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ABSTRACT A basic problem with the NE solution concept is that a NE does

We introduce a measure for the level of stability against coalitional not take into account 10|_nt qle_watlon§ by c_oalltlons of player__c,. We
deviations, callecstability scoreswhich generalizes widely used usually assume that an individual will deviate from a profile if she

notions of stability in non-cooperative games. We use the proposedas an available strategy that strictly increases her payoff. In some
measure to compare various Nash equilibria in congestion games,S€ttings it would be natural to assume also that a group of individ-
and to quantify the effect of game parameters on coalitional stabil- gals will deviate if they have an available joint strategy that.s.trlctly
ity. For our main results, we apply stability scores to analyze and increases the payoff of each group mem_ber. _‘Sheng Equilib-
compare the Generalized Second Price (GSP) and Vickrey-Clarke-1Um (SE) concept by Aumann [2] deals with this problem. A pro-
Groves (VCG) ad auctions. We show that while a central result of fll€ i @ SE if no coalition of agents can jointly deviate in a way
the ad auctions literature is that the GSP and VCG auctions imple- that §trlctly |ncreases_t_he payof'f_c_)f each coalition member. Inter-
ment the same outcome in one of the equilibria of GSP, the GSP mediate levels of coalitional stability have been suggested, such as

outcome is far more stable. Finally, a modified version of VCG is stability against deviations of small coalitions (see e.g. [1]), and in

introduced, which is group strategy-proof, and thereby achieves the Particular pairs. An even more appealing solution concept than SE
highest possible stal:?ility Fs),core. 9wyp 4 is theSuper-Strong EquilibriunSSE) that considers deviations in

which no member loses while at least one member makes a positive
gain (see, for example, [11]).

Categories and SUbJeCt Descriptors A major problem with these proposed solutions is that they sel-

1.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence— dom exist. Indeed, SSE rarely exist even in cases where strong

Multiagent Systems equilibria do exist (e.g., in simple congestion games [13, 1]), and

J.4 [Computer Applications]: Social and Behavioral Sciences—  even if only deviations by pairs are considered.

Economics In this paper we relax the strong requirement that no coalition
will have an incentive to deviate, and suggest a quantitative mea-

General Terms sure to coalitional stability. Assuming we have a Nash equilibrium

profile of a game where some pairs of agents can still deviate, we
may still wish to measure its stability by referring to tmemberof

pairs that have beneficial deviations from that profile. More gener-
Keywords ally, given a game and a strategy profile, we can associate with it a
Game theory, Auctions, Mechanism design, Solution concepts tuple in which ther-th entry in the tuple is the number of coalitions

of sizer that can gain by a deviation. This tuple determines the

1. INTRODUCTION stability scoreof the strategy profile.
. . S Given two strategy profiles, we need a way to decide which one
One of the most basic questions of game theory is: given a game.

in strategic form, what is its solution? Bgolutionwe typically is more stable. A common practice in game theory is to prefer

mean a strategy profile that can be proposed to all agents, and nc)strategy profiles that ari@ equilibrium, i.e. in which there are no

rational agent would want to deviate from it. Thus a solution should unilateral deviations. Since small coalitions are more likely to form

- .~ . and maintain cooperation, a natural extension is to compare stabil-
be stable Many solution concepts for games have been studied; itv scores of aames with associated strate rofiles usiexieo-
these studies differ by the level and interpretation of stability, as y 9 gy p siey

well as by the underlying assumptions that are required to achievegr&u:)hlcorderm":l of the corresponding vectdrgor example, given

it. The best known solution concept for games is the Nash equilib- two n-person games(y; andGrs, with respective Nash equilibria

rium (NE), a strategy profile from which no agent has an incentive s1 ands,, the Stf"‘t.’"'ty score of the fqrmer W'.” be hlgher if the
to deviateunilaterally. number of beneficial deviations by pairs framin G is smaller

than the number of beneficial deviations by pairs franin G.

*At the time of research the author was affiliated with Microsoft While the existence of, say9 coalitions that can deviate rather
Research in Herzlia, Israel. than15 does not have much significance, we usually care about the
behavior in some parameterized family of games where parameters

Algorithms, Theory, Economics
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(AAMAS 2012) Conitzer, Winikoff, Padgham, and van der Hoek _There are many ways to compare stability score vectors. Choos-
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may include number of players, size of the strategy space, etc. If theto McAfree and McMillan [16].

score ofa is asymptotically lowethan the score of’ (w.r.t. one of . .

the parameters), then this may indicate thfg@is substantially more 1.2 Our contribution

prone to coalitional deviations. Stability scores are formally defined in Section 2, where we show
Moreover, when studying such a parametrized family, stability how they generalize well known solution concepts. In Section 3

scores may assist us in understanding how the parameters of theve study strict stability scores in a simple family of congestion

game affect coalitional stability. This holds even if there is a unique games. The main purpose of this study is to demonstrate how sta-

or a prominent equilibrium. bility scores can be used in order to compare different Nash equilib-
Stability scores are particularly useful in the contextradcha- ria, and to measure how stability is affected by game’s parameters.

nism designas they allow us to quantify the coalitional stability of ~Moreover, while the studied family itself is quite simple, it is often

various mechanisms and to compare mechanisms that operate in aised to model real world situations such as load balancing. Our

specific domain. To illustrate this point, we consider two central analysis can give some intuition as to the main factors affecting

mechanisms in what is perhaps the most widely studied economiccoalitional stability in such games.

setup in recent years: ad auctions. We analyze in detail the Gener- The main results are in Section 4, where we present the VCG

alized Second Price (GSP) auction and the Vickrey-Clarke-Groves and GSP mechanisms for ad auctions (adopting the original model

(VCG) auction, and compare their stability scores. advocated for that setting in the seminal work by Varian [20] and
by Edelman et al. [8]), and show bounds on stability scores in these

1.1 Related work auctions. In particular, we study how the stability of GSP varies
as a function of the distributions of agents’ valuations and slots’

Related solution concepts in games click-through rates, thereby showing that under certain reasonable

In the context of non-cooperative games approximate stability is conditions GSP is far more stable than VCG. _
typically measured by the strength of the incentive required to con- In Section 5 we introduce a modlflcatl_on to t'h_e VCG auction that
vince an agent to deviate, captured for example by the concept of " be used to overcome the obser.ved |pstab|I|ty of VCG. In partllc-
¢-Nash equilibrium. As discussed above, stability against collusion Ylar, we show that a revised VCG, in which a random reserve price
is captured by concepts such as SE and SSE, but these often do ndf introduced, induces truth-telling as a super-strong equilibrium.
allow a fine distinction between various outcomes. Omitted proofs are available in the full version of this paper [10].

In addition, coalitions are the key componentaoperativegame
theory, and many variations of coalitional stability have been stud- 2. PRELIMINARIES
ied. While we are unaware of solutions concepts that quantify sta- e
bility by measuring coalitional deviations, models of restricted co- Games and equilibria
operation capture social constraints that may prevent the formation| et G = (N,{Ai}ien, {ui}ien) be a normal form game, where
of some coalitions [18]. Thus a (cooperative) game may not be N = {1,...,n} is the set of playersA; is the set of actions
stable against every coalitional deviation (i.e. have an empty core), available to playe§, andu; : A — R is player:’s utility, where
but still satisfy all the coalitions that can formin practice. Recently, A = A; x --- x A, is the set of joint actions (profiles), and for
some papers studied how such social context affects the stability ofeverya € A, u;(a) denotes the utility of playet under action
the game [7, 17]. Moreover, even if some coaliticam gain by profile a. The vector of actions of all players except playér the
deviation, it may or may not do so: Members of the coalition might profile a is denoted by._;. An action profilea € A is aNash
intentionally avoid cooperation based on far-sighted prediction (an Equilibrium (NE) if ui(a) > ui(b;,a_;) for every agent € N
assumption underlyingoalition-proofnes$or example [4]), or just and every alternative actidn € A;.
fail to recognize the benefit in deviating. This is especially true if When considering coalitions, given an action profilewe de-
the coalition is large. Stability scores do not assume a particular note byas the profile of agents i, and byAs the set of all such
social context or incentive structure, but simply try and minimize joint actions. The profile of all agents iV \ S is denoted by:_s.
the number of coalitions with profitable deviations. Given a profile of actions € A, bs € Ag is astrict deviation
. e e . fromaif u;(bs,a—s) > ui(as,a—s) for everyi € S. The profile
Collusion and equilibria in ad auctions a is termed &Strong Equilibrium(SE) if there are nd C N and
Major results of previous work on ad auctions, characterized a spe-bs € As, such thabs is a strict deviation frona.
cial family of equilibria of GSP the auction (used in practice), termed One can also consider the following weaker notion of deviation.
Symmetric Nash Equilibriar SNE (see Section 4.1 for details) [20]. Given a profile of actiona € A, bs € As is adeviationfrom a if
SNEs have many attractive properties which make them a natu-ui(bs,a—s) > ui(as,a—s) forevery: € S and there existg € S
ral choice as outcomes of the GSP auction. Moreover, it has beensuch thatu; (bs,a—s) > u;(as,a—s) . The profilea is termed a
shown that the SNE leading to the lowest revenue for the seller Super-Strong EquilibriunSSE) if there is ndS C N,bs € As
(termedLower Equilibrium(LE)), coincides with the natural equi-  that is a deviation frona. Since every strict deviation is clearly a
librium of VCG where all bidders report their true values. deviation, every SSE is also a SE.

The above results led to a surge of papers comparing VCG and SSE captures the natural requirement that we should resist even
the various equilibrium outcomes of GSP, under both public infor- situations in which a deviation only benefits some of the deviators
mation and private information settings [14, 19, 9, 15]. However, without hurting others. A strategy profile iSSE (respectivelyy-
these comparisons focused mainly on revenue, rather than on coali-SSE) if there are no coalitions of size at mesthat have strict
tional stability. The VCG mechanism was shown to be vulnerable deviations (resp., deviations).
to collusion in various domains (see, e.g., [6, 3] for relatively re- .
cent work), compared to a simple first-price (pay-your-bid) auc- Stability scores
tion. The formal literature on collusion in second-price auctions The stability score of the profile in gameG is defined as a vector
goes back to Graham and Marshall [12], while the literature on the with n entries. For every < r < n, letD,.(G,a) € N (respec-
more involved matter of collusion in first-price auctions goes back tively, SD, (G, a) € N) be thenumberof coalitions of size that



have deviations (resp., strict deviations) franm G. While there

(in the second step), and this is a strong equilibrium S®..(G, ¢c) =

are many ways to impose an order on equilibria based on these0 for all r. It therefore follows that w.r.t strict stability scoress

vectors, we believe that the following lexicographic order is partic-
ularly natural.

Given twon-player games; andG’ and two profilesa anda’ in
the respective games, we say that the péira) is more resistant
to deviations(or more stablg than (G’,a’), if there exists some
r < n such thatD,(G,a) < D,(G’,a’) and the terms are equal
for everyr’ < r. We can similarly compare strict stability scores
to one another.

Our definition of stability score generalizes some widely used
notions of stability. For example, is a Nash equilibrium (NE) of
G iff D1(G,a) = SD1(G,a) = 0. This means that the score of
a NE (by either definition) is always strictly better than the score
of any profile that is not a NE. Further, any profile thatiSE has
a better strict-stability score than any no8E profile. A similar
property holds w.r.tr-SSE. As a different example, a profieis
Pareto efficientn G iff D, (G,a) = 0.

3. RESOURCE SELECTION GAMES

In this section we demonstrate how stability scores can be used to
measure and compare the stability of different outcomes in a given
game. To this end we focus on a very simple parametrized family,
where games are known to posses at least one pure equilibrium. A

natural choice is the family oésource selection gamé@RSG) with
identical resources.

In a RSG there is a set of resourdés= {1, ..., m}, and anon-
decreasing cost function: [n] — Ry, where[n] = {1,...,n}.
Each agent € N can select exactly one resourgeand suffers a
cost (negative utility) ok(n;), wheren; is the number of agents
that selected resourge RSGs ar@otential gamesand thus always
admit a pure Nash equilibrium. In fact, any NEof a RSGG =
(F, N, c) is astrong equilibrium[13], and thus all equilibria have
the same (strict) stability score. However, this is no longer true if
the games are concatenated in a sequence.

Formally, asequentiaRSG (SRSG) is a RSG withsteps. Thus
a strategy of an ageat, € F* requires selecting one resource in
each step (actions may not depend on the previous stepgd.
next show that the number of coalitional deviations significantly

depends on the played equilibrium. We consider games where

m,n, k > 2, focusing mainly on games withsteps.

3.1 Counting deviations: an example

Suppose thatn = 4,n = 6,k = 2 and thate(t) = ¢ for all
t < m. Any profile in which there are exactly 1 or 2 agents on

more stableéhanb, which is more stable tham

Note however that none of these profiles is an SSE or @ven
SSE. More generally, iany profile in G there is at least one pair
(in fact two) that shares a resource and thus they have a (weak)
deviation where just one of them gains. Thus for every prefile
G, we have thaD; (G, p) > 2.

3.2 Bounding stability scores in two-step RSG

The example above shows that different NE profiles in a particu-
lar game may differ in their stability to deviations of pairs or larger
coalitions. We want to get a better picture of the gap between the
most and least stable NE profiles, focusing on pair deviations. For
the results in this section, we will restrict our cost function to be
convex.

A nondecreasing cost functian: [n] — R is said to beconvex
if it has an increasing marginal loss; i.e( + 1) — ¢(i) < ¢(j +
1) — ¢(j) for everyi < j. Note that when facing a convex cost
function, agents in an RSG try to minimize the maximal number of
agents using a single resource. If the number of agents on every
resource is the same, we say that the partitidralanced If these
numbers differ by at most one, we say that the partitionearly
balanced

Let G be a two-step game with a convex cost function. Note that
whenn mod m = 0, any NE is a balanced partition of agents to
resources (in each step). In such partition, no coalition can gain by
deviating, as at least one deviating agent will end up paying more
in expectation. If, in addition, costs astrictly convex, then even
weak deviations are impossible. Since in this setting every NE is
an SE (and even an SSE), stability scores are trivial. We therefore
assume that mod m = ¢ > 0.

Let a be the profile with the highest number of pair deviations,
and leta™ be the profile with the lowest number of pair deviations.

m

PROPOSITION 1. 8D2(G,a) = © (%)

PROOF SKETCH OF LOWER BOUND We note that ina agents
play some nearly balanced partition in the first step, and repeat the
same partition in the second step. Thus some resources (fidl)ed
will have [n/m] agents, and the others will haye/m | agents. A
crucial observation used in the proof (and in the proofs of the other
propositions in this section), is that a pair has a strict deviation if
and only if it shares a full resource in both steps. Then (similarly
to the example above) one agent switches to a non-full resource in
the first step, and the other does the same in the second stép.

each resource (in each step) is a Nash equilibrium. However, these

equilibria differ in their stability against strict deviation of pairs.
Suppose that in the first step agents are partiticfie@}, {3, 4},

{5}, {6}, and repeat the same actions in the second step. Denot

this profile bya. In this case the paif1, 2} can strictly gain as
follows: agentl joins agent (or 6) in the first step, and ageat

joins5 in the second. Thus the cost for each of the two agents drops

from4 to 3. The pair{3, 4} can do the same, thd&D, (G, a) = 2.

On the other hand, consider a profilavhere players play in the
first step as im, and in the second step are partitioqéd3}, {2, 4},
{5}, {6}; then no pair can strictly gain by deviating. Notice though,
that this is still not a strong equilibrium, as the coalitipin 2, 3,4}
can still gain (agent®, 3 deviate in the first step, arid4 in the sec-
ond), thusSD2(G,b) = 0 andSD4(G,b) = 1.

Finally, in profilec agents are partitioned , 5}, {2, 6}, {3}, {4}

2Equivalently, the game can be described as a routing game, with

k sequential parts and parallel edges in each part.

Note that whery = ©(m), which is a typical situation, there are

n-
m

We find that the best NB* is significantly better thaA.

coverQ ( 2) deviating pairs.

PROPOSITION 2. SD3(G,a*) = O ("—22) Further, if either
n<m®orq <2, thenSDy(G,a*) =0, i.e.a" is 2-SE.

In order to achieve the upper bound asserted in the proposition we
define a profile that tries to scatter in the second step agents that
shared a resource in the first step. As a qualitative conclusion, we
see that in order to minimize possible deviations, agents should
form a partition in the second step that differs as much as possible
from the partition in the first step.

3.3 SRSGs with many steps



The following proposition quantifies the stability score of a ran- GSP. In the GSP auction, slgtis given to thej’th highest bidder
dom pure NE in a RSG witk steps. Note that the set of pure NEs (as in the VCG auction). Denote hythe bidder who is getting slot
coincides with the set of profiles that are nearly balanced in each j. The charge of biddej = 1, ..., s equals to the bid of the next
step. bidder; i.e.,p; = b;+1. For mathematical convenience, we define

bj+1 =0 forj >n.

PROPOSITION 3. LetG be an SRSG with steps and a convex

cost function, and let be a random NE iit;. The expected number ~ GSP €quilibria. . Varian [20] identifies a set of natural Nash
of deviating pairs inG is SD»(G, a) = (n) (1 —(1+ a)e—a) equilibria of the GSP auction, termexhvy free NEor Symmetric
b 2 1

NE (SNE), which are characterized by a set of recursive inequal-
ities. Varian shows that all SNE’s satisfy some very convenient
properties. First, in SNE no bidder wants to swap slots with any
other biddef. Second, SNEs are efficient in the sense that bidders
with higher valuations always bid higher (and thus get better slots).
This allows us to assume that valuations are also sorted in non-
decreasing order; > vy > --- > v,. Lastly, SNEs can be easily
computed by a recursive formula, which makes them especially at-
tractive for computerized and online settings.

The two equilibria that reside on the boundaries of the SNE
set, referred to asower Equilibrium(LE) andUpper Equilibrium
n 1 1 2 (UE), are of particular interest. We denote the LE and UE profiles
SDy(G, a) > ( ) (1 - (1 - 7) (1 + 7)) -0 <7) ) by b = (bF)icn andb? = (bY)icn, respectively. The bids in

2 m m m the LE, for eveny2 < ¢ < s + 1, are given by

whereaq = 250,
We can summarize how the parameters affect stability as follows.
If the number of steps is small, and the number of resourees
increases, them — 0, and thusSD; (G, a) — 0 as well (i.e. there
are very few pairs that can deviate). Conversely, when the number
of steps grows (in particular whein > mTZ), then almost every
pair can deviate with a high probability.

As a corollary of Proposition 3 whekh = 2, we get the lower
bound of Proposition 1 for the cage= ©(m), as

4. STABILITY SCORES IN AD AUCTIONS biwion = vileio1 — @) + b = Y vi(n5-1 - xj).

Having showed how stability scores can be used to analyze coali- stz
tional stability in simple games, we next turn to prove our main re- In particular, since CTRs are strictly decreasing, we get#hat
sults. We compute the stability scores of the VCG and GSP ad auc-b;41 for all i < s. A central result by Varian [20] is that the LE
tions, which are central to the recent literature on economic mecha- equilibrium induces payments, utilities, and revenue equal to those
nism design. Since both auctions admit strong equilibria, we do not of the truthful outcome in VCG. It is therefore of great interest to
consider strict deviations, and instead focus our analysis on weakcompare the stability of these seemingly identical outcomes in both
deviations and the scores they induce. mechanisms.

. . The bids in the UE, for every < i < s + 1, are given by

4.1 Ad auctions: model and notations

U U

An ad auction has slots to allocate, and > 2s bidders® each bi Ti1 = Vi1 @i—1 —Ti) +bip1 T :Zvdfl(”ffl —x;).
with valuationv; per click [20]. Every slofl < j < s is associated st12j>i
with a click-through rate (CTR}; > 0, wherez; > x;.. For In the remaining of this section we measure the stability of the
mathematical convenience, we defing = 0 for everyj > s. VCG and GSP mechanisms. Our results indicate that while the
Throughout the paper we make the simplifying assumptions that mechanisms have seemingly identical outcomes, for many natural
CTRs are strictly decreasing (i.ez; > x;11), and that; # v; valuation and CTR functions, GSP is far more stable than VCG.
for all 7 # j. We denote by bold letter the corresponding vectors of o ]
valuations, CTRs, and bids (ely.= (b1, ..., bs)). 4.2 Deviations in VCG

A bidder that has been allocated slpgainsv; per click (re- Recall that the payment for bidderis a weighted average of
gardless of the slot), and is chargedper click. Thus, her total  reported (and by truthfulness, the actual) values of bidders <
utility is given bywu; = (v; — pj)z;. j < s+ 1 (see Eq. (1)).
VCG. In the VCG mechanism every biddérsubmits a bidh;, We next characterize the structure of a set of deviakbof size

r. We say that a coalitiol® of » bidders has @otential to deviate
under VCG (or that it is gotential coalition, if either: (a) the
group R contains exactly winners(i.e., bidders that are allocated
a slotj < s); or (b) the setR is composed of < r winners, the
firstloser, and the — ¢ — 1 bidders that directly follow (i.e., bidders
s + 1throughs + r — t).

We denote the number of potential coalitions of sizey M...
We argue that it only makes sense to count potential coalitions
when considering a deviation.

To see why, note first that all bidders ranke¢ r or worse have
no effect on the payment of any other bidder, and can be ignored.

and the mechanism allocates tfii¢h slot, 7 = 1,...,s, to the
j'th highest bidder. Each bidderis charged (per click) for the
“harm” she poses to the other bidders, i.e., the difference between
the welfare of bidderg # j if j is omitted and their welfare when
j exists.

It is well known that the VCG mechanism tsuthful, meaning
that reporting true valuatioris = v; is a (weakly) dominant strat-
egy for all bidders. In particular, it is a Nash equilibrium.

Suppose that bidders’ valuations are sorted in non-increasing or-
der. Assuming truthful bidding (i.eb; = v; for all j), each bid-
der: < sis allocated slot, and pays

Second, the bidders rankedt 2, ..., s+ r — 1 are only effective
_ _ if they allow the bidder allocated slet+ 1 to lower her bid. Thus
Y% = Z Ti—1 = %5 ;. (1) non-potential coalitions must contain at least one bidder that has
1355041 no contribution at all to the deviation, and can therefore be ignored.
3When discussing deviating pairs it is sufficient to assume s, “When swapping with a bidder in a worse slot, this requirement

which is a typical situation. Also, all of our results can be easily coincides with the one implied by NE. However when swapping
adjusted to cases with fewer bidders. with a bidder in a better slot, envy-freeness is slightly stronger.



Note for example that while adding dummy bidders (with valuation =~ The discussion above establishes a necessary condition for a pair
0) increases the total number of coalitions, the number of potential deviation, and asserts that in every pair deviatioh,gfonly agent:

coalitions remains unchanged. can strictly gain, wheré < j. We next complete the characteriza-

It is easy to verify that there ar(e:) coalitions of type (a), and tion by establishing a sufficient condition for pair deviation.

:;11 (f) coalitions of type (b). Thud/, = >/, (f) Interest- For the following results, we denote = z;_; — x; (for our
ingly, in VCG every potential coalition can actually deviate. fixed 5), andw; = % foralls < s+ 1.

PrRopPoOsSITION 4. Under the truthful equilibrium of VCG, de- LEMMA 5. Suppose that the paikr, j deviates from LE, by mov-
noted byT', any potential coalition has a deviation, i.e., ing agentk to slotk’ = j — 1. Letu(k),u’(k) be the utility of
D, (VCG,T) = M, forall 2 <r <s. agentk before and after the deviation, then

PROOF. Let R be some potential coalition, antl € argmin; ¢ 5 v;. , i1 s+l
We calli* theindifferent bidder Suppose that every agent R u(k)—u'(k) > > (w1 —me)(ve—ve) —a-vi+a Y wivs.
reportsv, so thatv; > v, > v;11. Clearly, this has no effect t=k+1 i=j+1

on slot allocation. In coalitions that include only winners, all the  voreover, in the optimal deviation for agehtthe last inequality
agents except ageiit (which is indifferent) pay strictly less than  151ds with an equality.

their original payments, as the payment monotonically depends on

the valuations of the other members Bf In potential coalitions PROOF. Suppose agentlowers her bid t&; = bj+1+ewhere
other type, where® includest winners and- — ¢ losers, allt win- e > 0 (soj keeps her slot). For any,v the utility of agentk
ners strictly gain. [J changes as follows:
4.3 Deviations in GSP ulk) = u' (k) = (vk = brgn)an = (0n = (i1 + )51
. . e s s+1
Since LE is a Nash equilibrium, we have thiat(GSP, LE) = _ o B _
SD,1(GSP, LE) = 0. Infact, as inthe VCG mechanism, no coali- (@x = z5-1)vx t; 1(2%71 i)V
tion has a strict deviation from the LE profile in GSP. This state- =k
ment is not as trivial in the GSP mechanism, but it follows from - ZTj—1(Tic1 — x5)
Lemma 9 toward the end of this section. The same analysis holds fz z; Vit €Tj-1
for the UE in GSP. We next turn to evaluate the resistance of GSP ~ “=7** _
to (non-strict) deviations, focusing on the lower equilibrium. As in it J
the previous section, we only count potential coalitions as all other = Z (T1-1 — T1)v — Z (-1 — mt)Vt
coalitions necessarily contain redundant participants. I=k+1 t=k+1
s+1
Pair deviations: characterization + (% — 1) > (@i —m)vi+exj
We begin by characterizing all deviations by pairs of agents. ! =it
j—1
Lower equilibrium. It is easy to see that for evefy< s, the pair = Z (zi—1 — @) (vk — ve) — (Tj—1 — x5)v;
of agentd(i, 7 + 1) (calledneighborg can always (weakly) gain as Marnri
a coalition, by having agerit+ 1 lowering her bid td, ;, so that o4l
biy1 > biy1 > biy2. Inthis case, agent+ 1 is not affected, but It M Z (Tio1 — 2i)vi + €xj_1
agent: gains the difference; (b;41 — bj,1) > 0. Itis also clear Zj s
that bidders rankes 4 2 or worse can never be part of a deviating i1 i1
pair. In terms of the stability score, this means that _ Z (@01 — 30)(vk — 00) —a-v; +a Z wis + exi_1.
s <Dy(GSP,LE) < M, = (s ; 1). t=k+1 i=j+1
The inequality follows since > 0. In the optimal deviatior =

0 in which case we get an equality. Note tlﬁl‘ﬁj;H w;v; 1S a
weighted average of valuations. In particular, it is always between
Vs+1 andel. (|

Consider the pair of agent;, j), wherek < j < s+ 1. We
want to derive a sufficient and necessary condition under which the
pair (k, j) has a deviation. A simple observation is that given some
Nash equilibrium, for an agertto strictly gain by being allocated
a new sloti’ # 4, the bidb;,, must strictly decrease, since oth-
erwise this would also be a deviation foras a single agent (in

As a direct corollary from Lemma 5, we get that in LE the pair
k, j (wherek < j — 1), has a deviatioif and only if

contradiction to equilibrium). Therefore, either (#)moves to a j—1 s+1
worse slot’ = j — 1, andb} < b;; or (2) j moves to a better slot S @ —a)(ok—v) <a-vy—a Y wwi (2)
j' =k, kis pushed down té’ = k + 1, andb;, < bx. However, if t=k+1 i=jt+1

j gains in case (2), then this means she is envy in bidd@his is

impossible, as we assumédis an SNE. Thus, the only deviation  Upper equilibrium. It is easy to check that a similar characteri-
is wherek’ = j — 1;5° = j. Further, this is a deviation only if  zation to Eq. (2) applies to the UE. However, the conditions differ
bj—1 > by > b > bj11. Note that: (i)b), can get any value in  with respect to bidders that are two positions apart.

this range without affecting the utility of or j, (ii) the utility of ] )

j remains the same, and (iii) the most profitable deviatiorkfes PROPOSITION 6. Given a UE, the pair of agentsi + 2 has a
one in whichb; = b;1 (breaking the tie in favor of). deviation for every < s.

5The assumption that CTRs are strictly decreasing is required here, This result holds under all valuation and CTR functions; hence
as otherwise bidder+ 1 may not be able to lower her bid. D2(GSP,UE) > 2s — 1. This means that the UE may be slightly




CTR | «+ concave— + convex—
Valuations [p-concave| Linear B-convex
s+1 s+1
concave 2-concave| All (*°%%) | All (°T1) -
Linear Q(s?) O(sy/5) |O(s - logg(s))
convex 2-convex - s s

Table 1: The table summarizes the number of pairs that have
a deviation, i.e.,D2(GSP, LE). When one function is strictly
concave and the other is strictly convex, the score may depend
on the exact structure of both functions.

less stable than LE (whose stability is expressed in Theorem 7).

Yet, it is not too difficult to show that the number of pair deviations
from UE and LE are asymptotically the same. Therefore, in the
remainder of this section we focus on stability scores of LE.

Pair deviations: quantification
It turns out that the asymptotic number of pair deviations strongly

depends on the shape of both the CTR function and the valua-

tion function. In particular, convexity (as well as concavity and
[B-convexity) will play a major role in our results. Let, ..., gm
be a monotonicallyonincreasingrector.

Similarly to the way defined convex cost functions in Section 3,
we say thaty is convexif it has a decreasing marginal loss; i.e.,
gi — gi+1 > g; — gj+1 for everyi < j. Similarly, if g has an
increasingmarginal loss then it isoncave

Note that linear functions are both convex and concave. A spe-
cial case of convexity (resp., concavity) is when the marginal loss

decreases (resp., increases) exponentially fast.

Let3 > 1. We say thay is 3-convexf g;_1—g; > 8(gi—git1)
for everyi. Similarly, g is said to be3-concavef 8(g;—1 — gi) <
gi — giy1 for everyi. ®

Intuitively, as either valuations or CTRs are “more” convex,
bidder who deviates by moving to a lower (i.e., worse) slot faces
a more significant drop in her utility. Thus we can hope that pairs
that are sufficiently distant from one another will not be able to
deviate jointly. This intuition is further formalized and quantified

in the remainder of this section. For convenience, the results are

summarized in Table 1.

The next proposition demonstrates that convexity induces greater

stability.

THEOREM 7. Suppose that both CTR and valuation functions
are convex The number of pairs with deviations in the Lower equi-
librium can be upper bounded as follows.

(A) D2(GSP,LE) = O(s+/s).
(B) if CTRs are3-convex therD>(GSP, LE) = O(slogg s).

(C) if valuations are3-convex, for anys > 2, then only neighbor
pairs can deviate. |.eD2(GSP,LE) = s.

valuations, where the weight; is proportional to the difference
x;—1—x;. Therefore this average is biased toward low values when
CTR is convex, and toward high values when it is concave.

Also, since CTRs are convex, we have that foriadl j, ;1 —
x; > a. Thus by Lemma 5,

j—1 s+1
u(k)—u'(k) > a Z (vk —ve) —a-v;+a Z w;v;
t=k+1 i=j+1
i1 s+1
:a<2(vk—vt)+2wivi—vj>
t=k+1 i=j+1
i—1
>a Z (vk —ve) +  avg (vi)—v; |. (3)
t—Ft1 s+1>i>j+1

Therefore, in order to prove that the pgjik can deviate, it is nec-
essary to show ;-1
(v —ve) < vj —
t=k+1

(4)

avg
s+1>i>j+1

Vi.

We note that under linear CTRs, all inequalities become equalities
(in which case Equation (4) is also a sufficient condition). Observe
that closer pairs are more likely to deviate. E.g. for pairss+
k42, itis sufficientthaby —vg+1 < k42— avg vy tohave a
s>t/ >k+3
deviation. Leth = j—1—k > 1,andz = vy —vj_1 = Vg —Vg+h.
From convexity ofv it holds that for allh’ < h, “*— k2" >

eIkth — 2 thus for the LHS of Eq. (4),

j—1 j—1

t—k  zh(h+1) h+1
Z(Uk—vt)z Zz s 3 == z. (5)
t=k+1 t=k+1

Bounding the RHS of Eq. (4), we have

vi— avg Vi < Uj — Vavg{s+1>i>j+1} (convexity ofv)
s+12i>j+1
SV —Vr;, 51 =Vj — U, s—j
SO O[] U T Ve

[(s—3)/2h] [(s—3)/2h]

< Z (Vi@ =1)h — Vjgirn) < Z (vk — Vk+n), (6)
i'=1 i'=1
which is at mos{ £-2] z. By using the bounds we showed on both
sides of the equation, condition (4) implies+ 1 < [£:2], which
must be false whenevér+ 1 = j — k > +/s. Therefore each
winnerk < s can deviate with at mosy's other bidders, and there
can be at most¢/s such pairs. []

Itis evident from Theorem 7, that convexity can guarantee some
level of stability, and further, that “more” convexity can induce
more stability. Our next result complements this observation, by
showing thatoncavityof valuation and CTR functions affects sta-
bility in the opposite direction.

We present the proof of the first statement, so as to demonstrate the  Theorewm 8. Suppose that both CTR and valuation functions

proof technique.

PrROOF OF7(A). Recall thata = z;_1 — x; > 0. A crucial

observation is thaEf;“,i+1 w;v; is in fact a weighted average of

SLucier et al. [15] studied GSP auctions witfell-separatedCTR
functions, which is a closely related term. In particula%avell
separated function is algbconvex.

"When referring to convexity of CTR/valuation functions, we only
consider the first + 1 values.

are concave The number of pairs with deviations in the Lower
equilibrium can be lower bounded as follows.

(A) D2(GSP, LE) = Q(s1/5).

(B) if CTRs areB-concave for any > 1, thenD2(GSP, LE) =
Q(s?) (i.e. a constant fraction of all pairs).

(C) if valuations are3-concave, for anys > 2, thenall pairs can
deviate. 1.e.D2(GSP, LE) = (°1') = Mo.



A linear function is both convex and concave. Therefore, inthe 5.1 VCG with a reserve price
special case where both CTRs and valuations are linear, we obtain  consider a variant of the VCG mechanism that adds a fixed re-
an asymptotically tight estimation @, (GSP, LE). serve price. Thatis, only bidders that reports a value:af higher
o get a slot, and payments are computed ignoring the other bidders
Deviations of more than two agents (i.e. replacing their values with). It is easy to verify that truth-
We first characterize the structure of such deviations. telling remains a dominant strategy, and that Proposition 4 remains
valid if the values of all bidders are strictly above However,
LEMMA 9. Suppose thak C N is a coalition that gainsby a 3 bidder whose value is exactywill not join any coalition: by
deviation, and leb;, b; denote the bids of € R before and after  |owering her reported value she will lose her current slot for sure,
the deViation, respectively. Then the fO”OWing hold: Whereas previous|y She enjoyed a positive ut|||ty
Now, consider a VCG mechanism that chooses a reserve price as
follows. With probabilityq, the reserve price is chosen randomly
from a sufficiently large interval, and with probability— ¢, it is
(b) There is at least one biddgt € R s.t. R\ {f} still has a set to 0. Crucially, the probability distribution of the reserve price

(a) There is at least one biddét € R that does not gain anything
from the deviation; this bidder is called thredifferent bidder

deviation: this bidder is called free rider is common knowledge, but agents submit their reports before its

realization is revealed. Let us denote the proposed mechanism by

(c) Forall j € R, eitherb; < b;, or the utilities of all agents i VCG*. While the proposed adjustment seems small, it results in a
(includingj) are unaffected by the bid gf dramatic increase of stability.

In order to prove the Lemma, we must show that the bidder that THEOREM 11. If s > n, then truth-telling is a SSE in VCG
is ranked last among the deviators is an indifferent bidifgr The

free rider (f) is either the bidder that is ranked first among the de- o chanisms, thus no agent has an incentive to deviate unilaterally.

viators, or some bidder that is isolated of all other deviators. In g, nn65e by way of contradiction that there exists a deviating coali-
addition, it is shown that bidders that move to a better slot either tion, and letR be such a coalition of minimal size. Sinfis mini-

strictly lose, or cause some other deviator to strictly lose.

PROOF First observe that VCGis a lottery over strategyproof

mal, the indifferent agent € R (as defined in Prop. 4) must lower

As a direct corollary of Lemma 9, given any coalitidhof size her reported value, otherwise the coalitiain, {:"} can also devi-
> 3, the coalitionR \ {f} can also deviate. By induction, there- ~ate. Assume, therefore, thgt = v;- —e for somee > 0. Itis easy
fore, a coalitionR that can deviate always contains a pair that can to verify that:" cannot gain in any outcome of the mechanism. In
deviate. Moreover, by part (c) of Lemma 9, it follows that given ~contrast, there is a non-zero probability th& chosen in the range
a deviating coalition of size> 2, it can be extended by adding a  (vi~,vi=), in which case the utility of* becomes 0, compared to
bidder who does not change her bid. As a result, aisean de- (vi* — c¢)zs» > 0 under truth-telling. Therefore, ageiitloses in
viate if and only if it contains a pair that can deviate. This crucial €Xpectation, contradicting the existence of a coalifion []
observation facilitates the computation of the number of deviations
by coalitions of size- for anyr > 3.

Recall thatM,- denotes the number of potential coalitions of size
r, and that under VCG auction all of these coalitions actually have
a deviation. ClearlyD,(GSP,LE) < M,. We next show how
the accurate number of coalitions asymptotically depends on the
size of the coalition- and on the number of slots

By the last theorem, VCGguarantees stability whenever< s.8
However, ifs < n the bidder ranked + 1 can serve as the in-
different bidder of any coalition. Consequently, VC@oes not
posses a SSE. That is, since the utility of agent1 is always 0,
she will not be discouraged by the random reserve price, even when
her reported value falls below the reserve price.
In order to deal with the lack of slots (i.e., the case in which
PROPOSITION 10. If both CTRs and valuations are convex, then $ < 7), We introduce a modified VCGmechanism, which always
induces truth-telling as a SSE.
r2 Consider the following modification to VCG termed VCG.
D,(GSP,LE) < M, - O <%> Let0 < A < L. Given some slof < swith a CTR ofz; > 0, itis
allocated to the bidder that is rankgdith probabilityl — A, and is

In contrast, if both CTRs and valuations are concave, then allocated to the bidder that is ranked- 1 with probability A. This
/T modification effectively creates a new slot+ 1, whose expected
D, (GSP,LE) > M, - d- (1 — exp (*Q (%))> CTR is Az, whereas the new (expected) CTR of sjdtecomes

(1 — A)z;. This procedure can be applied to the desired additional
for any positive constant < 1. n — s slots. In particular, a possible instantiation is where the new

expected CTR of positiom will be (1 — (n — s)\)xs, and there
That is, at least in the convex case the number of potential devia- will be n — s new slots with an expected CTR afs,. Since the

tions under GSP is significantly smaller than under VCG. new auction has slots, the mechanism VCGean be performed
This result also establishes an almost sharp threshold for the casqg eliminate all coalitional deviations.

of linear CTRs and valuations. In particular, for every> /s, The careful reader will notice that by changing the CTRs, the

almost all coalitions of size can deviate, while the proportion of equ”ibrium in the new auction may change' However, as |0ng as

coalitions of sizer < /s that can deviate goes to 0 (wheris the order of the slots is preserved, the equilibrium allocation is not

fixed and ass grows). affected, and this is ensured by satisfying< 2. Moreover, the

Proposition 10 confirms that the GSP auction is far more stable new payment differs from the original payment by at mastn - A;

than the VCG auction against collusions of relatively small coali- thus for a sufficiently smalh the difference is negligible. As a
tions (at least when CTR and valuations are convex). result, we get the following corollary.

8The proof in fact shows a stronger result: truth-telling is a SSE in
5. ELIMINATING GROUP DEVIATIONS dominant strategiesThus VCG ' is group-strategyproof



COROLLARY 12. Truth-telling is a SSE in mechanism VGG In future research we may wish take a combined approach to
for every0 < A< 1. Moreover, the payments and revenue of \CG  coalitional stability, considering both known and unknown limita-

can be arbitrarily close to the payments and revenue of VCG. tions on collusion, possibly attributing more importance to coali-
. . tions with a stronger incentive to deviate. Such models will enable
5.2 GSP with a reserve price us to better predict realistic outcomes of games, and to improve the

As evident from the results in the last section, stability of the Mechanisms we design.
VCG mechanism is significantly increased by augmenting the mech-
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