
Reinforcement Learning Transfer via Sparse Coding

Haitham B. Ammar
Maastricht University, The Netherlands

haitham.bouammar@maastrichtuniversity.nl

Karl Tuyls
Maastricht University, The Netherlands
k.tuyls@maastrichtuniversity.nl

Matthew E. Taylor
Lafayette College, USA

taylorm@lafayette.edu

Kurt Driessens
Maastricht University, The Netherlands

kurt.driessens@maastrichtuniversity.nl
Gerhard Weiss

Maastricht University, The Netherlands
gerhard.weiss@maastrichtuniversity.nl

ABSTRACT
Although reinforcement learning (RL) has been successfully de-
ployed in a variety of tasks, learning speed remains a fundamental
problem for applying RL in complex environments. Transfer learn-
ing aims to ameliorate this shortcoming by speeding up learning
through the adaptation of previously learned behaviors in similar
tasks. Transfer techniques often use an inter-task mapping, which
determines how a pair of tasks are related. Instead of relying on a
hand-coded inter-task mapping, this paper proposes a novel trans-
fer learning method capable of autonomously creating an inter-task
mapping by using a novel combination of sparse coding, sparse
projection learning and sparse Gaussian processes. We also pro-
pose two new transfer algorithms (TrLSPI and TrFQI) based on
least squares policy iteration and fitted-Q-iteration. Experiments
not only show successful transfer of information between similar
tasks, inverted pendulum to cart pole, but also between two very
different domains: mountain car to cart pole. This paper empiri-
cally shows that the learned inter-task mapping can be successfully
used to (1) improve the performance of a learned policy on a fixed
number of environmental samples, (2) reduce the learning times
needed by the algorithms to converge to a policy on a fixed number
of samples, and (3) converge faster to a near-optimal policy given
a large number of samples.

Categories and Subject Descriptors
I.2.6 [Learning]: Miscellaneous

General Terms
Algorithms, Performance

Keywords
Transfer Learning, Reinforcement Learning, Sparse Coding, Inter-
task mapping, Sparse Gaussian Processes, Optimization

1. INTRODUCTION

Appears in: Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2012),
Conitzer, Winikoff, Padgham, and van der Hoek (eds.), June, 4–8, 2012,
Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Transfer learning is the field that studies how to effectively lever-
age knowledge learned from one or more source tasks when learn-
ing one or more target tasks. Although TL has been widely studied
within the supervised learning framework (e.g., [9, 10]), TL in RL
domains only recently started to gain interest and is very much in
flux [12, 18, 21].

Reinforcement learning (RL) is a popular framework that allows
agents to solve sequential decision making problems with minimal
feedback. Unfortunately, RL agents may learn slowly in large or
complex environments due to the computational effort needed to
converge to an acceptable performing policy. TL is one technique
that copes with this difficulty by providing a good starting policy
or prior for the RL agent.

Typically, the source and target task are different but related. In
RL settings, the source and target tasks have different representa-
tions of state and action spaces, requiring a mapping between the
tasks. An inter-task mapping matches each state/action pair of the
source task to its correspondance in the target task. Two issues
stand out in current TL for RL research. First, although there have
been a number of successes in using an inter-task mapping for TL,
the mappings are typically hand-coded and may require substan-
tial human knowledge [19]. Two fundamental open questions are,
first, to what extent it is possible to learn the mapping automatically
and, second, how should an inter-task mapping be best leveraged to
produce successful transfer?

We tackle these problems and make a number of contributions.
The primary contribution is a novel method to automatically learn
an inter-task mapping between two tasks based on sparse coding,
sparse projection learning, and sparse Gaussian processes. More
specifically, we define an inter-task mapping to be a function that
relates state-action successor state triplets from the source task to
the target task. This inter-task mapping is more than a one-to-one
mapping between the state and/or action spaces of the MDPs, as
it also includes non-linear terms that are automatically discovered
by global approximators, which ultimately enhance the efficacy of
transfer. This inter-task learning framework can be split into three
essential parts. The first is a dimensional mapping of both the
source and target task state-action spaces of the MDPs. The sec-
ond is the automatic discovery of a high dimensional informative
space of the source task. This is achieved through sparse coding, as
described in Section 4.1.2, ensuring that transfer is conducted in a
high representational space of the source task. In order to use a sim-
ilarity measure among different patterns, the data should be present
in the same space, which is why the target task triplets need to

be projected to the high representational space of the source (done
via sparse projection learning, described in Section 4.2). The third
and final step is to approximate the inter-task mapping via a non-
parametric regression technique, explained in Section 4.3.

Another contribution is to introduce two new algorithms for trans-
fer between tasks of continuous state spaces: Transfer Least Squares
Policy Iteration (TrLSPI) and Transfer Fitted-Q-Iteration (TrFQI).
Experiments illustrate the feasibility and suitability of the presented
approach, and furthermore show that this introduced method can
successfully transfer between two different RL benchmarks: trans-
fer is successful between the inverted pendulum and the cart pole,
as well as between the mountain car and the cart pole.

2. RELATED WORK
This section presents a selection of related work, focused on

transfer learning for reinforcement learning tasks.
TL in RL has been of growing interest to the agents community,

due in part to its many empirical successes at significantly improv-
ing the speed and/or quality of learning [18]. However, the majority
of existing work assumes that 1) the source task and target task are
similar enough that no mapping is needed, or 2) an inter-task map-
ping is provided to the agent.

For example, many authors have considered transfer between
two agents which are similar enough that learned knowledge in the
source task can be directly used in the target task. For instance,
the source and target task could have different reward functions
(e.g., compositional learning [13]) or have different transition func-
tions (e.g., changing the length of a pole over time in the cart pole
task [12]). More difficult are cases in which the source task and
target task agents have different state descriptions or actions. Some
researchers have attempted to allow transfer between such agents
without using an inter-task mapping. For example, a shared agent
space [3] may allow transfer between such pairs of agents, but re-
quires the agents to share the same set of actions, and requires an
agent-centric mapping. Other approaches assume that an inter-task
mapping is provided, such as Torrey et al. [21] who transfer advice
between agents and Taylor et al. [19] who transfer Q-value func-
tions by leveraging an existing inter-task mapping.

The primary contrast between these methods and the current
work is that we are interested in learning a mapping between states
and actions in pairs of tasks, rather than assuming that it is pro-
vided, or rendered unnecessary because of similarities between source
task and target task agents, a requirement for fully autonomous
transfer.

There has been some recent work on learning such mappings.
For example, semantic knowledge about state features between two
tasks may be used [4, 8], background knowledge about the range
or type of state variables can be used [16, 20], or transition mod-
els for each possible mapping could be generated and tested [17].
However, there are currently no general methods to learn an inter-
task mapping without requiring 1) background knowledge that is
not typically present in RL settings, or 2) an expensive analysis of
an exponential number (in the size of the action and state variable
sets) of inter-task mappings. This paper overcomes these problems
by automatically discovering high-level features and using them to
transfer knowledge between agents without suffering from an ex-
ponential explosion. Others have focused on transferring samples
between tasks. For instance, Lazaric et al. [6] transfers samples
in batch reinforcement learning using a compliance measure. The
main difference to this work is that we neither assume any similari-
ties between the transition probabilities, nor restrict the framework
to similar state and/or action feature representations.

In contrast to all existing methods (to the best of our knowl-
edge), this paper allows for differences between all variables de-
scribing Markov decision processes for the source and target tasks
and learns an inter-task mapping, rather than a mapping based on
state features. Furthermore, the framework introduced in this pa-
per can use state-dependent action mappings, allowing additional
flexibility.

3. PRELIMINARIES
This section briefly covers reinforcement learning and sparse

coding, introducing the necessary notation for the rest of the paper.
Section 4 will draw the connection between the two and introduce
the main contribution of the paper.

3.1 Reinforcement Learning (RL)
In an RL problem, an agent must decide how to sequentially se-

lect actions to maximize its expected return [1, 15]. Such problems
are typically formalized as Markov decision processes (MDPs),
defined by 〈S,A, P,R, γ〉. S is the (potentially infinite) set of
states, A is the set possible actions that the agent may execute,
P : S × A × S → [0, 1] is a state transition probability function,
describing the task dynamics, R : S × A × S → R is the reward
function measuring the performance of the agent, and γ ∈ [0, 1) is
the discount factor. A policy π : S × A → [0, 1] is defined as a
probability distribution over state action pairs, where π(s, a) rep-
resent the probability of selecting action a in state s. The goal of
an RL agent is to improve its policy, potentially reaching the opti-
mal policy π? which maximizes cumulative future rewards. It can
be attained by taking greedy actions according to the optimal Q-
functionQ?(s, a) = maxπ E[

∑∞
t=0 γ

tR(st, at)|s = s0, a = a0].
In tasks with continuous state and/or action spaces, Q and π can-
not be represented in a table format, typically requiring sampling
and function approximation techniques. This paper uses two such
techniques, Least Squares Policy Iteration (LSPI) and Fitted-Q-
Iteration (FQI), discussed later.

3.2 Sparse Coding
Sparse coding (SC) [7] is an unsupervised feature extraction tech-

nique that finds a high-level representation for a set of unlabeled
input data by discovering a succinct, over-complete basis for the
provided data set.

Given a set of m k-dimensional vectors, ζ, SC aims to find a
set of n basis vectors, b, and activations, a, with n > k such that
ζ(i) ≈

∑n
j=1 a

(i)
j bj , where i and j represent the number of input

data patterns and number of bases, respectively. SC begins by as-
suming a Gaussian and a sparse prior on the reconstruction error
(ζ(i) −

∑n
j=1 a

(i)
j bj) and on the activations, solving the following

optimization problem:

min
{bj},{a

(i)
j }

m∑
i=1

1

2σ2
||ζ(i) −

n∑
j=1

bja(i)j ||
2
2
+ β

m∑
i=1

n∑
j=1

||a(i)j ||1

(1)

s.t. ||bj ||22 ≤ c,∀j = {1, 2, . . . , n}

The problem presented in Equation 1 is considered to be a “hard”
optimization problem as it is not jointly convex (in the activations
and bases). However, fast and efficient optimization algorithms
exist [7] and were used, as described in Section 4.1.

4. LEARNING AN INTER-TASK MAPPING
In this section, we cast the problem of learning the inter-task

mapping, χ, as a supervised learning problem. We define χ to be
a mapping of state-action-state triplets from the source task to the
target task. Learning such a mapping requires related triplets from
both tasks as data points for training. Unfortunately, obtaining such
corresponding triplets is itself a hard problem — it is not trivial for
a user to describe which triplets in the source task correspond to
which triplets in the target task.

To automatically construct these data points, we propose a novel
framework utilizing sparse coding together with an L1 projection
scheme.

We approach the problem by automatically transforming the source
task space (i.e., state-action-state space) into a higher representa-
tional space through SC, followed by a projection of the target task
triplets onto the attained bases. We then use a simple Euclidean
distance measure1 to gauge similarity (Section 4.1). At this stage,
the data set is ready to be provided to the learning algorithm so that
it may construct the inter-task mapping.

The following sections further clarify each of the above steps and
explain the technicalities involved.

4.1 Sparse Coding Transfer for RL
As described in Section 3.2, SC is an efficient way to discover

high-level features in an unlabeled data set. First, SC learns how
best to match the dimensions of the two different MDPs. Second,
SC discovers higher-level features for the low dimensional task’s
state-action-state space.

4.1.1 Mapping the Source and Target Dimensions
To generate triplet matchings through SC, the first step is to

match the dimensions of the state-action-state spaces of the source
and target MDPs, which are likely to be different. In principle,
after this step any existing TL in RL technique can be used. How-
ever, this paper goes further and proposes a new transfer frame-
work based on the discovered bases and activations, described in
Section 5.

This “dimensional mapping” process is summarized in Algo-
rithm 1. In short, it sparse codes random triplets 〈s0, a0, s

′
0〉 from

the task with the lowest dimensionality, constrained to learn a num-
ber of bases (d1) equal to the higher dimension of the unmodified
task (regardless of which is the source and target task). We use
existing algorithms [7] to solve the Equation from step 2 of Algo-
rithm 1.

4.1.2 High Information Representation
After mapping the source and target dimensions as described in

the previous section, SC is again used to discover a succinct higher
feature bases of the activations than the unified dimensional spaces
that were discovered in Section 4.1.1. If successful this step will
discover new features in the source task that could better repre-
sent relations with the target task than the bases discovered in Sec-
tion 4.1.1. Algorithm 2, similar in spirit to Algorithm 1, describes
this process.

Algorithm 2 sparse codes the activations, which represent the
original source task triplets of the MDPs, to a higher representa-
tional space, dn.2 This stage should guarantee that we project the
1A simple Euclidian distance might not be optimal, but optimiz-
ing this measure is planned as future research. Experiments show
that more than reasonable results can be attained using this simple
approximation.
2In our experiments we have set dn to be 100, a relatively high
number.

Algorithm 1 Sparse Coding TL for RL

Require: Triplets {〈s0, a0, s
′
0〉}mi=1 and {〈s1, a1, s

′
1〉}fj=1 from

both MDPs
1: Determine d0 and d1, the dimensions of the state-action-state

spaces for both MDPs, where d0 ≤ d1
2: Sparse code the lower dimensional triplets by solving:

min
{bj},{a

(i)
j }

m∑
i=1

1

2σ2
||〈s0, a0, s

′
0〉(i) −

d1∑
j=1

bja(i)j ||
2
2

+β

m∑
i=1

d1∑
j=1

||a(i)j ||1

s.t. ||bj ||22 ≤ c,∀j = {1, 2, . . . , d1}

3: Solve the above equation by using an existing algorithm [7]
4: Return the Activation matrix (A ∈ Rm×d1) and the Bases (B ∈

Rd1×d0)

Algorithm 2 Succinct High Information Representation of MDPs
Require: Activations A from Algorithm 1, Target number of new

high dimensional bases dn
1: Represent the activations in the dn bases by solving the follow-

ing problem (again using the algorithm in [7]):
2:

min
{zj},{c

(i)
j }

m∑
i=1

1

2σ2
||〈a1:d1〉

(i) −
dn∑
j=1

zjc(i)j ||
2
2

+β

m∑
i=1

dn∑
j=1

||c(i)j ||1

s.t. ||zj ||22 ≤ o, ∀j = {1, 2, . . . , dn}

3: return Return new activations C ∈ Rm×dn and bases Z ∈
Rdn×d1

triplets of the source task MDP into a high feature space where a
similarity measure can be used to find a relation between the source
and target task triplets. Note that there are no restrictions on the
number of bases: unneeded bases will end up with an activation of
zero.

Algorithm 2 discovers new features in the source or target state-
action-state spaces. As TL typically transfers from a low dimen-
sional source task to a high dimensional target task, SC determines
new bases that are of a higher dimensionality than the original rep-
resentation used for states and actions in the source task. These
newly discovered bases can describe features not anticipated in the
original design of the MDP’s representation. These new features
can highlight similarities between the source and target task thus
helping and guiding the transfer learning scheme. The re-encoded
triplets—described as a linear combinations of the bases and acti-
vations (i.e., AB)—do not yet relate to the triplets of the other task.
The target task triplets still need to be projected towards these new
sparse coded source task bases features. This is done as described
in Section 4.2.

4.2 L1 Sparse Projection Learning
Once the above stages have finished, the source task triplets are

described via the activations C (generated in Algorithm 2). How-
ever, target task triplets still have no relationship to the learned acti-
vations. Since we are seeking a similarity correspondence between

the source and target task triplets, the target task triplets should
be represented in the same high informational space of the source
task. Therefore, the next step is to learn how to project the target
task triplets onto the Z basis representation. The overall scheme is
described in Algorithm 3, where the activations are learned by solv-
ing the L1 regularized least squares optimization problem in step 2.
This optimization problem guarantees that the activations are as
sparse as possible and is solved using the interior point method [2].
The next step will be to order the data points from both the source
and the target tasks, which are then used to approximate the inter-
task mapping.3

4.3 Approximating an Inter-Task Mapping
To finalize the problem of approximatingχ, corresponding triplets

from the source and target task should be provided to a regressor.
We approach this problem by using a similarity measure in the high
feature space, Z, to identify similar triplets from the two tasks. This
similarity measure identifies triplets from the source task that are
most similar to those of the target task, and then map them together
as being inputs and outputs for the regression algorithm, respec-
tively, as shown on line 2 of Algorithm 4. Since the similarity
measure is used in the sparse coded spaces, the distance is calcu-
lated using the attained activation (C and Φ) rather than the triplets
themselves. Therefore, the scheme has to trace the data back to the
original dimensions of the state-action pairs of the MDPs.

5. TRANSFER SCHEME
This section describes the novel transfer scheme.

5.1 Implementation Details
Here we introduce implementation details and background used

in Section 5.2. Due to space constraints, we briefly describe Least
Squares Policy Iteration (LSPI), Fitted-Q-Iteration (FQI) and Gaus-
sian Processes (GPs).

5.1.1 Least Squares Policy Iteration
LSPI [5] is an approximate RL algorithm using the actor/critic

framework. LSPI is composed of two parts: the policy is evaluated
with Least Squares Temporal Difference Q-learning (LSTDQ) and
then it is improved. LSTDQ is used to update the weights that
parameterize the policy to minimize an error criterion. Once this
step has finished, LSPI uses the weights to improve the policy by
taking greedy actions with respect to the new Q-function.

5.1.2 Fitted-Q-Iteration
FQI [1] is another approximate RL technique that works by ap-

proximating the Q-function as a linear combination of weights and
state-action basis functions. FQI operates within two spaces: 1) the
parameter space and 2) the Q-function space. During each iteration
of the algorithm, the Q-function is updated via the Bellman opera-
tor in its corresponding space. Then the function is projected back
to the parameter space. These steps are repeated to find high quality
policies in practice, although convergence to an optimal Q-function
is not guaranteed.

5.1.3 Gaussian Processes
GPs are supervised learning techniques used to discover a rela-

tion between a given set of input vectors, x, and output pairs, y. A
full mathematical treatment can be found elsewhere [11, 14]. Un-
like many regression techniques, which perform inference in the
3We use the s and t indices to describe the source task (typically of
lower dimensions) and the target task.

Algorithm 3 Mapping Target Task Triplets
Require: Sparse Coded Bases Z generated by Algorithm 2, Target

MDP triplets {〈st, at, s
′
t〉}fi=1

1: for i = 1→ f do
2: Represent the target data patterns in the sparse coded bases,

Z, by solving:

φ̂(i)(〈st, at, s
′
t〉) = argmin

φ(i)
||〈st, at, s

′
t〉(i) −

dn∑
j=1

φ
(i)
j zj ||22

+β||φ(i)||1

3: return Activations Φ

Algorithm 4 Similarity Measure & Inter-Task mapping approxi-
mation
Require: Sparse Coded Basis Z, Sparse Coded Activations of the

source task C ∈ Rm×dn , Projected Target Task activations
Φ ∈ Rm×dn

1: for all φ do
2: Calculate the closest activation in C minimizing the Eu-

clidean/similarity distance measure.
3: Create a data set D from minimum-distance triplets
4: Approximate the Inter-task mapping, χ, fromD with an appro-

priate learning algorithm
5: return The approximated Inter-task mapping, χ

weight space, GPs perform inference directly in the function space.
Learning in a GP setting involves maximizing the marginal likeli-
hood to find the hyper-parameters best describing the data. Maxi-
mizing the likelihood may be computationally complex. Therefore,
we use a fast learning technique, Sparse Pseudo-input Gaussian
Processes (SPGP) [14], to quickly model the complex inter-task
mapping.

5.1.4 Sparse Pseudo-Inputs Gaussian Processes
SPGPs aim to reduce the complexity of learning and prediction

in GPs by parametrizing the regression model with M � N (N
is the number of input points) pseudo-input points, while still pre-
serving the full Bayesian framework. The covariance of the GP
model is parametrized by the location of the M � N pseudo-
inputs and training aims at finding the parameters and the loca-
tions of the pseudo-points that best describe the data. Existing re-
sults [14] show a complexity reduction in the training cost (i.e., the
cost of finding the parameters of the covariances) and in the predic-
tion cost (i.e., prediction on a new set of inputs) compared to GP
regression. The results further demonstrate that the SPGP frame-
work can match normal GPs approximation power with small M
(i.e., few pseudo-inputs).

5.2 Transfer Details
This section proposes two novel transfer algorithms for pairs of

tasks with continuous state spaces and discrete action spaces, ti-
tled Transfer Least Squares Policy Iteration (TrLSPI) and Transfer
Fitted-Q-Iteration (TrFQI), which makes use of a learned source
task policy.

Transfer Least Squares Policy Iteration.
TrLSPI is described in Algorithm 5 and can be applied to any TL

in RL problem having continuous states and discrete action spaces.
It is also sample efficient as it preserves the advantages of the nor-
mal LSPI algorithm. TrLSPI can be split into two sections. The
first (lines 1–4 of Algorithm 5) determine χ (see Section 4), using

Algorithm 5 TrLSPI

Require: Source MDP triplets {〈ss, as, s
′
s〉}mi=1, Target MDP

triplets {〈st, at, s
′
t〉}fj=1, Number for re-samples ns, close to

optimal policy for the source system π?s , State action basis
functions for the target task ψ1, . . . , ψk

1: Map the Dimensions using Algorithm 1
2: Discover High Informational Representation using Algo-

rithm 2
3: Sparse Project the target task triplets using Algorithm 3
4: Use a similarity measure to attain the data set and approximate
χ using Algorithm 4

5: Randomly sample ns source task triplets 〈ss, as, s
′
s〉ns
i=1 greed-

ily in the optimal policy π?s , set of state-dependent basis func-
tion ψ1, . . . , ψk : St ×At → R

6: for i = 1→ ns do
7: Find the corresponding target task triplets as

〈s(i)t , a
(i)
t , s

(i)′
t 〉 = χ(〈s(i)s , a

(i)
s , s

(i)′
s 〉)

8: Use the black box generative model of the environment to pro-
duce the rewards on the transferred triplets

9: Use LSTDQ to evaluate transformed triplets
10: Improve policy until convergence using LSPI
11: return Learned policy π?t

source and target task triplets.4 The second section (lines 5–9) pro-
vides triplets (using π?s) as a start for the evaluation phase of the
LSPI algorithm (LSTDQ), allowing it to improve the target task
policy. If the tasks are similar, and if the inter-task mapping is
“good enough,” then those triplets will 1) bias the target task con-
troller towards choosing good actions and 2) restrict its area of ex-
ploration, both of which help to reduce learning times and increase
performance.

Algorithm 5 leverages source task triplets to attain a good start-
ing behavior for the target task. The performance of the policy nec-
essarily depends on the state space region where those triplets were
provided. In other words, it is not possible to achieve near-optimal
performance with a small number of triplets that are in regions far
from the goal state.5 Therefore, to learn a near-optimal policy, it
must collect triplets from the target with the current policy, or a
large number of source task triplets should be provided. A full
model of the system is not required but the algorithm does require
a black box generative model for sampling.

Transfer Fitted-Q-Iteration.
The second novel algorithm, Transfer Fitted-Q Iteration (TrFQI),

is also capable of transferring between MDPs with continuous state
space and countable actions and preserves the advantages of the
standard FQI algorithm. The key idea is to provide a good start-
ing sample distribution on which the FQI algorithm can learn. This
distribution is provided to the target task agent via χ, which in turn
maps the source task triplets (sampled according to π?s) into the tar-
get task. Algorithm 6 presents the pseudocode and can also be split
into two parts. First, lines 1-8 use the inter-task mapping to project
the source task triplets to the target task (same steps followed in the
first part of TrLSPI). Second, lines 9-10 provide those triplets to the
FQI Algorithm to learn a policy.6

4The source task policy may be optimal or near-optimal, depending
on the RL algorithm used in the source task.
5This is a problem that is inherit to LSPI and not a property of the
TrLSPI algorithm.
6It is also worth noting that the generalization of this algorithm de-
pends on the type of function approximators used to approximate

Algorithm 6 TrFQI

Require: Source MDP triplets {〈ss, as, s
′
s〉}mi=1, Target MDP

triplets {〈st, at, s
′
t}fj=1, Number for re-samples ns, close to

optimal policy for the source system π?s , State action basis
functions for the target task ψ1, . . . , ψk

1: Map the Dimensions using Algorithm 1
2: Discover High Informational Representation using Algo-

rithm 2
3: Sparse Project the target task triplets using Algorithm 3
4: Use a similarity measure to attain the data set and approximate
χ using Algorithm 4

5: Randomly Sample ns Source task triplets 〈ss, as, s
′
s〉ns
i=1

greedily in the optimal policy π?s , set of state-dependent basis
function ψ1, . . . , ψk : St ×At → R

6: for i = 1→ ns do
7: Find the corresponding target task triplets as

〈s(i)t , a
(i)
t , s

(i)′
t 〉 = χ(〈s(i)s , a

(i)
s , s

(i)′
s 〉)

8: Use the black box generative model of the environment to pro-
duce the rewards on the transferred triplets

9: Apply FQI
10: return Learned policy π?t

6. EXPERIMENTS & RESULTS
We have conducted two experiments to evaluate the framework.

The first was the transfer from the Inverted Pendulum (IP), Fig-
ure 1(a), to the Cart Pole (CP), Figure 1(b). The second experiment
transfers between Mountain Car (MC), Figure 1(c) and CP. This
section describes the experiments conducted.

(a) Inverted
Pendulum

(b) Cart Pole

(c) Mountain Car

Figure 1: Experimental domains

the Q-function. This is a property of FQI and not of TrFQI. There-
fore, if the algorithm has to attain near-optimal behavior, either a
large amount of triplets should be provided, or it must again have
access to a black box generative model of the MDP for re-sampling.

6.1 Inverted Pendulum to Cart Pole Transfer
The source task was the inverted pendulum problem. The state

variables describing the systems are the angle and angular velocity
{θ, θ̇}. The control objective of the IP is to balance the pendulum
in an upright position with an angle, θ = 0 and angular velocity
θ̇ = 0. The allowed torques are +50, 0 and −50 Nm. The reward
function is cos(θ) which yields its maximum value of +1 at the
up-right position.

In cart pole, the goal is to swing up the pole and keep it balanced
in the upright position (i.e., θ = θ̇ = 0). The allowed actions are
(+1) for full throttle right and (-1) for full throttle left. The reward
function of the system consisted of two parts: (1) cos(θ), which
yields its maximum value of +1 at the upright position of the pole,
and (2) −1 if the cart hits the boundaries of the track. The angle
and position were restricted to be within |θ| < π

9
and |x| < 3.

In order to transfer between IP and CP, we first learn an opti-
mal policy in the source task, π?IP , with LSPI. π?IP was then used
to randomly sample different numbers of initial states of task, to
be used by χ. We started with 5000 and 2500 randomly sampled
states (using a random policy) for the IP and the CP, respectively.
These triplets were used by the algorithm described in Section 4 to
learn the inter-task mapping χ7. After χ had been learned, different
numbers of samples were collected from the source task using π?IP .
Specifically, we have sampled 500, 1000, . . . 20000 states as input
to the TrLSPI and the TrFQI algorithms to measure performance
and convergence times.

6.1.1 TrLSPI Results
Our results show both an increase in the performance on a fixed

number of samples and a decrease in the convergence times in both
a predefined number of samples and to attain an optimal policy. We
measured the performance as the number of steps during an episode
to control the pole in an upright position on a given fixed amount
of samples. Figure 2 summarizes the results attained on a different
number of transferred samples and compares them with those at-
tained through normal LSPI learning scheme. It shows an increase
in the number of control steps (i.e., steps the pole was in an up-right
position) in the case of the transferred samples compared to a ran-
dom sampling scheme. It can be seen that when using 2000 samples
(i.e., a small number of samples) our transfer scheme was able to
attain an average of 520 control steps while random initialization
reached only 400. This performance increases with the number of
samples to reach 1200 steps at 10000 transferred samples.

Another measure was the time required to learn a near-optimal
target task policy using only a fixed number of samples. There was
a decrease in the convergence times, represented by the number
of iterations in LSPI, when provided a fixed amount of transferred
samples. LSPI was able to converge faster once provided the trans-
ferred samples compared to a random sample data set. For exam-
ple, it took LSPI 5 iteration to converge provided 5000 transferred
samples but 7 iterations in the random case. Further, the algorithm
converged within 12 iteration provided 20000 transferred samples
while it took it about 19 for the random case. Finally, LSPI was
able to converge to an acceptable policy (i.e., an 800 control steps)
within 22.5 minutes after being provided a random data set, com-
pared to 16 minutes with the transferred data set8. Calculating χ
took an additional 3.7 minutes.

7We believe but have not confirmed that the samples to learn χ
should be provided using random policies in both the source and
the target task as we need to cover most large areas of the state-
action spaces in both tasks.
8Our experiments were performed on a 2.8 Ghz Intel Core i7.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

200

400

600

800

1000

1200

1400

Samples

C
o
n
tr

o
l
S

te
p
s

Transfer vs No Transfer

Transferred

Random

Figure 2: Cart Pole results from LSPI and TrLSPI after learn-
ing on Inverted Pendulum: the performance is measured after
collecting 500 different initial states in the target tasks.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

200

400

600

800

1000

1200

1400

Number of Initial Samples

C
o

n
tr

o
l
S

te
p

s

Transfer vs No Transfer

Transferred

Random

Figure 3: Cart Pole results with FQI and TrFQI after learn-
ing on Inverted Pendulum: the performance is measured after
collecting 500 different initial states in the target tasks.

6.1.2 TrFQI Results
We performed similar experiments using the other proposed al-

gorithm TrFQI. Similar results were observed as could be seen from
Figure 5. The transferred samples produce more control steps on
the target task compared to learning on random samples. As an
illustration, the algorithm was able to achieve 800 control steps
when using 5000 transferred states but it needed about 10000 ran-
dom samples to attain the same performance. We also report a de-
crease in the number of training iterations in the TrFQI compared
to FQI at a fixed number of samples and to attain an optimal policy.
We have observed good performance at 50 iteration of training on
transferred samples compared to 70 iterations for the random case.
Moreover, TrFQI was able to reach a suboptimal acceptable policy
with about 85 iteration once using transferred samples compared to
a 150 iterations for the random case.

6.2 Mountain Car to Cart Pole Transfer
The source task was the MC problem, a benchmark RL task.

The car has to drive up the hill (Figure 1(c)). The difficulty is that
gravity is stronger than the car’s motor—even at maximum throttle

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

200

400

600

800

1000

1200

1400

Number of Initial Samples

C
o

n
tr

o
l
S

te
p

s

Transfer vs No Transfer

Transferred

Random

Figure 4: Cart Pole results using LSIP and TrLSPI after learn-
ing on Mountain Car: the performance is measured after col-
lecting 500 different initial states in the target tasks.

the car can not directly reach the top of the hill. The dynamics
of the car are described via two continuous state variables (x, ẋ)
representing the position and velocity of the center of gravity of the
car, respectively. The input action takes on three distinct values:
maximum throttle forward (+1), zero throttle (0), and maximum
throttle reverse (-1). The car is rewarded by +1 once it reaches the
top of the hill, −1 if it hits the wall, and zero elsewhere.

The target task is the Cart Pole problem, as described in the pre-
vious experiment.

SARSA(λ) [15] is used to learn π?MC in the source task. The
policy was then used to randomly sample different numbers of
source task states, to be used by χ. We started with 5000 and
2500 randomly sampled states for the Mountain Car and the Cart
Pole, respectively. These samples were used by the algorithm de-
scribed in Section 4 to learn the inter-task mapping χ. After χ has
been learned, different numbers of samples were collected from the
source task using π?MC . Specifically, we have sampled 500, 1000,
. . . 20000 states as input to the TrLSPI and the TrFQI algorithms
to measure performance and convergence times.

6.2.1 TrLSPI Results
Figure 4 clearly shows an increase in the number of control steps

in the case of the transferred samples compared to a random sam-
pling scheme. When using 2000 samples, our transfer scheme was
able to attain an average of 600 control steps. Achieving a similar
performance required roughly 4000 random samples. This perfor-
mance increases with the number of samples to finally reach about
1300 control step on 20000 samples for both cases. We also re-
port a decrease in the convergence times, represented by the num-
ber of iterations in LSPI, provided a fixed amount of transferred
samples. LSPI was able to converge faster once provided the trans-
ferred samples compared to a random sample data set. For exam-
ple, it took LSPI 7 iteration to converge provided 5000 transferred
samples but 12 iterations in the random case. Further the algorithm
converged within 14 iterations provided 20000 transferred samples
while it took it about 19 for the random case. Finally, LSPI was
able to converge to an acceptable policy within a 22.5 minutes after
being provided a random data set, compared to 17 minutes with the
transferred data set. Calculating χ took an addition 3.7 minutes.

0 0.5 1 1.5 2 2.5

x 10
4

0

200

400

600

800

1000

1200

1400

Number of Initial Samples

C
o

n
tr

o
l
S

te
p

s

Transfer vs No Transfer

Transferred

Random

Figure 5: Transfer Results on the Cart Pole task using TrFQI
after learning on Mountain Car: the performance is measured
after collecting 500 different initial states in the target tasks.

6.2.2 TrFQI Results
The analogous experiments using TrFQI produced similar re-

sults, as shown in Figure 5. Transferred samples where able to
produce a higher number of control steps in the target task when
compared to learning on random samples in the target tasks. As an
illustration, the algorithm was able to attain a performance of 800
control steps when using 5000 transferred states, but needed 9000
random samples to attain the same threshold. Using transferred and
random samples both allow FQI to converge to roughly the same
performance (1200) when provided a large number of samples. We
also report a decrease in the number of training iterations at a fixed
number of samples and to attain an optimal policy. We have ob-
served good performance at 50 iteration of training on transferred
samples compared to 80 iterations for random samples. Moreover,
TrFQI was able to reach a suboptimal policy with about 91 iteration
once using transferred samples compared to a 150 iterations for the
random case.

7. ANALYSIS & DISCUSSION
It is clear from the results presented that the learner’s perfor-

mance increased using our proposed framework, relative to a ran-
dom selection scheme. Policy performance improved, as measured
by the number of control steps achieved by the agent on the target
task. The number of learning iterations required also decreased, as
measured by the number of iterations required by the algorithm to
converge to a policy on a fixed number of transferred samples. This
leads us to conclude that TrFQI and TrLSPI both:

1. provided a better distribution of samples compared to ran-
dom policy in the target task,

2. required fewer iterations to converge to a fixed policy when
provided a fixed number of transferred samples, and

3. reached a near-optimal performance policy faster than when
using random selection scheme.

Furthermore, these results show that the proposed framework

4. successfully learned an inter-task mapping between two sets
of different RL tasks.

We speculate that the framework is applicable to any model-free
TL in RL problem with continuous state spaces and discrete action
spaces, covering many real world RL problems. The framework
has the advantage of automatically finding the inter-task functional
mapping using SC and any “good” regression technique. One po-
tential weakness is that our framework should work correctly when
the two tasks at hand are semantically similar, as the rewards of the
two systems were not taken into account in the explained scheme.
For instance, consider the transfer example between the cart pole
and “cart fall” tasks. The control goals of these two tasks are op-
posite whereby in the cart pole the pole has to be balanced in the
upright position while in the cart fall the pole has to be dropped
as fast as possible. In other words, the agents have the same tran-
sitions in the two tasks but have to reach two opposite goal. Our
mapping scheme of Section 4, once applied, will produce a one-
to-one mapping from the source to the target task relating the same
transitions from both of the tasks together. Clearly the optimal poli-
cies of the two tasks are opposite. In this case the target task would
be provided with a poor bias, potentially hurting the learner (i.e.,
producing negative transfer). We think that our approach will be
able to avoid this scheme once the rewards are added to the similar-
ity measure generating the training set to approximate the inter-task
mapping χ, but such investigation is left to future work.

8. CONCLUSIONS & FUTURE WORK
This paper has presented a novel technique for transfer learning

in reinforcement learning tasks. Our framework may be applied
to pairs of reinforcement learning problems with continuous state
spaces and discrete action spaces. The main contributions of this
paper are (1) the novel method of automatically attaining the inter-
task mapping, χ and (2) the new TrLSPI and TrFQI algorithms for
tasks with continuous state spaces and discrete actions. We ap-
proached the problem by framing the approximation of the inter-
task mapping as a supervised learning problem that was solved us-
ing sparse pseudo input Gaussian processes. Sparse coding, ac-
companied with a similarity measure, was used to determine the
data set required by the regressor for approximating χ. Our results
demonstrate successful transfer between two similar tasks, inverted
pendulum to cart pole, and two very different tasks, mountain car
to cart pole task. Success was measured both in an increase in
learning performance as well as a reduction in convergence time.
We speculate that the process usefully restricts exploration in the
target task and that the transferred state quality resulting from our
scheme.

There are many exciting directions for future work. First, we
intend to compare different distance metrics and demonstrate their
effects on the overall performance of the algorithm. Second, the
distance measure will be improved by incorporating the rewards in
the framework, helping to avoid the problem of negative transfer.

9. REFERENCES
[1] L. Buşoniu, R. Babuška, B. De Schutter, and D. Ernst.

Reinforcement Learning and Dynamic Programming Using
Function Approximators. CRC Press, Boca Raton, Florida,
2010.

[2] S. jean Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky.
An interior-point method for large-scale l1-regularized
logistic regression. Journal of Machine Learning Research,
2007, 2007.

[3] G. Konidaris and A. Barto. Autonomous shaping: knowledge
transfer in reinforcement learning. In In Proceedings of the

23rd Internation Conference on Machine Learning, pages
489–496, 2006.

[4] G. Kuhlmann and P. Stone. Graph-based domain mapping
for transfer learning in general games. In Proceedings of The
Eighteenth European Conference on Machine Learning,
September 2007.

[5] M. G. Lagoudakis and R. Parr. Least-squares policy iteration.
J. Mach. Learn. Res., 4:1107–1149, December 2003.

[6] A. Lazaric, M. Restelli, and A. Bonarini. Transfer of samples
in batch reinforcement learning. In Proceedings of the 25th
international conference on Machine learning, ICML ’08,
pages 544–551, New York, NY, USA, 2008. ACM.

[7] H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse
coding algorithms. In In NIPS, pages 801–808. NIPS, 2007.

[8] Y. Liu and P. Stone. Value-function-based transfer for
reinforcement learning using structure mapping. In
Proceedings of the Twenty-First National Conference on
Artificial Intelligence, pages 415–20, July 2006.

[9] S. J. Pan and Q. Yang. A survey on transfer learning.
[10] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng.

Self-taught learning: Transfer learning from unlabeled data.
In ICML ’07: Proceedings of the 24th international
conference on Machine learning, 2007.

[11] C. E. Rasmussen. In Gaussian processes for machine
learning. MIT Press, 2006.

[12] O. G. Selfridge, R. S. Sutton, and A. G. Barto. Training and
tracking in robotics. In IJCAI, pages 670–672, 1985.

[13] S. Singh. Transfer of learning by composing solutions of
elemental sequential tasks. In Machine Learning, pages
323–339, 1992.

[14] E. Snelson and Z. Ghahramani. Sparse Gaussian processes
using pseudo-inputs. In Advances In Neural Information
Processing Systems, pages 1257–1264. MIT press, 2006.

[15] R. S. Sutton and A. G. Barto. Reinforcement learning: An
introduction, 1998.

[16] E. Talvitie and S. Singh. An experts algorithm for transfer
learning. In Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence, 2007.

[17] M. E. Taylor, G. Kuhlmann, and P. Stone. Autonomous
transfer for reinforcement learning. In Proceedings of the
Seventh International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 283–290,
May 2008.

[18] M. E. Taylor and P. Stone. Transfer learning for
reinforcement learning domains: A survey. J. Mach. Learn.
Res., 10:1633–1685, December 2009.

[19] M. E. Taylor, P. Stone, and Y. Liu. Transfer learning via
inter-task mappings for temporal difference learning. Journal
of Machine Learning Research, 8(1):2125–2167, 2007.

[20] M. E. Taylor, S. Whiteson, and P. Stone. Transfer via
inter-task mappings in policy search reinforcement learning.
In Proceedings of the Sixth International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS),
pages 156–163, May 2007.

[21] L. Torrey, T. Walker, J. Shavlik, and R. Maclin. Using advice
to transfer knowledge acquired in one reinforcement learning
task to another. In In Proceedings of the Sixteenth European
Conference on Machine Learning, pages 412–424, 2005.

