adopts a modification of the basic VO frame-
work, which deals with the case that the two agents are
reciprocating [27]. Reciprocal Velocity Obstacles (RVOs) are
created by translating the VO according to a weighted aver-
age of the agents’ velocities, (α · vA) + ((1−α) · vB) where α
is a parameter representing the level of reciprocity between
agents A and B. If both agents are equally reciprocal, then
α = 0.5.

Given this framework, an algorithm for calculating valid
velocities for decentralized collision avoidance can be de-
fined. Agent a will have a set of reachable velocities and
the task is to select one such velocity, which is collision-free.
For holonomic disk agents moving at constant speed s, the
set of reachable velocities would be Vreach = {v|‖v‖ = s}.
Let the set of velocities which are invalid according to all
the VOs for neighbors of a be defined as follows: Vinv =
{v| ∃ VOa|b s.t. v ∈ VOa|b, b ∈ A, a 6= b}. Then, the set of
feasible velocities which are reachable but not in the invalid
set is defined as Vfeas = Vreach \ Vinv. The selected veloc-



Figure 3: Construction of V O∞
a|b for an infinite time

horizon. The Minkowski sum of a and b, a ⊕ b is
used to define a cone in velocity space, which is then
translated by vb. The shaded region represents all
velocities va, which lead a into collision with b.

Figure 4: Construction of LOCOτa|b and VVCτa|b. The cir-
cular region represents the viable velocities to main-
tain d(a, b, t) ≤ dprox for time horizon τ . The shaded
region outside the disk represents invalid velocities
for agent a.

ity should be feasible, v ∈ Vfeas, and typically minimizes a
metric relative to the preferred velocity vprefa , e.g., a velocity
vector that points to the goal. More details will be provided
regarding the specific velocity selection scheme used in this
work, in section 4.4.

4.2 Loss of Communication Obstacles
The proposed approach extends the VO framework by cre-

ating new obstacles in the velocity space. These obstacles
aim to prevent loss of communication, or more generally,
to satisfy proximity constraints between agents in the form
d(a, b, t) ≤ dprox for agents a and b for at least a finite time
horizon τ . The LOCO imposed by agent b on agent a for a
horizon τ , denoted as LOCOτa|b, is the set

LOCO
τ
a|b = {v| ∀ t ∈ [0, τ ] : d(a, b, t) ≤ dprox},

under the assumption that agent b follows its current veloc-
ity vb for at least time τ .

Assume agents a, b ∈ A for which (a, b) ∈ E of the input
graph G. The relative position of agent b for agent a will be

denoted as qab = qb− qa. If the relative position at time t is
q(ab)(t), then at time t + τ the relative position of the two
agents is going to be:

qab(t+ τ) = q(ab)(t) + τ ∗ (Vb − Va).

For the two agents to be able to communicate at time t+ τ ,
it has to be that:

(qXab(t+ τ))2 + (qYab(t+ τ))2 ≤ d2prox ⇒

(qXab(t)+τ∗(V Xb −V Xa ))2+(qYab(t)+τ∗(V Yb −V Ya ))2 ≤ d2prox ⇒

(
qXab(t)

τ
+ V Xb − V Xa )2 + (

qYab(t)

τ
+ V Yb − V Ya )2 ≤ dprox

2

τ2
⇒

(V Xa −
qXab(t)

τ
− V Xb )2 + (V Ya −

qYab(t)

τ
− V Yb )2 ≤ (

dprox
τ

)2

The last expression implies that the velocity Va of agent a
has to be within a circle with center ( qab

τ
+ Vb) and radius

dprox
τ

. This circle will be referred to as the valid velocity
circle (VVCτa|b) and is the complement of the LOCOτa|b. Figure
4 gives an example of a VVC circle.

An agent a, however, may have multiple neighbors leading
to the definition of multiple LOCOs and VVCs. A choice that is
made for simplicity is to consider the same time horizon τ for
the definition of all the LOCOs for all the neighbors. Then,
the set of velocities va that will not allow a to maintain
connectivity with at least one neighbor b in the graph G is
the union of individual LOCOs:

LOCO
τ
a =

⋃
∀b | ∃(a,b)∈E

LOCO
τ
a|b

There are two complications arising from this definition.
Firstly, it is not straightforward to compute the longest
horizon for which this union is not the entire plane, i.e.,
the longest horizon for which the intersection of VVCs is not
empty. The problem is that both the centers and the radii
of the VVCs are changing for different time horizons. Sec-
ondly, the resulting region is rather complex to describe,
as it corresponds to multiple circle intersections. This rep-
resentation can impose significant computational overhead
when the LOCOs are integrated with VOs.

Instead of computing the exact intersection of VVCs, this
paper proposes a conservative approximation that is easier
to represent and beneficial for computational purposes. The
approximation of the valid set of velocities corresponds to a
circle inside the intersection of VVCs. Figure 5 illustrates the
procedure for two and three neighbors. Given two circles
with centers Cb and Cc and radii rb and rc, the inscribed
circle of their intersection has the following radius and cen-
ter:

rbc =
rb + rc − ||Cb, Cc||

2

Cbc = Cb + (rb − rbc)
Cc − Cb
||Cb, Cc||

The procedure works in an incremental manner. First it
computes the inscribed circle (Cbc, rbc) of the intersection of
two VVCs, and then computes the inscribed circle of (Cbc, rbc)
with another VVC and so on.



Figure 5: The conservative approximation of VVCτa in
the velocity space of agent a for two (left) and three
(right) neighbors. The white circle corresponds to
velocities that are guaranteed to maintain connec-
tivity with the neighbors for time τ .

4.3 Integration of VOs and LOCOs
The final step for computing the LOCOτa is to select a suit-

able time horizon. A tuning approach over consecutive sim-
ulation steps is used. Given the horizon τ from the previous
time step, the LOCOτa is computed as in Figure 5. Then the
set Vvalid = Vreach \LOCOτa is computed, which considers the
reachable controls that do not violate the LOCO constraints.
This operation can be done in an efficient manner especially
for systems with constant speed s, as it corresponds to a cir-
cle to circle intersection. In the general case for systems with
varying velocity there are still computational advantages, as
the circular representation of the VVC greatly increases the
speed in which Vvalid can be computed. Once Vvalid is avail-
able for a given τ , the measure of |Vvalid| is compared against
a predefined threshold |Vthresh|. If |Vvalid| < |Vthresh|, then
τ is decreased and Vvalid is recomputed. A smaller τ implies
that a bigger set of valid velocities for proximity mainte-
nance will be returned that provides guarantees for a shorter
horizon. Alternatively, if |Vvalid| > |Vthresh|, then τ is in-
creased. This will return a smaller set of valid velocities
but will provide guarantees for a longer horizon. This tun-
ing process continues until Vvalid comes close to Vthresh, but
this takes place over multiple simulation steps and adapts
on the fly to changes in the relative configuration of agents.
The effects of tuning τ can be seen in Figure 6.

Once LOCOτa has been computed, it must then be included
in the list of constraints in order to correctly compute Vfeas,
which is now redefined to be Vfeas = Vvalid \ Vinv, as in
Figure 6. Sometimes, the additional constraints imposed
by LOCOs, cause Vfeas to become empty. In this situation,
the LOCO constraints are ignored, as attempting to maintain
communication may be perilous to the agent’s safety.

4.4 Velocity Selection
Each agent has a preferred velocity it would like to fol-

low, denoted as vprefa for agent a. Ignoring the proximity
constraints and in obstacle-free environment, the preferred
velocity should be in the direction of the goal configuration
vgoal = qgoala − qa. If there are obstacles, however, setting
the goal velocity in the same manner can lead the agents
into local minima, causing the agent to become stuck be-
hind the obstacle. This work avoids this issue by computing
a discrete wave-front function in environments with obsta-
cles. The goal velocity is computed as the direction to the

Figure 6: An example of how changing the horizon
affects the set of feasible controls. The left image has
a larger value for τ while the right has a smaller value
of τ . Larger values of τ provide stronger guarantees
for communication maintenance, but make finding a
feasible control more difficult.

cell with the minimum distance to the goal within a 3 × 3
region from the current cell of the agent.

In order to account for agents violating proximity con-
straints, a weighted velocity selection scheme is employed
that takes neighbors into account. For some agent a, let di
be the distance from agent a to another agent i and Xi be
the state of agent i, where agent i is part of the proxim-
ity graph of agent a. Then, for n agents in the proximity
graph of agent a, the average weighted configuration can be
computed as:

qavg =

∑n
i

di
dprox

qi∑n
i

di
dprox

Then, davg = ||qa − qavg|| is the distance between agent a
and qavg. Let vavg = qavg − qa be the vector pointing to
qavg, and let vgoal be the vector towards the goal computed
through the wavefront. Then, agent a’s preferred velocity is
computed as follows:

vprefa =
davg
dprox

vavg +
dprox − davg

dprox
vgoal

Thus, agents which are farther away from their proximity
constraints (i.e., have violated constraints) will be inclined to
shorten this distance, whereas agents that have not violated
any proximity constraints move towards their goals.

Once vprefa is computed, it can be checked for validity
given the set Vfeas. If vprefa is feasible, then agent a will
use it. In the case that vprefa is not in Vfeas, a different
feasible control must be computed. In the general case, the
region Vfeas defines an area in velocity space which must be
searched to find a control. The control found is the velocity
v ∈ V afeas which minimizes distance between v and vprefa .

The distance metric used in this approach is the Euclidean
distance in the velocity space. Other metrics for finding the
distance between velocities in this space are possible [28]. A
list of intersections of the boundaries of the RVOs with V areach
is generated and a rotational sweep algorithm determines
which points are valid. These points define the boundaries
of the V afeas regions. They are checked to find which one
of them minimizes the distance to the preferred velocity :



Figure 7: The environments on which the experiments were executed

Figure 8: Examples of input proximity graphs used
in the experiments.

minv∈V a
feas

[d(v, vprefa )]. In the general case, V afeas will be a

non-convex region or possibly disjoint non-convex regions in
the velocity space where a variant of the simplex algorithm
can be used to find the optimum.

In the event that there is no valid velocity available, the
agent will select its current velocity. The reasoning behind
this is that in the V O framework, agents assume that their
neighbors will keep using their current control. Thus, choices
that keep the current control are preferable for this scheme.

5. RESULTS
The approach was implemented using a simulation soft-

ware platform. Experiments were run on computers with a
3.06 GHz Intel Core 2 Duo processor and 4GB of RAM. The
experiments are organized in the following manner. First,
experiments were conducted using a single team of agents
moving in an environment with obstacles. Then, experi-
ments with multiple teams were run both in an obstacle-
free world and in an environment with obstacles. A team
of agents corresponds to a connected component of the in-
put graph G. The experiments conducted compare the LOCO

formulation against RVOs. The reason for comparing against
RVOs, rather than other formation techniques, is due to the
decentralized nature of the LOCO algorithm, which requires
no additional information outside the VO framework. In ad-
dition, LOCOs utilize the notion of coherence, which is more
abstract in nature than formations. Thus, RVOs are the most
relevant technique to experiment against. Each experiment

was measured with regards to the following metrics:
• total number of collisions during the entire experiment,
• computation time per frame,
• total time to solve the problem,
• average ratio of respected proximity links per frame,
• and number of successful runs.

For each variation of the environment, input graph G and
algorithm, there were 10 runs executed. Each run had a ran-
dom initial qinit and goal configuration qgoal, which, satisfied
the proximity link in the graph G.

5.1 Single Team
For the single team scenarios, two different environments

were tested with varying numbers of agents. The PACHINKO

environment uses a series of walls with small gaps (Figure
7(left)), and a team of 10 agents was considered in this case.
The proximity graph imposed on the team is shown in Figure
8(top left). The WEDGE environment (Figure 7(middle left))
attempts to split the agents into two lanes. The proximity
graph imposed on the team is shown in Figure 8(top right).

Table 1: Results for a single team.

Figure 9: Coherence over time for 24 agents in the
wedge grid experiment.



Table 1 shows that there is a significant improvement in
terms of the percentage of links maintained by the LOCO-
based approach relative to RVOs. Another interesting statis-
tic to examine is the coherence of agents over time, shown
in Figure 9, which the LOCO-based approach also improves.
This comes at the cost of a slightly increased computational
cost and increased time taken by the algorithm to bring all
of the agents to their goals. An example of the paths taken
by 24 agents in the PACHINKO environment is shown in Figure
10. Both approaches were able to solve all of the problems
and without any collision, with the exception of one experi-
ment for the WEDGE environment, where a single collision was
reported.

Figure 10: An example of the paths taken by 24
agents in the PACHINKO environment for the RVO (left)
and LOCO (right) approach.

5.2 Multiple Teams
The performance of LOCOs was evaluated against RVOs in

a scenario involving four teams of agents navigating in an
obstacle-free environment as shown in Figure 7(middle right)
(CROSSROADS) and for the connectivity graph for each team
shown in Figure 8(bottom left). There were four agents
in each team. The last setup involved again four teams
of agents, each one of which had six agents connected as in
Figure 8(bottom right). This time the environment involved
a random set of rectangular obstacles as in Figure 7(right).
For each of the 10 runs the rectangles were randomly placed.
The results are shown in Table 2.

In both the random and crossroads examples, LOCOs out-
perform RVOs as far as connections are concerned, though
oftentimes LOCOs take more time to solve the specified prob-
lem. On different problems, both approaches can take some
extra time to complete the problem for two different rea-
sons. The VOs take extra time as agents will sometimes get
caught on obstacles or are pushed away from their goals by
agents on other teams. LOCOs may take extra time as they
spend effort navigating agents in densely-packed situations
that occur at the center of the environment as they cross
over. Furthermore, LOCOs exhibit a flocking behavior which
sometimes causes agents to overshoot their goals.

Table 2: Results for multiple teams.

In the random obstacle environment, LOCOs imposed a
very small computational overhead. The crossroads scenario
resulted in a more significant increase, because all agents
meet in the center of the environment nearly at the same
point in time. This increases computational cost, as LOCOs
must tune their horizon and reconnect broken proximities
more frequently. In both environments, LOCOs and RVOs re-
sulted in no collisions, with the exception of one run of RVOs
in the random environment. The main focus of these re-
sults, however, is the improvement in maintained links. The
LOCO-based approach maintained 95% of the proximity links,
which was an improvement over RVOs. LOCOs cause a small
degradation in path quality, which is measured in the num-
ber of steps it took for agents to solve the environment. In
addition to this, LOCO failed to solve one of the randomly
generated environments, because agents tend to spread to
the edge of their proximity constraints, which may cause
problems when agents move around obstacles. Overall, the
results seem to validate the initial approach, as the goal of
LOCOs is to maintain safety while providing better proximity
maintenance is experimentally supported.

6. DISCUSSION
This work provides the formal definition for a new kind of

obstacle in the velocity space of moving agents, referred to as
a Loss of Communication Obstacle (LOCO), which correspond
to proximity constraints with neighboring agents. These
obstacles can be easily computed and integrated into the
existing framework of Velocity Obstacles for decentralized
collision avoidance. Additionally, an approach for tuning
the time horizon parameter for these obstacles over multiple
simulation steps is provided. These additional constraints
increase the overall coherence of teams of agents while navi-
gating through environments with static obstacles and other
moving bodies. LOCOs can be dropped if it is determined that
it is too difficult to maintain proximity without jeopardizing
safety. The implementation of the technique shows improved
coherence for agents who share communication links without
sacrificing safety at a small computational overhead.

A natural extension is to consider more challenging sys-
tems, including kinematically and dynamically constrained
systems. Adapting LOCOs to work in these cases is possible,
as there have already been extensions on using VOs with
dynamics. Since these extensions are in an orthogonal di-
rection to the LOCO algorithm, it is easy so as to achieve
decentralized coherence maintenance for dynamic systems.
Further extending the work to applications of real robots will
require introducing a method for handling sensor errors, as
well creating a more robust reconnection strategy built on
this error model. One drawback of reactive techniques is
that they may get stuck in local minima. It is interesting to
better study the integration with the wavefront approach or
another global planner so as to guarantee that agents will
make progress towards their goal while guaranteeing safety
and connectivity. A global planner can also improve the
performance of the reconnection strategy. Currently, the di-
rection to the agent with which connectivity has been lost
ignores the existence of local obstacles. Another interesting
direction is to study reciprocity tuning. More constrained
agents, such as those who create a bridge for two otherwise
disconnected agents, may be less able to reciprocate than
others. Further reducing the computational overhead of the
technique would also have great benefits, since larger-scale



tests could be performed and have practical application ar-
eas, as in crowd simulation and video games.
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