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ABSTRACT
We introduce a measure for the level of stability against coalitional
deviations, calledstability scores, which generalizes widely used
notions of stability in non-cooperative games. We use the proposed
measure to compare various Nash equilibria in congestion games,
and to quantify the effect of game parameters on coalitional stabil-
ity. For our main results, we apply stability scores to analyze and
compare the Generalized Second Price (GSP) and Vickrey-Clarke-
Groves (VCG) ad auctions. We show that while a central result of
the ad auctions literature is that the GSP and VCG auctions imple-
ment the same outcome in one of the equilibria of GSP, the GSP
outcome is far more stable. Finally, a modified version of VCG is
introduced, which is group strategy-proof, and thereby achieves the
highest possible stability score.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence—
Multiagent Systems;
J.4 [Computer Applications]: Social and Behavioral Sciences—
Economics

General Terms
Algorithms, Theory, Economics

Keywords
Game theory, Auctions, Mechanism design, Solution concepts

1. INTRODUCTION
One of the most basic questions of game theory is: given a game

in strategic form, what is its solution? Bysolution we typically
mean a strategy profile that can be proposed to all agents, and no
rational agent would want to deviate from it. Thus a solution should
be stable. Many solution concepts for games have been studied;
these studies differ by the level and interpretation of stability, as
well as by the underlying assumptions that are required to achieve
it. The best known solution concept for games is the Nash equilib-
rium (NE), a strategy profile from which no agent has an incentive
to deviateunilaterally.
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A basic problem with the NE solution concept is that a NE does
not take into account joint deviations by coalitions of players. We
usually assume that an individual will deviate from a profile if she
has an available strategy that strictly increases her payoff. In some
settings it would be natural to assume also that a group of individ-
uals will deviate if they have an available joint strategy that strictly
increases the payoff of each group member. TheStrong Equilib-
rium (SE) concept by Aumann [2] deals with this problem. A pro-
file is a SE if no coalition of agents can jointly deviate in a way
that strictly increases the payoff of each coalition member. Inter-
mediate levels of coalitional stability have been suggested, such as
stability against deviations of small coalitions (see e.g. [1]), and in
particular pairs. An even more appealing solution concept than SE
is theSuper-Strong Equilibrium(SSE) that considers deviations in
which no member loses while at least one member makes a positive
gain (see, for example, [11]).

A major problem with these proposed solutions is that they sel-
dom exist. Indeed, SSE rarely exist even in cases where strong
equilibria do exist (e.g., in simple congestion games [13, 1]), and
even if only deviations by pairs are considered.

In this paper we relax the strong requirement that no coalition
will have an incentive to deviate, and suggest a quantitative mea-
sure to coalitional stability. Assuming we have a Nash equilibrium
profile of a game where some pairs of agents can still deviate, we
may still wish to measure its stability by referring to thenumberof
pairs that have beneficial deviations from that profile. More gener-
ally, given a game and a strategy profile, we can associate with it a
tuple in which ther-th entry in the tuple is the number of coalitions
of sizer that can gain by a deviation. This tuple determines the
stability scoreof the strategy profile.

Given two strategy profiles, we need a way to decide which one
is more stable. A common practice in game theory is to prefer
strategy profiles that arein equilibrium, i.e. in which there are no
unilateral deviations. Since small coalitions are more likely to form
and maintain cooperation, a natural extension is to compare stabil-
ity scores of games with associated strategy profiles using alexico-
graphicordering of the corresponding vectors.1 For example, given
two n-person games,G1 andG2, with respective Nash equilibria
s1 and s2, the stability score of the former will be higher if the
number of beneficial deviations by pairs froms1 in G1 is smaller
than the number of beneficial deviations by pairs froms2 in G2.

While the existence of, say,19 coalitions that can deviate rather
than15 does not have much significance, we usually care about the
behavior in some parameterized family of games where parameters

1There are many ways to compare stability score vectors. Choos-
ing the “right” one highly depends on the context and underlying
assumptions. However in this paper we avoid such complications
by only comparing deviations of coalitions of the same size.



may include number of players, size of the strategy space, etc. If the
score ofa is asymptotically lowerthan the score ofa′ (w.r.t. one of
the parameters), then this may indicate thata′ is substantially more
prone to coalitional deviations.

Moreover, when studying such a parametrized family, stability
scores may assist us in understanding how the parameters of the
game affect coalitional stability. This holds even if there is a unique
or a prominent equilibrium.

Stability scores are particularly useful in the context ofmecha-
nism design, as they allow us to quantify the coalitional stability of
various mechanisms and to compare mechanisms that operate in a
specific domain. To illustrate this point, we consider two central
mechanisms in what is perhaps the most widely studied economic
setup in recent years: ad auctions. We analyze in detail the Gener-
alized Second Price (GSP) auction and the Vickrey-Clarke-Groves
(VCG) auction, and compare their stability scores.

1.1 Related work

Related solution concepts in games
In the context of non-cooperative games approximate stability is
typically measured by the strength of the incentive required to con-
vince an agent to deviate, captured for example by the concept of
ǫ-Nash equilibrium. As discussed above, stability against collusion
is captured by concepts such as SE and SSE, but these often do not
allow a fine distinction between various outcomes.

In addition, coalitions are the key component incooperativegame
theory, and many variations of coalitional stability have been stud-
ied. While we are unaware of solutions concepts that quantify sta-
bility by measuring coalitional deviations, models of restricted co-
operation capture social constraints that may prevent the formation
of some coalitions [18]. Thus a (cooperative) game may not be
stable against every coalitional deviation (i.e. have an empty core),
but still satisfy all the coalitions that can form in practice. Recently,
some papers studied how such social context affects the stability of
the game [7, 17]. Moreover, even if some coalitioncan gain by
deviation, it may or may not do so: Members of the coalition might
intentionally avoid cooperation based on far-sighted prediction (an
assumption underlyingcoalition-proofnessfor example [4]), or just
fail to recognize the benefit in deviating. This is especially true if
the coalition is large. Stability scores do not assume a particular
social context or incentive structure, but simply try and minimize
the number of coalitions with profitable deviations.

Collusion and equilibria in ad auctions
Major results of previous work on ad auctions, characterized a spe-
cial family of equilibria of GSP the auction (used in practice), termed
Symmetric Nash Equilibria, or SNE (see Section 4.1 for details) [20].
SNEs have many attractive properties which make them a natu-
ral choice as outcomes of the GSP auction. Moreover, it has been
shown that the SNE leading to the lowest revenue for the seller
(termedLower Equilibrium(LE)), coincides with the natural equi-
librium of VCG where all bidders report their true values.

The above results led to a surge of papers comparing VCG and
the various equilibrium outcomes of GSP, under both public infor-
mation and private information settings [14, 19, 9, 15]. However,
these comparisons focused mainly on revenue, rather than on coali-
tional stability. The VCG mechanism was shown to be vulnerable
to collusion in various domains (see, e.g., [6, 3] for relatively re-
cent work), compared to a simple first-price (pay-your-bid) auc-
tion. The formal literature on collusion in second-price auctions
goes back to Graham and Marshall [12], while the literature on the
more involved matter of collusion in first-price auctions goes back

to McAfree and McMillan [16].

1.2 Our contribution
Stability scores are formally defined in Section 2, where we show

how they generalize well known solution concepts. In Section 3
we study strict stability scores in a simple family of congestion
games. The main purpose of this study is to demonstrate how sta-
bility scores can be used in order to compare different Nash equilib-
ria, and to measure how stability is affected by game’s parameters.
Moreover, while the studied family itself is quite simple, it is often
used to model real world situations such as load balancing. Our
analysis can give some intuition as to the main factors affecting
coalitional stability in such games.

The main results are in Section 4, where we present the VCG
and GSP mechanisms for ad auctions (adopting the original model
advocated for that setting in the seminal work by Varian [20] and
by Edelman et al. [8]), and show bounds on stability scores in these
auctions. In particular, we study how the stability of GSP varies
as a function of the distributions of agents’ valuations and slots’
click-through rates, thereby showing that under certain reasonable
conditions GSP is far more stable than VCG.

In Section 5 we introduce a modification to the VCG auction that
can be used to overcome the observed instability of VCG. In partic-
ular, we show that a revised VCG, in which a random reserve price
is introduced, induces truth-telling as a super-strong equilibrium.

Omitted proofs are available in the full version of this paper [10].

2. PRELIMINARIES

Games and equilibria
Let G = 〈N, {Ai}i∈N , {ui}i∈N 〉 be a normal form game, where
N = {1, . . . , n} is the set of players,Ai is the set of actions
available to playeri, andui : A → R is playeri’s utility, where
A = A1 × · · · × An is the set of joint actions (profiles), and for
everya ∈ A, ui(a) denotes the utility of playeri under action
profilea. The vector of actions of all players except playeri in the
profile a is denoted bya−i. An action profilea ∈ A is a Nash
Equilibrium (NE) if ui(a) ≥ ui(bi, a−i) for every agenti ∈ N
and every alternative actionbi ∈ Ai.

When considering coalitions, given an action profilea, we de-
note byaS the profile of agents inS, and byAS the set of all such
joint actions. The profile of all agents inN \ S is denoted bya−S .

Given a profile of actionsa ∈ A, bS ∈ AS is astrict deviation
from a if ui(bS , a−S) > ui(aS , a−S) for everyi ∈ S. The profile
a is termed aStrong Equilibrium(SE) if there are noS ⊆ N and
bS ∈ AS , such thatbS is a strict deviation froma.

One can also consider the following weaker notion of deviation.
Given a profile of actionsa ∈ A, bS ∈ AS is adeviationfrom a if
ui(bS , a−S) ≥ ui(aS , a−S) for everyi ∈ S and there existsj ∈ S
such thatuj(bS , a−S) > uj(aS , a−S) . The profilea is termed a
Super-Strong Equilibrium(SSE) if there is noS ⊆ N, bS ∈ AS

that is a deviation froma. Since every strict deviation is clearly a
deviation, every SSE is also a SE.

SSE captures the natural requirement that we should resist even
situations in which a deviation only benefits some of the deviators
without hurting others. A strategy profile isr-SE (respectively,r-
SSE) if there are no coalitions of size at mostr that have strict
deviations (resp., deviations).

Stability scores
The stability score of the profilea in gameG is defined as a vector
with n entries. For every1 ≤ r ≤ n, letDr(G,a) ∈ N (respec-
tively, SDr(G,a) ∈ N) be thenumberof coalitions of sizer that



have deviations (resp., strict deviations) froma in G. While there
are many ways to impose an order on equilibria based on these
vectors, we believe that the following lexicographic order is partic-
ularly natural.

Given twon-player gamesG andG′ and two profilesa anda′ in
the respective games, we say that the pair(G,a) is more resistant
to deviations(or more stable) than (G′,a′), if there exists some
r ≤ n such thatDr(G, a) < Dr(G

′,a′) and the terms are equal
for everyr′ < r. We can similarly compare strict stability scores
to one another.

Our definition of stability score generalizes some widely used
notions of stability. For example,a is a Nash equilibrium (NE) of
G iff D1(G,a) = SD1(G,a) = 0. This means that the score of
a NE (by either definition) is always strictly better than the score
of any profile that is not a NE. Further, any profile that isr-SE has
a better strict-stability score than any nonr-SE profile. A similar
property holds w.r.t.r-SSE. As a different example, a profilea is
Pareto efficientin G iff Dn(G,a) = 0.

3. RESOURCE SELECTION GAMES
In this section we demonstrate how stability scores can be used to

measure and compare the stability of different outcomes in a given
game. To this end we focus on a very simple parametrized family,
where games are known to posses at least one pure equilibrium. A
natural choice is the family ofresource selection games(RSG) with
identical resources.

In a RSG there is a set of resourcesF = {1, . . . ,m}, and a non-
decreasing cost functionc : [n] → R+, where[n] = {1, . . . , n}.
Each agenti ∈ N can select exactly one resourcej, and suffers a
cost (negative utility) ofc(nj), wherenj is the number of agents
that selected resourcej. RSGs arepotential gamesand thus always
admit a pure Nash equilibrium. In fact, any NEa of a RSGG =
〈F,N, c〉 is astrong equilibrium[13], and thus all equilibria have
the same (strict) stability score. However, this is no longer true if
the games are concatenated in a sequence.

Formally, asequentialRSG (SRSG) is a RSG withk steps. Thus
a strategy of an agentai ∈ F k requires selecting one resource in
each step (actions may not depend on the previous steps).2 We
next show that the number of coalitional deviations significantly
depends on the played equilibrium. We consider games where
m,n, k ≥ 2, focusing mainly on games with2 steps.

3.1 Counting deviations: an example
Suppose thatm = 4, n = 6, k = 2 and thatc(t) = t for all

t ≤ n. Any profile in which there are exactly 1 or 2 agents on
each resource (in each step) is a Nash equilibrium. However, these
equilibria differ in their stability against strict deviation of pairs.
Suppose that in the first step agents are partitioned{1, 2}, {3, 4},
{5}, {6}, and repeat the same actions in the second step. Denote
this profile bya. In this case the pair{1, 2} can strictly gain as
follows: agent1 joins agent5 (or 6) in the first step, and agent2
joins5 in the second. Thus the cost for each of the two agents drops
from 4 to 3. The pair{3, 4} can do the same, thusSD2(G,a) = 2.

On the other hand, consider a profileb where players play in the
first step as ina, and in the second step are partitioned{1, 3}, {2, 4},
{5}, {6}; then no pair can strictly gain by deviating. Notice though,
that this is still not a strong equilibrium, as the coalition{1, 2, 3, 4}
can still gain (agents2, 3 deviate in the first step, and1, 4 in the sec-
ond), thusSD2(G,b) = 0 andSD4(G,b) = 1.

Finally, in profilec agents are partitioned{1, 5}, {2, 6}, {3}, {4}
2Equivalently, the game can be described as a routing game, with
k sequential parts andm parallel edges in each part.

(in the second step), and this is a strong equilibrium, i.e.SDr(G, c) =
0 for all r. It therefore follows that w.r.t strict stability scoresc is
more stablethanb, which is more stable thana.

Note however that none of these profiles is an SSE or even2-
SSE. More generally, inanyprofile inG there is at least one pair
(in fact two) that shares a resource and thus they have a (weak)
deviation where just one of them gains. Thus for every profilep in
G, we have thatD2(G,p) ≥ 2.

3.2 Bounding stability scores in two-step RSG
The example above shows that different NE profiles in a particu-

lar game may differ in their stability to deviations of pairs or larger
coalitions. We want to get a better picture of the gap between the
most and least stable NE profiles, focusing on pair deviations. For
the results in this section, we will restrict our cost function to be
convex.

A nondecreasing cost functionc : [n] → R is said to beconvex
if it has an increasing marginal loss; i.e.,c(i + 1) − c(i) ≤ c(j +
1) − c(j) for every i < j. Note that when facing a convex cost
function, agents in an RSG try to minimize the maximal number of
agents using a single resource. If the number of agents on every
resource is the same, we say that the partition isbalanced. If these
numbers differ by at most one, we say that the partition isnearly
balanced.

LetG be a two-step game with a convex cost function. Note that
whenn mod m = 0, any NE is a balanced partition of agents to
resources (in each step). In such partition, no coalition can gain by
deviating, as at least one deviating agent will end up paying more
in expectation. If, in addition, costs arestrictly convex, then even
weak deviations are impossible. Since in this setting every NE is
an SE (and even an SSE), stability scores are trivial. We therefore
assume thatn mod m = q > 0.

Let â be the profile with the highest number of pair deviations,
and leta∗ be the profile with the lowest number of pair deviations.

PROPOSITION 1. SD2(G, â) = Θ
(

qn2

m2

)

.

PROOF SKETCH OF LOWER BOUND. We note that in̂a agents
play some nearly balanced partition in the first step, and repeat the
same partition in the second step. Thus some resources (calledfull)
will have⌈n/m⌉ agents, and the others will have⌊n/m⌋ agents. A
crucial observation used in the proof (and in the proofs of the other
propositions in this section), is that a pair has a strict deviation if
and only if it shares a full resource in both steps. Then (similarly
to the example above) one agent switches to a non-full resource in
the first step, and the other does the same in the second step.

Note that whenq = Θ(m), which is a typical situation, there are

overΩ
(

n2

m

)

deviating pairs.

We find that the best NEa∗ is significantly better than̂a.

PROPOSITION 2. SD2(G,a∗) = O
(

n2

m2

)

. Further, if either

n < m2 or q ≤ m
2

, thenSD2(G,a∗) = 0, i.e.a∗ is 2-SE.

In order to achieve the upper bound asserted in the proposition we
define a profile that tries to scatter in the second step agents that
shared a resource in the first step. As a qualitative conclusion, we
see that in order to minimize possible deviations, agents should
form a partition in the second step that differs as much as possible
from the partition in the first step.

3.3 SRSGs with many steps



The following proposition quantifies the stability score of a ran-
dom pure NE in a RSG withk steps. Note that the set of pure NEs
coincides with the set of profiles that are nearly balanced in each
step.

PROPOSITION 3. LetG be an SRSG withk steps and a convex
cost function, and leta be a random NE inG. The expected number
of deviating pairs inG is SD2(G,a) ∼=

(

n
2

) (

1− (1 + α)e−α
)

,

whereα = q(k−1)

m2 .

We can summarize how the parameters affect stability as follows.
If the number of stepsk is small, and the number of resourcesm
increases, thenα→ 0, and thusSD2(G,a)→ 0 as well (i.e. there
are very few pairs that can deviate). Conversely, when the number
of steps grows (in particular whenk ≫ m2

q
), then almost every

pair can deviate with a high probability.
As a corollary of Proposition 3 whenk = 2, we get the lower

bound of Proposition 1 for the caseq = Θ(m), as

SD2(G, â) ≥
(

n

2

)

(

1−
(

1− 1

m

)(

1 +
1

m

))

= Ω

(

n2

m

)

.

4. STABILITY SCORES IN AD AUCTIONS
Having showed how stability scores can be used to analyze coali-

tional stability in simple games, we next turn to prove our main re-
sults. We compute the stability scores of the VCG and GSP ad auc-
tions, which are central to the recent literature on economic mecha-
nism design. Since both auctions admit strong equilibria, we do not
consider strict deviations, and instead focus our analysis on weak
deviations and the scores they induce.

4.1 Ad auctions: model and notations
An ad auction hass slots to allocate, andn ≥ 2s bidders,3 each

with valuationvi per click [20]. Every slot1 ≤ j ≤ s is associated
with a click-through rate (CTR)xj > 0, wherexj ≥ xj+1. For
mathematical convenience, we definexj = 0 for every j > s.
Throughout the paper we make the simplifying assumptions that
CTRs are strictly decreasing (i.e.,xj > xj+1), and thatvi 6= vj
for all i 6= j. We denote by bold letter the corresponding vectors of
valuations, CTRs, and bids (e.g.b = (b1, . . . , bn)).

A bidder i that has been allocated slotj gainsvi per click (re-
gardless of the slot), and is chargedpj per click. Thus, her total
utility is given byui = (vi − pj)xj .

VCG. In the VCG mechanism every bidderi submits a bidbi,
and the mechanism allocates thej’th slot, j = 1, . . . , s, to the
j’th highest bidder. Each bidderj is charged (per click) for the
“harm” she poses to the other bidders, i.e., the difference between
the welfare of biddersk 6= j if j is omitted and their welfare when
j exists.

It is well known that the VCG mechanism istruthful, meaning
that reporting true valuationsbj = vj is a (weakly) dominant strat-
egy for all bidders. In particular, it is a Nash equilibrium.

Suppose that bidders’ valuations are sorted in non-increasing or-
der. Assuming truthful bidding (i.e.bj = vj for all j), each bid-
deri ≤ s is allocated sloti, and pays

pV CG
i =

∑

s+1≥j≥i+1

xj−1 − xj

xi
· vj . (1)

3When discussing deviating pairs it is sufficient to assumen > s,
which is a typical situation. Also, all of our results can be easily
adjusted to cases with fewer bidders.

GSP. In the GSP auction, slotj is given to thej’th highest bidder
(as in the VCG auction). Denote byj the bidder who is getting slot
j. The charge of bidderj = 1, . . . , s equals to the bid of the next
bidder; i.e.,pj = bj+1. For mathematical convenience, we define
bj+1 = 0 for j ≥ n.

GSP equilibria. Varian [20] identifies a set of natural Nash
equilibria of the GSP auction, termedenvy free NEor Symmetric
NE (SNE), which are characterized by a set of recursive inequal-
ities. Varian shows that all SNE’s satisfy some very convenient
properties. First, in SNE no bidder wants to swap slots with any
other bidder.4 Second, SNEs are efficient in the sense that bidders
with higher valuations always bid higher (and thus get better slots).
This allows us to assume that valuations are also sorted in non-
decreasing orderv1 ≥ v2 ≥ · · · ≥ vn. Lastly, SNEs can be easily
computed by a recursive formula, which makes them especially at-
tractive for computerized and online settings.

The two equilibria that reside on the boundaries of the SNE
set, referred to asLower Equilibrium(LE) andUpper Equilibrium
(UE), are of particular interest. We denote the LE and UE profiles
by bL = (bLi )i∈N andbU = (bUi )i∈N , respectively. The bids in
the LE, for every2 ≤ i ≤ s+ 1, are given by

bLi xi−1 = vi(xi−1 − xi) + bLi+1xi =
∑

s+1≥j≥i

vj(xj−1 − xj).

In particular, since CTRs are strictly decreasing, we get thatbi >
bi+1 for all i ≤ s. A central result by Varian [20] is that the LE
equilibrium induces payments, utilities, and revenue equal to those
of the truthful outcome in VCG. It is therefore of great interest to
compare the stability of these seemingly identical outcomes in both
mechanisms.

The bids in the UE, for every2 ≤ i ≤ s+ 1, are given by

bUi xi−1 = vi−1(xi−1−xi)+bUi+1xi =
∑

s+1≥j≥i

vj−1(xj−1−xj).

In the remaining of this section we measure the stability of the
VCG and GSP mechanisms. Our results indicate that while the
mechanisms have seemingly identical outcomes, for many natural
valuation and CTR functions, GSP is far more stable than VCG.

4.2 Deviations in VCG
Recall that the payment for bidderi is a weighted average of

reported (and by truthfulness, the actual) values of biddersi+ 1 ≤
j ≤ s+ 1 (see Eq. (1)).

We next characterize the structure of a set of deviatorsR of size
r. We say that a coalitionR of r bidders has apotential to deviate
under VCG (or that it is apotential coalition), if either: (a) the
groupR contains exactlyr winners(i.e., bidders that are allocated
a slotj ≤ s); or (b) the setR is composed oft < r winners, the
first loser, and ther−t−1 bidders that directly follow (i.e., bidders
s+ 1 throughs+ r − t).

We denote the number of potential coalitions of sizer by Mr.
We argue that it only makes sense to count potential coalitions
when considering a deviation.

To see why, note first that all bidders rankeds+ r or worse have
no effect on the payment of any other bidder, and can be ignored.
Second, the bidders rankeds+ 2, . . . , s+ r − 1 are only effective
if they allow the bidder allocated slots+ 1 to lower her bid. Thus
non-potential coalitions must contain at least one bidder that has
no contribution at all to the deviation, and can therefore be ignored.

4When swapping with a bidder in a worse slot, this requirement
coincides with the one implied by NE. However when swapping
with a bidder in a better slot, envy-freeness is slightly stronger.



Note for example that while adding dummy bidders (with valuation
0) increases the total number of coalitions, the number of potential
coalitions remains unchanged.

It is easy to verify that there are
(

s
r

)

coalitions of type (a), and
∑r−1

t=1

(

s
t

)

coalitions of type (b). ThusMr =
∑r

t=1

(

s
t

)

. Interest-
ingly, in VCG every potential coalition can actually deviate.

PROPOSITION 4. Under the truthful equilibrium of VCG, de-
noted byT , any potential coalition has a deviation, i.e.,
Dr(V CG, T ) = Mr for all 2 ≤ r ≤ s.

PROOF. LetR be some potential coalition, andi∗ ∈ argmini∈R vi.
We call i∗ the indifferent bidder. Suppose that every agenti ∈ R
reportsv′i so thatvi > v′i > vi+1. Clearly, this has no effect
on slot allocation. In coalitions that include only winners, all the
agents except agenti∗ (which is indifferent) pay strictly less than
their original payments, as the payment monotonically depends on
the valuations of the other members ofR. In potential coalitions
other type, whereR includest winners andr − t losers, allt win-
ners strictly gain.

4.3 Deviations in GSP
Since LE is a Nash equilibrium, we have thatD1(GSP,LE) =
SD1(GSP,LE) = 0. In fact, as in the VCG mechanism, no coali-
tion has a strict deviation from the LE profile in GSP. This state-
ment is not as trivial in the GSP mechanism, but it follows from
Lemma 9 toward the end of this section. The same analysis holds
for the UE in GSP. We next turn to evaluate the resistance of GSP
to (non-strict) deviations, focusing on the lower equilibrium. As in
the previous section, we only count potential coalitions as all other
coalitions necessarily contain redundant participants.

Pair deviations: characterization
We begin by characterizing all deviations by pairs of agents.

Lower equilibrium. It is easy to see that for everyi ≤ s, the pair
of agents(i, i+ 1) (calledneighbors) can always (weakly) gain as
a coalition, by having agenti+ 1 lowering her bid tob′i+1, so that
bi+1 > b′i+1 > bi+2.5 In this case, agenti + 1 is not affected, but
agenti gains the differencexi(bi+1 − b′i+1) > 0. It is also clear
that bidders rankeds+ 2 or worse can never be part of a deviating
pair. In terms of the stability score, this means that

s ≤ D2(GSP,LE) ≤M2 =

(

s+ 1

2

)

.

Consider the pair of agents(k, j), wherek < j ≤ s + 1. We
want to derive a sufficient and necessary condition under which the
pair(k, j) has a deviation. A simple observation is that given some
Nash equilibrium, for an agenti to strictly gain by being allocated
a new sloti′ 6= i, the bidbi′+1 must strictly decrease, since oth-
erwise this would also be a deviation fori as a single agent (in
contradiction to equilibrium). Therefore, either (1)k moves to a
worse slotk′ = j − 1, andb′j < bj ; or (2) j moves to a better slot
j′ = k, k is pushed down tok′ = k+ 1, andb′k < bk. However, if
j gains in case (2), then this means she is envy in bidderk. This is
impossible, as we assumedb is an SNE. Thus, the only deviation
is wherek′ = j − 1; j′ = j. Further, this is a deviation only if
bj−1 > b′k > b′j ≥ bj+1. Note that: (i)b′k can get any value in
this range without affecting the utility ofk or j, (ii) the utility of
j remains the same, and (iii) the most profitable deviation fork is
one in whichb′j = bj+1 (breaking the tie in favor ofj).

5The assumption that CTRs are strictly decreasing is required here,
as otherwise bidderi+ 1 may not be able to lower her bid.

The discussion above establishes a necessary condition for a pair
deviation, and asserts that in every pair deviation ofk, j only agentk
can strictly gain, wherek < j. We next complete the characteriza-
tion by establishing a sufficient condition for pair deviation.

For the following results, we denotea = xj−1 − xj (for our
fixed j), andwi =

xi−1−xi

xj
for all i ≤ s+ 1.

LEMMA 5. Suppose that the pairk, j deviates from LE, by mov-
ing agentk to slot k′ = j − 1. Let u(k), u′(k) be the utility of
agentk before and after the deviation, then

u(k)−u′(k) ≥
j−1
∑

t=k+1

(xt−1−xt)(vk−vt)−a·vj+a

s+1
∑

i=j+1

wivi.

Moreover, in the optimal deviation for agentk the last inequality
holds with an equality.

PROOF. Suppose agentj lowers her bid tob′j = bj+1+ ǫ where
ǫ ≥ 0 (so j keeps her slot). For anyx,v the utility of agentk
changes as follows:

u(k)− u′(k) = (vk − bk+1)xk − (vk − (bj+1 + ǫ))xj−1

= (xk − xj−1)vk −
s+1
∑

t=k+1

(xt−1 − xt)vt

+

s+1
∑

i=j+1

xj−1(xi−1 − xi)

xj
vi + ǫxj−1

=

j−1
∑

l=k+1

(xl−1 − xl)vk −
j
∑

t=k+1

(xt−1 − xt)vt

+

(

xj−1

xj
− 1

) s+1
∑

i=j+1

(xi−1 − xi)vi + ǫxj−1

=

j−1
∑

t=k+1

(xt−1 − xt)(vk − vt)− (xj−1 − xj)vj

+
xj−1 − xj

xj

s+1
∑

i=j+1

(xi−1 − xi)vi + ǫxj−1

=

j−1
∑

t=k+1

(xt−1 − xt)(vk − vt)− a · vj + a

s+1
∑

i=j+1

wivi + ǫxj−1.

The inequality follows sinceǫ ≥ 0. In the optimal deviationǫ =
0 in which case we get an equality. Note that

∑s+1
i=j+1 wivi is a

weighted average of valuations. In particular, it is always between
vs+1 andvj+1.

As a direct corollary from Lemma 5, we get that in LE the pair
k, j (wherek < j − 1), has a deviationif and only if

j−1
∑

t=k+1

(xt−1 − xt)(vk − vt) < a · vj − a

s+1
∑

i=j+1

wivi. (2)

Upper equilibrium. It is easy to check that a similar characteri-
zation to Eq. (2) applies to the UE. However, the conditions differ
with respect to bidders that are two positions apart.

PROPOSITION 6. Given a UE, the pair of agentsi, i+ 2 has a
deviation for everyi < s.

This result holds under all valuation and CTR functions; hence
D2(GSP,UE) ≥ 2s− 1. This means that the UE may be slightly



❳
❳

❳
❳
❳
❳

❳
❳❳

Valuations
CTR ← concave→ ← convex→

β-concave Linear β-convex

concave 2-concave All
(

s+1
2

)

All
(

s+1
2

)

-

Linear Ω(s2) Θ(s
√
s) O(s · logβ(s))

convex 2-convex - s s

Table 1: The table summarizes the number of pairs that have
a deviation, i.e.,D2(GSP,LE). When one function is strictly
concave and the other is strictly convex, the score may depend
on the exact structure of both functions.

less stable than LE (whose stability is expressed in Theorem 7).
Yet, it is not too difficult to show that the number of pair deviations
from UE and LE are asymptotically the same. Therefore, in the
remainder of this section we focus on stability scores of LE.

Pair deviations: quantification
It turns out that the asymptotic number of pair deviations strongly
depends on the shape of both the CTR function and the valua-
tion function. In particular, convexity (as well as concavity and
β-convexity) will play a major role in our results. Letg1, . . . , gm
be a monotonicallynonincreasingvector.

Similarly to the way defined convex cost functions in Section 3,
we say thatg is convexif it has a decreasing marginal loss; i.e.,
gi − gi+1 ≥ gj − gj+1 for every i < j. Similarly, if g has an
increasingmarginal loss then it isconcave.

Note that linear functions are both convex and concave. A spe-
cial case of convexity (resp., concavity) is when the marginal loss
decreases (resp., increases) exponentially fast.

Letβ > 1. We say thatg isβ-convexif gi−1−gi ≥ β(gi−gi+1)
for everyi. Similarly, g is said to beβ-concaveif β(gi−1 − gi) ≤
gi − gi+1 for everyi. 6

Intuitively, as either valuations or CTRs are “more” convex,7 a
bidder who deviates by moving to a lower (i.e., worse) slot faces
a more significant drop in her utility. Thus we can hope that pairs
that are sufficiently distant from one another will not be able to
deviate jointly. This intuition is further formalized and quantified
in the remainder of this section. For convenience, the results are
summarized in Table 1.

The next proposition demonstrates that convexity induces greater
stability.

THEOREM 7. Suppose that both CTR and valuation functions
areconvex. The number of pairs with deviations in the Lower equi-
librium can be upper bounded as follows.

(A) D2(GSP,LE) = O(s
√
s).

(B) if CTRs areβ-convex thenD2(GSP,LE) = O(s logβ s).

(C) if valuations areβ-convex, for anyβ ≥ 2, then only neighbor
pairs can deviate. I.e.,D2(GSP,LE) = s.

We present the proof of the first statement, so as to demonstrate the
proof technique.

PROOF OF7(A). Recall thata = xj−1 − xj > 0. A crucial
observation is that

∑s+1
i=k+1 wivi is in fact a weighted average of

6Lucier et al. [15] studied GSP auctions withwell-separatedCTR
functions, which is a closely related term. In particular, a1

β
-well

separated function is alsoβ-convex.
7When referring to convexity of CTR/valuation functions, we only
consider the firsts+ 1 values.

valuations, where the weightwi is proportional to the difference
xi−1−xi. Therefore this average is biased toward low values when
CTR is convex, and toward high values when it is concave.

Also, since CTRs are convex, we have that for alli < j, xi−1 −
xi ≥ a. Thus by Lemma 5,

u(k)−u′(k) ≥ a

j−1
∑

t=k+1

(vk − vt)− a · vj + a

s+1
∑

i=j+1

wivi

= a

(

j−1
∑

t=k+1

(vk − vt) +

s+1
∑

i=j+1

wivi − vj

)

≥ a

(

j−1
∑

t=k+1

(vk − vt) + avg
s+1≥i≥j+1

(vi)− vj

)

. (3)

Therefore, in order to prove that the pairj, k can deviate, it is nec-
essary to show j−1

∑

t=k+1

(vk − vt) < vj − avg
s+1≥i≥j+1

vi. (4)

We note that under linear CTRs, all inequalities become equalities
(in which case Equation (4) is also a sufficient condition). Observe
that closer pairs are more likely to deviate. E.g. for pairs s.t.j =
k+2, it is sufficient thatvk−vk+1 < vk+2− avg

s≥t′≥k+3

vt′ to have a

deviation. Leth = j−1−k ≥ 1, andz = vk−vj−1 = vk−vk+h.

From convexity ofv it holds that for allh′ < h,
vk−vk+h′

h′ ≥
vk−vk+h

h
= z

h
, thus for the LHS of Eq. (4),

j−1
∑

t=k+1

(vk − vt) ≥
j−1
∑

t=k+1

z
t− k

h
=

z

h

h(h+ 1)

2
=

h+ 1

2
z. (5)

Bounding the RHS of Eq. (4), we have

vj− avg
s+1≥i≥j+1

vi ≤ vj − vavg{s+1≥i≥j+1} (convexity ofv)

≤ vj − v⌈ j

2
+ s

2

⌉ = vj − v⌈j+ s−j

2
⌉

≤
⌈(s−j)/2h⌉
∑

i′=1

(vj+(i′−1)h − vj+i′h) ≤
⌈(s−j)/2h⌉
∑

i′=1

(vk − vk+h), (6)

which is at most
⌈

s−j
2h

⌉

z. By using the bounds we showed on both
sides of the equation, condition (4) impliesh+ 1 <

⌈

s−j
h

⌉

, which
must be false wheneverh + 1 = j − k >

√
s. Therefore each

winnerk ≤ s can deviate with at most
√
s other bidders, and there

can be at mosts
√
s such pairs.

It is evident from Theorem 7, that convexity can guarantee some
level of stability, and further, that “more” convexity can induce
more stability. Our next result complements this observation, by
showing thatconcavityof valuation and CTR functions affects sta-
bility in the opposite direction.

THEOREM 8. Suppose that both CTR and valuation functions
are concave. The number of pairs with deviations in the Lower
equilibrium can be lower bounded as follows.

(A) D2(GSP,LE) = Ω(s
√
s).

(B) if CTRs areβ-concave for anyβ > 1, thenD2(GSP,LE) =
Ω(s2) (i.e. a constant fraction of all pairs).

(C) if valuations areβ-concave, for anyβ ≥ 2, thenall pairs can
deviate. I.e.,D2(GSP,LE) =

(

s+1
2

)

= M2.



A linear function is both convex and concave. Therefore, in the
special case where both CTRs and valuations are linear, we obtain
an asymptotically tight estimation ofD2(GSP,LE).

Deviations of more than two agents
We first characterize the structure of such deviations.

LEMMA 9. Suppose thatR ⊆ N is a coalition that gains by a
deviation, and letbj , b′j denote the bids ofj ∈ R before and after
the deviation, respectively. Then the following hold:

(a) There is at least one bidderi∗ ∈ R that does not gain anything
from the deviation; this bidder is called theindifferent bidder.

(b) There is at least one bidderf ∈ R s.t. R \ {f} still has a
deviation; this bidder is called afree rider.

(c) For all j ∈ R, eitherb′j < bj , or the utilities of all agents inR
(includingj) are unaffected by the bid ofj.

In order to prove the Lemma, we must show that the bidder that
is ranked last among the deviators is an indifferent bidder (i∗). The
free rider (f ) is either the bidder that is ranked first among the de-
viators, or some bidder that is isolated of all other deviators. In
addition, it is shown that bidders that move to a better slot either
strictly lose, or cause some other deviator to strictly lose.

As a direct corollary of Lemma 9, given any coalitionR of size
≥ 3, the coalitionR \ {f} can also deviate. By induction, there-
fore, a coalitionR that can deviate always contains a pair that can
deviate. Moreover, by part (c) of Lemma 9, it follows that given
a deviating coalition of size≥ 2, it can be extended by adding a
bidder who does not change her bid. As a result, a setR can de-
viate if and only if it contains a pair that can deviate. This crucial
observation facilitates the computation of the number of deviations
by coalitions of sizer for anyr ≥ 3.

Recall thatMr denotes the number of potential coalitions of size
r, and that under VCG auction all of these coalitions actually have
a deviation. Clearly,Dr(GSP,LE) ≤ Mr. We next show how
the accurate number of coalitions asymptotically depends on the
size of the coalitionr and on the number of slotss.

PROPOSITION 10. If both CTRs and valuations are convex, then

Dr(GSP,LE) ≤Mr ·O
(

r2√
s

)

.

In contrast, if both CTRs and valuations are concave, then

Dr(GSP,LE) ≥Mr · d ·
(

1− exp

(

−Ω
(

r
√
r√
s

)))

for any positive constantd < 1.

That is, at least in the convex case the number of potential devia-
tions under GSP is significantly smaller than under VCG.

This result also establishes an almost sharp threshold for the case
of linear CTRs and valuations. In particular, for everyr ≫ 3√s,
almost all coalitions of sizer can deviate, while the proportion of
coalitions of sizer ≪ 4√s that can deviate goes to 0 (whenr is
fixed and ass grows).

Proposition 10 confirms that the GSP auction is far more stable
than the VCG auction against collusions of relatively small coali-
tions (at least when CTR and valuations are convex).

5. ELIMINATING GROUP DEVIATIONS

5.1 VCG with a reserve price
Consider a variant of the VCG mechanism that adds a fixed re-

serve pricec. That is, only bidders that reports a value ofc or higher
get a slot, and payments are computed ignoring the other bidders
(i.e. replacing their values withc). It is easy to verify that truth-
telling remains a dominant strategy, and that Proposition 4 remains
valid if the values of all bidders are strictly abovec. However,
a bidder whose value is exactlyc will not join any coalition: by
lowering her reported value she will lose her current slot for sure,
whereas previously she enjoyed a positive utility.

Now, consider a VCG mechanism that chooses a reserve price as
follows. With probabilityq, the reserve price is chosen randomly
from a sufficiently large interval, and with probability1 − q, it is
set to 0. Crucially, the probability distribution of the reserve price
is common knowledge, but agents submit their reports before its
realization is revealed. Let us denote the proposed mechanism by
VCG∗. While the proposed adjustment seems small, it results in a
dramatic increase of stability.

THEOREM 11. If s ≥ n, then truth-telling is a SSE in VCG∗.

PROOF. First observe that VCG∗ is a lottery over strategyproof
mechanisms, thus no agent has an incentive to deviate unilaterally.
Suppose by way of contradiction that there exists a deviating coali-
tion, and letR be such a coalition of minimal size. SinceR is mini-
mal, the indifferent agenti∗ ∈ R (as defined in Prop. 4) must lower
her reported value, otherwise the coalitionR \ {i∗} can also devi-
ate. Assume, therefore, thatv′i∗ = vi∗−ǫ for someǫ > 0. It is easy
to verify thati∗ cannot gain in any outcome of the mechanism. In
contrast, there is a non-zero probability thatc is chosen in the range
(v′i∗ , vi∗), in which case the utility ofi∗ becomes 0, compared to
(vi∗ − c)xi∗ > 0 under truth-telling. Therefore, agenti∗ loses in
expectation, contradicting the existence of a coalitionR.

By the last theorem, VCG∗ guarantees stability whenevern ≤ s.8

However, if s < n the bidder rankeds + 1 can serve as the in-
different bidder of any coalition. Consequently, VCG∗ does not
posses a SSE. That is, since the utility of agents + 1 is always 0,
she will not be discouraged by the random reserve price, even when
her reported value falls below the reserve price.

In order to deal with the lack of slots (i.e., the case in which
s ≤ n), we introduce a modified VCG∗ mechanism, which always
induces truth-telling as a SSE.

Consider the following modification to VCG∗, termed VCG∗λ.
Let 0 < λ < 1

n
. Given some slotj ≤ s with a CTR ofxj > 0, it is

allocated to the bidder that is rankedj with probability1−λ, and is
allocated to the bidder that is rankeds+1 with probabilityλ. This
modification effectively creates a new slots + 1, whose expected
CTR isλxj , whereas the new (expected) CTR of slotj becomes
(1− λ)xj . This procedure can be applied to the desired additional
n− s slots. In particular, a possible instantiation is where the new
expected CTR of positions will be (1 − (n − s)λ)xs, and there
will be n − s new slots with an expected CTR ofλxs. Since the
new auction hasn slots, the mechanism VCG∗ can be performed
to eliminate all coalitional deviations.

The careful reader will notice that by changing the CTRs, the
equilibrium in the new auction may change. However, as long as
the order of the slots is preserved, the equilibrium allocation is not
affected, and this is ensured by satisfyingλ < 1

n
. Moreover, the

new payment differs from the original payment by at mostv1 ·n ·λ;
thus for a sufficiently smallλ the difference is negligible. As a
result, we get the following corollary.
8The proof in fact shows a stronger result: truth-telling is a SSE in
dominant strategies. Thus VCG∗ is group-strategyproof.



COROLLARY 12. Truth-telling is a SSE in mechanism VCG∗
λ

for every0<λ< 1
n

. Moreover, the payments and revenue of VCG∗
λ

can be arbitrarily close to the payments and revenue of VCG.

5.2 GSP with a reserve price
As evident from the results in the last section, stability of the

VCG mechanism is significantly increased by augmenting the mech-
anism with a random reserve price and additional subtle random-
ization. It might be tempting to apply the same technique to the
GSP mechanism, in an attempt to increase its stability, while main-
taining the possibility to achieve a higher revenue than VCG. Un-
fortunately, this approach fails since (in contrast to VCG) adding a
reserve price does not preserve its original set of equilibria.

To see this, consider a GSP mechanism with a fixed reserve price
c. Bidderi is affected by the reserve price if either: (I)vi > c > bi,
in which case bidderi has an incentive to raise her bid, as other-
wise she will lose the slot; or (II)vi < c < bi, in which case
she has an incentive to lower her bid, as otherwise she will pay
more than the slot’s worth to her. In both cases it follows that the
modified GSP mechanism no longer preserves the SNE properties
characterized by Varian (even with respect to unilateral deviations).
The reason for the difference between VCG and GSP is that VCG
induces truthful revelation in equilibrium; hence cases (I) and (II)
suggested above cannot be realized.

6. DISCUSSION AND FUTURE WORK
Our main contribution in this paper is the introduction ofstability

scores— a new stability measure for game equilibria. We demon-
strated how stability scores can be used to compare equilibria in
congestion games and to draw qualitative results regarding proper-
ties of the game and the profiles that increase coalitional stability.

Auctions. Our results indicate that for a prominent class of CTR
and valuation functions, GSP is far more stable than VCG.9

It is known that the LE of GSP generates exactly the same rev-
enue as VCG, and any other SNE of GSP generates an even higher
revenue. This may suggest that GSP is better than VCG with re-
spect to both revenue and stability. However, a relatively simple
modification to the VCG mechanism induces a randomized mecha-
nism that eliminates all coalitional deviations, thus turning it into a
highly stable mechanism. An open question is whether our results
still hold when ads’ quality is also considered (see [20]).

Equilibria selection and mechanism design. Analysis of sta-
bility scores can be applied to various games and mechanisms. In
particular, in games that have multiple Nash equilibria such anal-
ysis can aid in selecting the an equilibrium. Understanding how
coalitional stability is affected by properties of the game will help
us to play better as players, and to create better games as designers.

Toward a realistic picture of coalitional stability. Solution con-
cepts such asǫ-NE (or ǫ-SE) quantify the benefit an agent or coali-
tion can get from a deviation. Therefore they offer stability un-
der a relaxed notion of self-interest (i.e. agents will only bother
to deviate for some substantial gain). In contrast, stability scores
still assume purely self-interested agents, but relax a different as-
pect of coalitional rationality. Practical limitations on information,
communication or trust may mean that a coalition of agents will
not collude even if they have a potentially high incentive to do so.
Other models such as Myerson’s [18] assume that limitations on
collusion are given in an explicit and structured form.

9Empirical studies indicate that CTRs on common platforms are
indeed convex, see [5].

In future research we may wish take a combined approach to
coalitional stability, considering both known and unknown limita-
tions on collusion, possibly attributing more importance to coali-
tions with a stronger incentive to deviate. Such models will enable
us to better predict realistic outcomes of games, and to improve the
mechanisms we design.
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