
Overlapping Coalition Formation Games:
Charting the Tractability Frontier

Yair Zick
School of Physical and
Mathematical Sciences
Nanyang Technological
University, Singapore

yair0001@ntu.edu.sg

Georgios Chalkiadakis
Department of Electronic and

Computer Engineering
Technical University of Crete,

Greece
gehalk@ece.tuc.gr

Edith Elkind
School of Physical and
Mathematical Sciences
Nanyang Technological
University, Singapore

eelkind@ntu.edu.sg

ABSTRACT
Cooperative games with overlapping coalitions (OCF games) [3,
23] model scenarios where agents can distribute their resources
among several tasks; each task generates a profit which may be
freely divided among the agents participating in the task. The goal
of this work is to initiate a systematic investigation of algorithmic
aspects of OCF games. We propose a discretized model of over-
lapping coalition formation, where each agent i ∈ N has a weight
wi ∈ N and may allocate an integer amount of weight to any task.
Within this framework, we focus on the computation of outcomes
that are socially optimal and/or stable. We discover that the al-
gorithmic complexity of the associated problems crucially depends
on the amount of resources that each agent possesses, the maximum
coalition size, and the pattern of interaction among the agents. We
identify several constraints that lead to tractable subclasses of OCF
games, and provide efficient algorithms for games that belong to
these subclasses. We supplement our tractability results by hard-
ness proofs, which clarify the role of our constraints.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Theory

Keywords
Overlapping Coalition Formation, Complexity, Bounded Treewidth

1. INTRODUCTION
In many multiagent systems, agents split into teams in order to

complete tasks or solve problems [14]. Typically, the collective
efforts of a team are rewarded with a payoff, which then needs to
be shared among the team members. When agents are selfish, i.e.,
aim to maximize their own payoff, such settings are modeled using
the tools of cooperative game theory, which suggests a variety of
approaches to team formation and payoff division [2].

The usual framework of cooperative games assumes that agents
are divided into disjoint sets in order to perform tasks. However,
sometimes the agents may benefit from splitting their resources

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

among several jobs and forming overlapping coalitions. The study
of such scenarios was initiated by Shehory and Kraus [21] (see also
Dang et al. [6]), who assumed that agents are fully cooperative.
More recently, Chalkiadakis et al. [3] proposed a formal model
for cooperative games with overlapping coalition structures (OCF
games), which, in contrast to the previous work, takes agent incen-
tives into account. More specifically, Chalkiadakis et al. [3] define
games in which agents can form partial coalitions, and an agent
can participate in multiple (overlapping) coalitions. Such coali-
tions correspond to vectors in [0, 1]n: the i-th coordinate of the
vector identifies the fraction of the i-th agent’s resources devoted
to this coalition.

The main focus of [3] is coalitional stability in OCF games.
In such games, identifying outcomes that are stable, i.e., resistant
to group deviations, is more difficult than in the standard model.
This is because in OCF games one needs to take into account the
non-deviators’ reaction to deviation. Indeed, when no overlapping
coalitions are allowed, the deviators do not care about the reac-
tion of other agents to their actions: all of their resources are now
devoted to maximizing their own welfare and they have no stake
in what other agents do. In contrast, when agents are allowed to
divide their resources among several tasks, group reaction to devia-
tion must be taken into consideration: the deviating agents may re-
main involved in one or more partial coalitions with non-deviators,
and they need to reason about the payoff they expect to get from
such collaborations. These issues were raised in [3] and subse-
quently studied in detail by Zick and Elkind [23], who proposed a
general framework for handling coalitional reaction to group devi-
ations under a number of solution concepts.

While Chalkiadakis et al. [3] and Zick and Elkind [23] provide
a rich framework for reasoning about OCF games, they give short
shrift to computational aspects of such games. Indeed, Zick and
Elkind [23] ignore the algorithmic efficiency issues altogether, and
in [3] the algorithmic results are limited to a special class of OCF
games known as Threshold Task Games; while these games sup-
ply a useful testing ground for comparing different stability con-
cepts, they are clearly not expressive enough to capture all OCF
games. We remark that, in general, designing efficient algorithms
for coalitional games, even in the absence of overlapping coali-
tions, is a challenging task. Indeed, the sheer number of such
games precludes the existence of a representation scheme that can
describe any coalitional game in poly(n) bits (where n is the num-
ber of players). For this reason, a number of different representa-
tion languages for coalitional games have been proposed, with each
language capturing a specific family of application scenarios and
requiring purpose-built algorithms for computing various solution
concepts (see, e.g., Chalkiadakis et al. [4] for a literature review).



For games with overlapping coalitions, the situation is even more
dire: even identifying a finitary representation for OCF games is
non-trivial, as we need to be able to specify the payoff of each par-
tial coalition, and there are infinitely many such coalitions.

The aim of this paper is to initiate a systematic investigation of
algorithmic aspects of OCF games. We propose a discretized model
of overlapping coalition formation, where each agent i ∈ N has a
weight wi ∈ N and may allocate an integer amount of resources
to any partial coalition. This simplification ensures the existence
of a finitary representation, and can be justified by observing that
in practice, agents’ resources have certain granularity and there-
fore cannot be divided with arbitrary precision. We then focus
on the computation of outcomes that are socially optimal and/or
stable. We discover that the complexity of the associated prob-
lems crucially depends on the amount of resources that each agent
possesses, the maximum coalition size, the pattern of interaction
among the agents, and the properties of the arbitration function.
We identify the constraints that lead to tractable subclasses of OCF
games, and provide efficient algorithms for games that belong to
these subclasses. We supplement our tractability results by hard-
ness proofs, showing that the constraints that we impose are, in a
sense, necessary. Our results suggest a number of future research
directions; we hope that they will serve as a starting point for a
comprehensive algorithmic analysis of OCF games, which is a nec-
essary precondition for the practical applicability of such games.

2. PRELIMINARIES
Throughout the paper, we use boldface lowercase letters to de-

note vectors and uppercase letters to denote sets. Given two vectors
x,y ∈ Rn, we write x ≤ y when xi ≤ yi for all i = 1, . . . , n.

Cooperative Games with Overlapping Coalitions We briefly de-
scribe the model as presented in [3]. A cooperative game with over-
lapping coalitions, also referred to as an overlapping coalition for-
mation (OCF) game, is given by a set of agents N = {1, . . . , n}
and a characteristic function v : [0, 1]n → R+; we write G =
(N, v). Each agent has one unit of resource (time, money, etc.);
using their resources, agents may form partial coalitions: a partial
coalition is described by a vector c = (c1, . . . , cn), where ci is
the fraction of i’s resource dedicated to this coalition. The value of
the partial coalition c is given by v(c), and its support is given by
supp(c) = {i ∈ N | ci > 0}. A coalition structure over a subset
S ofN is a collection CS = (c1, . . . , cm) of partial coalitions that
satisfies

∑m
j=1 c

j ≤ eS , where eS ∈ {0, 1}n is the indicator vec-
tor of the set S ⊆ N . We denote by CS(S) the set of all coalition
structures over S. Given a coalition structure CS = (c1, . . . , cm),
we overload notation and write v(CS) =

∑m
j=1 v(cj); we refer to

v(CS) as the value of CS . The superadditive cover of a character-
istic function v is the mapping

v∗(c) = sup
CS∈CS(N)

{v(CS) |
∑

c′∈CS

c′ ≤ c},

which computes the most that the agents can earn if their resources
are given by c.

The payoff v(cj) needs to be divided among agents who con-
tribute to cj , i.e., members of supp(cj); a division of payoffs of a
partial coalition cj is a vector xj ∈ Rn

+ that satisfies
∑n

i=1 x
j
i =

v(cj), xji = 0 for any i 6∈ supp(cj). A pre-imputation for a coali-
tion structure CS = (c1, . . . , cm) is a collection of vectors x =
(x1, . . . ,xm), where for each j = 1, . . . ,m the vector xj is a di-
vision of payoffs of coalition cj . The set of all pre-imputations for
a coalition structure CS is denoted by I(CS). The pair (CS ,x),
where x ∈ I(CS), is called a feasible outcome. The total payoff

of a player i under a feasible outcome (CS ,x) with coalition struc-
ture CS = (c1, . . . , cm) and a payoff vector x = (x1, . . . ,xm) is
defined as pi(CS ,x) =

∑m
j=1 x

j
i ; we extend this notation to sets

of agents by setting pS(CS ,x) =
∑

i∈S pi(CS ,x) for S ⊆ N .

Stability and Arbitration Functions in Cooperative Games with
Overlapping Coalitions Subsets of agents can deviate from an
outcome by withdrawing some or all of their resources from some
or all of the partial coalitions they participate in. The arbitration
function [23] is a mapping A that receives as its input (a) a fea-
sible outcome (CS ,x), (b) a deviating set S ⊆ N and (c) S’s
proposed deviation, i.e., a list of resources that members of S in-
tend to withdraw from each coalition in CS . Given this data, A
returns a number for each coalition c with supp(c) ∩ S 6= ∅,
supp(c) ∩ (N \ S) 6= ∅; this number represents how much of
c’s payoffs the agents in S ∩ supp(c) will be allowed to keep if
they deviate. In general, this number may depend on S’s behavior
outside of c: for instance, c may be unwilling to pay S if S hurts
some players in supp(c) ∩ (N \ S) in some other coalition, or
it may withhold the payment completely if S deviates in any way
whatsoever. We assume that A is normalized: if a set withdraws
all of its resources from some partial coalition, it receives nothing
from it. We also assume that A is deviation-monotone: the devia-
tors cannot increase the payoff they receive from a partial coalition
by withdrawing more resources from it.

We denote by A∗(CS ,x, S) the most that a set S ⊆ N can
get when deviating from (CS ,x) under the arbitration function A
(including the payoff from the partial coalitions that the deviators
form among themselves). An outcome (CS ,x) is said to be in the
A-core, orA-stable, if no set S can deviate (and then share payoffs
from the deviation) so that each i ∈ S gets more than pi(CS ,x),
when payoffs to deviators from coalitions with non-deviators are
given byA. Zick and Elkind [23] show that an outcome isA-stable
if and only if pS(CS ,x) ≥ A∗(CS ,x, S) for all S ⊆ N .

Three types of reactions to set deviations are described in [3];
in the terminology of [23], these are arbitration functions. First,
under the conservative arbitration function, any coalition c with
supp(c)∩ (N \S) 6= ∅ pays nothing to S; this notion of deviation
is the most restrictive, and allows a deviating set only the payoff
from whatever coalitions it forms on its own. Second, under the
refined arbitration function, c allows S to keep its payoff as long
as no member of S changes his contribution to c. Third, under the
optimistic arbitration function, the deviators may keep some of c’s
payoff even if they withdraw some resources from c; specifically,
if they can ensure that each agent in supp(c) ∩ (N \ S) receives
as much from the reduced coalition as it did before the deviation,
they can keep the remaining payoff. Under the assumptions on ar-
bitration functions given in [23], the payoff given by the optimistic
arbitration function is the most that any arbitration function may
give. This means that if an outcome is stable w.r.t. the optimistic
arbitration function, it is stable under any arbitration function.

3. OUR MODEL
In the model of [3, 23], each agent may divide his resources

in any way he chooses. This leads to a variety of conceptual and
algorithmic complications: for instance, there is no apriori bound
on the size of the coalition structure, and it is not clear how to
represent the characteristic function and the arbitration function.

To circumvent these difficulties, we assume that agents may only
divide their resources in a discrete manner: each agent i ∈ N has
a positive integer weight wi, and may allocate an integer part of
it to a partial coalition. This is a reasonable assumption in most
multiagent settings, where agents allocate hours, money or memory



space to tasks. We will refer to such games as discrete OCF games.
We set Ψ = maxi∈N{wi}; note that the case Ψ = 1 corresponds
to the standard model of characteristic function games, i.e., one that
does not admit overlapping coalitions. For our asymptotic bounds,
we will assume Ψ > 1. Let w = (w1, . . . , wn) andW = [0, w1]×
· · · × [0, wn].

We can interpret the characteristic function v of a discrete OCF
game as a mapping fromW to R and modify the definition of the
superadditive cover and other notions introduced in Section 2 in a
similar manner. Given a subset S ⊆ N and some q ∈ W , we let
qS be the vector q with all coordinates i /∈ S set to 0. Also, we
define W(S) = {q ∈ W | q ≤ wS}. We will assume that the
value of each partial coalition is a non-negative rational number that
can be encoded using poly(n, log Ψ) bits. Under this assumption
for any fixed value of Ψ there are finitely many discrete n-player
OCF games where the weight of each player is bounded by Ψ, and
any such game can be represented by a vector of length (Ψ + 1)n.

The size of this vector representation is exponential in n, which
is unacceptable for most applications. We will therefore limit our
attention to games where there is an apriori bound on the admis-
sible coalition size. Namely, we say that a game with overlapping
coalitions is a k-OCF game if v(q) = 0 for any q ∈ W with
|supp(q)| > k. Clearly, a discrete k-OCF game can be repre-
sented using

(
n
k

)
(Ψ + 1)k values; this number is polynomial in Ψ

and n if k is bounded by a constant. In the rest of the paper, we will
assume that a k-OCF game is represented by a list that consists of
all partial coalitions q with |supp(q)| ≤ k, together with their val-
ues. We will write va1,...,ak (q1, . . . , qk) to denote the value of the
partial coalition with support {a1, . . . , ak} that receives qi units of
weight from agent ai, i = 1, . . . , k.

An important advantage of this model is that it makes it rela-
tively easy to deal with arbitration functions. Indeed, in a discrete
OCF game each coalition structure consists of at most n(Ψ + 1)
partial coalitions. This means, in particular, that the input to the ar-
bitration function can be represented using poly(n,Ψ, ||x||) bits,
where ||x|| is the bitsize of the payoff vector x. We will assume
that our algorithms have oracle access to the arbitration function;
the observation above means that in our model querying this oracle
takes time polynomial in the game representation size.

REMARK 3.1. If the characteristic function of a discrete OCF
game is efficiently computable, it can be encoded more succinctly
by a circuit that takes the vector of agents’ resources as its input
and outputs the value of the corresponding partial coalition. More
formally, this circuit would have ndlog(Ψ + 1)e inputs: the i-th
dlog(Ψ + 1)e-bit block of inputs would encode the contribution
of agent i. Any discrete OCF game with a polynomial-time com-
putable characteristic function v : W → Q+ can be represented
by a circuit of size poly(n, log Ψ). This representation is succinct
even if we do not limit the coalition sizes. However, it has two
important disadvantages. First computing v∗, which is the most
basic computational problem associated with an OCF game, be-
comes NP-hard even for n = 1; this follows by a straightforward
reduction from the UNBOUNDED KNAPSACK problem [15] (a sim-
ilar reduction, albeit in a slightly different context, can be found
in [3]). Second, since the agents may form a coalition structure
of size Ω(nΨ), querying the arbitration function may be exponen-
tially expensive in this model. Therefore, in what follows, we will
not consider this representation.

4. K-OCF GAMES: FIRST OBSERVATIONS
The representation of a k-OCF game explicitly provides the value

of each partial coalition q. However, if we are interested in comput-

ing the total profit that can be earned by agents whose resources are
given by w, we need to take into account that these agents may split
their resources among several partial coalitions. Thus, we need to
compute the value of the superadditive cover v∗ on w. This com-
putational problem is formalized as follows.

Name: OPTVAL
Input: A discrete k-OCF game over n players with maximum weight

Ψ, a coalition q ∈ W , and a value r.
Question: Is v∗(q) ≥ r?

It is not hard to show that this problem is tractable if we additionally
require that |supp(q)| is bounded by a constant.

PROPOSITION 4.1. Given a discrete OCF game and a partial
coalition q with |supp(q)| ≤ t, one can compute v∗(q) in time
poly(Ψt).

PROOF. We have v∗(q) = max{v∗(q− r) + v(r) | r ≤ q}.
Thus, if we have computed v∗(q′) for all q′ < q, we can compute
v∗(q) inO((Ψ + 1)t) time. Hence, we can compute v∗(q) in time
O(t(Ψ + 1)t+1) by dynamic programming.

However, in general OPTVAL is computationally difficult, even
if the maximum coalition size and the maximum weight are bounded
by small constants.

THEOREM 4.2. OPTVAL is NP-complete even if k≤2, Ψ≤3.

PROOF. To see that this problem is in NP, observe that is suffices
to guess a coalition structure CS = (q1, . . . ,qm) with

∑m
j=1 q

j
i ≤

wi and v(CS) ≥ r; note that the size of this coalition structure is
at most n(Ψ + 1), which is polynomial in the input size.

For the hardness proof, we provide a reduction from EXACT
COVER BY 3-SETS (X3C) [10]. Recall that an instance of X3C
is given by a finite set A, |A| = 3`, and a collection of subsets
S = {S1, . . . , St} ⊆ 2A such that |Sj | = 3 for all j = 1, . . . , t.
It is a “yes”-instance if A can be covered by exactly ` sets from
S. Given an instance (A,S) of X3C, we construct a discrete OCF
game with k = 2, Ψ = 3 as follows. We have an agent ai of
weight 1 for every element i ∈ A and an agent aS with weight 3
for every S ∈ S. The characteristic function is defined as follows:
vai,aS (1, 1) = 2 if i ∈ S, vaS (3) = 5, and the value of every
other partial coalition is 0.

Let S = {x, y, z} and considerGS = {aS , ax, ay, az}. Collec-
tively, the agents in GS can earn 6 if aS forms a partial coalition
with each of ax, ay , and az , and contributes one unit of weight to
each of these coalitions; in any other coalition structure GS earns
at most 5. Hence, (A,S) admits an exact cover if and only if
v∗(q) ≥ 6`+ 5(t− `) = 5t+ `.

Thus, discrete OCF games present a challenge from the com-
putational perspective even if we severely restrict the maximum
weight and coalition size. This means that in order to find tractable
classes of such games, we must place further constraints on the
coalitions that the agents are allowed to form. To identify the ap-
propriate constraints, let us first consider 2-OCF games. Any such
game can be naturally identified with a graph: the vertex set of this
graph is N ; there is an edge between i and j if there exists a par-
tial coalition q such that supp(q) = {i, j} and v(q) > 0. We
will refer to this graph as the interaction graph of the game (N, v).
Given this perspective, one may wonder if placing constraints on
the interaction graph leads to tractable OCF games. In Section 5,
we show that this is indeed the case: many computational problems
for discrete 2-OCF games become tractable if the interaction graph



is a tree. In Section 6, we extend these results to k-OCF games:
such games can be associated with hypergraphs, and we show that
many—though not all—of the results of Section 5 hold for k-OCF
games whose interaction hypergraph has bounded treewidth.

All hardness results for OCF games derived so far stem from the
complexity of computing the superadditive cover; therefore, to cir-
cumvent them, we place constraints on the characteristic function
v. We now show that if we are interested in stability-related ques-
tions, we have to place constraints on the arbitration function A
as well. Specifically, recall that A∗(CS ,x, S) computes the most
that a set S ⊆ N can earn when deviating from (CS ,x) under
the arbitration function A. In other words, when a set of agents
S decides whether to deviate from (CS ,x), it needs to compute
A∗(CS ,x, S). In the non-overlapping case, a given coalition S
can easily decide whether it should deviate: it suffices to compute
v(S) and compare it with the payoff that S receives under (CS ,x).
In contrast, A∗ can be hard to compute even if n = 2 and both v
and A are poly-time computable.

THEOREM 4.3. If there exists a poly-time algorithm that for
any discrete OCF game (N, v) any CS ∈ CS(N), any x ∈ I(CS)
and any S ⊆ N can compute A∗(CS ,x, S) given oracle access
to A, then P=NP. This remains true even if the algorithm is only
required to work when |N | = 2 and both v and A are poly-time
computable.

PROOF. We will show that if such an algorithm exists, it can be
used to solve instances of SET COVER [10]. Recall that an instance
of SET COVER is given by a set of elements A, a collection of
subsets S = {S1, . . . , St} ⊆ 2A and ` ∈ N; it is a “yes”-instance
if A can be covered by at most ` sets from S.

Given an instance of SET COVER, consider a 2-player discrete
OCF game where w1 = w2 = t + 2. The valuation function v
is defined as follows. Each player gets payoff 1 for each unit of
effort he invests in working on his own, i.e., v(0, x) = v(x, 0) = x
for x = 0, . . . , t + 2. Further, we have v(1, 1) = 2, v(2, 2) =
10(t+ 2); the value of v on other partial coalitions can be defined
arbitrarily. Let CS = (q1, . . . ,qt,qt+1), where qi = (1, 1) for
i = 1, . . . , t and qt+1 = (2, 2). Let x = (x1, . . . ,xt+1) be
a payoff vector that allocates all payoff from q1, . . . ,qt to 2 and
splits the payoff from qt+1 equally between 1 and 2.

Now, recall that the input to the arbitration function A is an
outcome (CS ,x) and a resource withdrawal pattern for the de-
viating coalition S. Let (CS ,x) be as constructed above, S =
{1}, and suppose that player 1 withdraws from partial coalitions
qi1 , . . . ,qis , where {i1, . . . , is} ⊆ {1, . . . , t}. We define A so
that on this input player 1 receives nothing from q1, . . . ,qt; more-
over, player 1 keeps his payoff from qt+1 if and only if the collec-
tion {Si | i 6= i1, . . . , is} is a cover for A; otherwise, player 1 gets
nothing from qt+1. We can defineA arbitrarily on other inputs; for
concreteness, let us say that it coincides with the refined arbitrator.
Note that A is normalized, deviation-monotone and polynomial-
time computable.

If player 1 withdraws x units of resources from q1, . . . ,qt, he
can use them to earn x by working on his own. Thus, under A
player 1 maximizes his payoff by withdrawing resources from as
many coalitions among q1, . . . ,qt as possible, subject to the con-
straint that the coalitions he still contributes to correspond to a
cover of A. Thus, A∗(CS ,x, {1}) ≥ 5(t + 2) + (t − `) if and
only if the input instance of SET COVER admits a cover of size at
most `.

Intuitively, the hardness of computing A∗ stems from the fact that,
when determining whether player 1 gets to keep his payoff from

qt+1, the arbitration function bases its decision on player 1’s global
behavior. This motivates the following definition.

DEFINITION 4.4. An arbitration function A for an OCF game
(N, v) is said to be local if the payoff to a deviating set S from a
coalition q is determined by the resources that S takes from q.

It is easy to see that the conservative, refined and optimistic ar-
bitration functions that were defined in [3] are local. In contrast,
the arbitration function used the proof of Theorem 4.3 is non-local.
Another example of a non-local arbitration function is the sensitive
arbitrator defined in [23]: under this arbitration function, the devi-
ating set S keeps its payoff from a partial coalition q if none of the
players in supp(q) ∩ (N \ S) are hurt by the deviation.

Local arbitration functions are easier to work with, as they do
not need to receive the entire coalition structure as their input; thus,
a local arbitrator can be queried in polynomial time even assum-
ing the circuit representation discussed in Remark 3.1. Even more
importantly, they can be used to circumvent the hardness result of
Theorem 4.3.

THEOREM 4.5. For any discrete OCF game (N, v), given a lo-
cal arbitration function A, an outcome (CS ,x) and a set S ⊆ N ,
one can compute A∗(CS ,x, S) in time poly(Ψ|S|).

PROOF. We first observe that a coalition structure CS has at
most (Ψ+1)|S| coalitions that involve players in S. Given a coali-
tion structure CS , let q1, . . . ,qm be the list of partial coalitions
that receive contributions from both S and N \S. Suppose that for
` = 1, . . . ,m, S’s contribution to q` is given by resource vector
r` ∈ W(S), such that r` ≤ q`; w.l.o.g., we assume that for each
` the vector r` has at least one strictly positive coordinate. Now,
suppose that players in S invest s ∈ W(S) units of resources in
partial coalitions among themselves and want to withdraw an ad-
ditional t ∈ W(S) from CS . They would get v∗(s + t) from
working on their own, plus the most that S can get from the arbi-
tration function, which depends on the coalitions affected by this
deviation. Let us denote by A(y; `) the most that the arbitration
function will give S if they withdraw y resources from the first `
coalitions, where 1 ≤ ` ≤ m. We also denote by A(z; `) the pay-
off to S from coalition q` if it withdraws z ≤ r` from q`. We
obtain

A(z; `) = max{A(y; `− 1) +A(z− y; `) | 0 ≤ y ≤ z}.

This shows that we can compute A(z;m) in O(m(Ψ + 1)|S|) =
poly(Ψ|S|) steps. Now, the A∗(CS ,x, S) can be computed as
max{v∗(s + t) +A(t;m) | 0 ≤ t ≤ wS − s}.

Theorem 4.5 implies that A∗ can be computed in time polyno-
mial in Ψ if |S| is bounded by a constant. From this point onwards,
we assume that A is local, unless explicitly stated otherwise.

5. 2-OCF GAMES ON TREES
In this section, we focus on discrete 2-OCF games where the

interaction graph is a tree (all of our results generalize immediately
to the case where this graph is a forest). We can root this tree at an
arbitrary node; if r ∈ N is chosen as the root, we denote by Ci(r)
the children of player i and by Ti(r) the nodes of the subtree rooted
at i. We omit r from the notation when it is clear from the context.

We can efficiently compute v∗ for such games.

THEOREM 5.1. If the interaction graph is a tree, v∗(w) can be
computed in time poly(n,Ψ).



PROOF. We will show how to compute v∗(w). To extend the
algorithm to arbitrary q, we can consider the game with the set of
players supp(q) and weights given by q.

We arbitrarily choose some player r ∈ N to be the root, and
process the players starting from the leaves and moving towards
the root. For each node i and each w = 0, . . . , wi, let ui(w) de-
note the most that the players in Ti could earn if i had weight w.
When processing i, we compute the quantities ui(0), . . . , ui(wi)
based on the results of similar computations at each of i’s children.
v∗(w) = ur(wr), so once we reach the root, we output ur(wr)
and stop.

Consider first a leaf i. We have ui(w) = v∗i (w), so, by Proposi-
tion 4.1, we can compute all ui(w), 0 ≤ w ≤ wi, in time O(Ψ2).

Now consider an internal node i. Suppose thatCi = {i1, . . . , i`}
and for each ij ∈ Ci the quantities uij (w) for w = 0, . . . , wij

have been computed. For j = 0, . . . , `, let Ti,j be the tree ob-
tained from Ti by removing subtrees rooted at ij+1, . . . , i`, and
let ui(z; j) be the most that the players in Ti,j could earn if i had
weight z, 0 ≤ z ≤ wi. We have ui(z; 0) = v∗i (z). Further, having
computed ui(z

′; j − 1) for all z′ = 0, . . . , wi, we can compute
ui(z; j) for all z = 0, . . . , wi as

ui(z; j) = max
0≤x≤z

0≤y≤wij

{v∗i,ij (x, y)+ui(z−x; j−1)+uij (wij−y)}.

Indeed, players i and ij need to decide how much weight to al-
locate to working together. Given this decision, they should opti-
mally allocate their remaining weight to collaboration with, respec-
tively, i1, . . . , ij−1 and Tij . The expression above optimizes over
all choices available to i and ij .

By Proposition 4.1, v∗i,ij (x, y) can be computed in timeO(Ψ3),
and ui(z−x; j−1), uij (wij −y) have been pre-computed. Thus,
for any fixed z this computation takesO(Ψ5) steps, and computing
all ui(z; j), z = 0, . . . , wj , for a fixed value of k takes O(Ψ6)
steps. We clearly have ui(w) = ui(w; `); hence, i can compute
ui(0), . . . , ui(wi) in O(|Ci|Ψ6) steps. As this computation has to
performed at every internal node, the overall running time of our
algorithm is

∑n
i=1O(|Ci|Ψ6) = O(nΨ6).

We now move on to the study of stability-related questions. The
first problem we consider is computing A∗, i.e., deciding whether
a given coalition can profitably deviate under A. In general, this
problem is NP-hard even for discrete 2-OCF games and local arbi-
trators: this follows from Theorem 4.2, combined with the obser-
vation that A∗(CS ,x, N) = v∗(w) for any outcome (CS ,x) and
any arbitration functionA. However, computingA∗ becomes easy
when the interaction graph is a tree.

THEOREM 5.2. Given a discrete 2-OCF n-player game and a
local arbitration function A, if the interaction graph is a tree, we
can compute A∗(CS ,x, S) for any S ⊆ N and any outcome
(CS ,x) in time poly(n,Ψ).

PROOF SKETCH. We use the algorithm given in the proof of
Theorem 5.1, with the modification that each of the deviators also
has to decide how much weight to keep in his collaboration with
non-deviators; this decision is not too difficult since the interactions
are between pairs of agents, and the arbitration function is local. In
more detail, given an outcome (CS ,x) and a deviating set S, we
construct a new discrete 2-OCF game where the set of players is
S, and the characteristic function v̄ is defined so that v̄i,j ≡ vi,j
for i, j ∈ S and v̄∗i (w) outputs the most that player i can make by
allocating w units of weight to working on his own and with his
neighbors from N \ S (this quantity depends on A and (CS ,x)).

It can be shown that v̄∗(S) can be computed by dynamic program-
ming in time poly(n,Ψ) andA∗(CS ,x, S) = v̄∗(S); we omit the
full proof due to space constraints.

We are now ready to present an algorithm for checking whether
a given outcome is in the A-core. This problem is closely related
to that of computing A∗: an outcome (CS ,x) is in the A-core if
and only if the excess e(CS ,x, S) = A∗(CS ,x, S)− pS(CS ,x)
is non-positive for all coalitions S ⊆ N . Thus, we need to check
whether there exists a subset S ⊆ N with e(CS ,x, S) > 0. Note
that it suffices to limit our attention to connected subsets of N : if
e(CS ,x, S) > 0 and S is not connected, then some connected
component S′ of S also satisfies e(CS ,x, S′) > 0.

THEOREM 5.3. If the interaction graph is a tree, we can verify
whether a given outcome (CS ,x) is A-stable in time poly(n,Ψ).

PROOF. Fix an outcome (CS ,x) and set pi = pi(CS ,x) for all
i ∈ N .

Again, we pick an arbitrary r ∈ N as a root. We say that S ⊆ N
is rooted at i ∈ N if i ∈ S and the members of S form a subtree of
Ti. We observe that every set S ⊆ N is rooted at a unique i ∈ N .
Given a vertex i, let Ei denote the maximum excess of a set rooted
at i. Clearly, (CS ,x) is not A-stable if and only if Ei > 0 for
some i ∈ N . We will now show how to compute Ei for all i ∈ N .
We proceed from the leaves to the root, and terminate (and report
that (CS ,x) is notA-stable) if we discover a vertex i withEi > 0.
If Ei ≤ 0 for all i ∈ N , we report that (CS ,x) is A-stable.

Given two agents i, j ∈ N , let wi,j denote the weight that i as-
signs to interacting with j.We will now define two auxiliary values.
First, given a neighbor j of i, we define αi,j(w) to be the most that
A will give i if he keeps a total weight of w ≤ wi,j in the coali-
tions that he formed with j in (CS ,x); by Theorem 4.5, αi,j(w) is
computable in time poly(Ψ). Second, we define Di(w) to be the
maximum excess of a subset rooted at i if i were to contribute w to
Ti and nothing to his parent p(i). In this notation,

Ei = max{Di(w)+αi,p(i)(y) | w+y = wi, w ≥ wi−wi,p(i)};

the condition w ≥ wi − wi,p(i) ensures that p(i) is not among
the deviators. It remains to show how to compute Di(w) in time
poly(n,Ψ) for all i ∈ N and wi − wi,p(i) ≤ w ≤ wi.

Consider an agent i with children Ci = {i1, . . . , i`}, and sup-
pose that we have computed Dij (z) for each ij ∈ Ci and each
z, wij − wij ,i ≤ z ≤ wij (this encompasses the possibility
that i is a leaf, as Ci = ∅ in that case). For j = 0, . . . , `, let
Ti,j be the tree obtained from Ti by removing subtrees rooted at
ij+1, . . . , i`. Let Di(w; j) be the maximum excess of a set rooted
at i that is fully contained in Ti,j , assuming that i contributes w to
Ti,j and nothing to his parent or his children ij+1, . . . , i`; we have
Di(w) = Di(w; `). We will compute Di(w; j) by induction on j.

We haveDi(w; 0) = v∗i (w)−pi for allw = wi−wi,p(i), . . . , wi.
Now, consider j > 0. Agent i can either include ij in the deviating
set or deviate (partially or fully) from the coalitions that it forms
with ij in (CS ,x). Thus, Di(w; j) = max{D1, D2}, where

D1 = max
y=0,...,w

z=0,...,wij

{Di(y; j− 1) + v∗i,ij (w− y, z) +Dj(wij − z)}.

and

D2 = max
z=0,...,wi,ij

{Di(w − z; j − 1) + αi,ij (z)}.

Thus, we can efficiently compute Di(w; j), and hence also Di(w)
and Ei.



We have shown how to check whether a specific outcome is in
the A-core. We can use this algorithm as a subroutine to check
whether the A-core is non-empty. Specifically, we can go over all
coalition structures in CS, and, for each CS ∈ CS, check if there
exists a payoff vector x ∈ I(CS) such that (CS ,x) is A-stable:
the conditions on x can be encoded by a linear program that, despite
being exponential in size, admits a polynomial-time separation or-
acle, namely, the one constructed in Theorem 5.3. This implies
that this linear program can be solved in polynomial time [19]; we
omit the details of this argument due to space constraints. However,
enumerating all candidate coalition structures is prohibitively ex-
pensive. We will now argue that, at least for the conservative core,
this is not necessary: we will show how to explicitly construct an
outcome in the conservative core of a discrete 2-OCF game on a
tree.

Consider a coalition structure CS such that v(CS) = v∗(w).
For any i, j ∈ N that are connected by an edge, we denote by
wi,j the amount of weight that i devotes to interacting with j under
CS ; note that wj,i need not be equal to wi,j . If we remove the
edge (i, j), our tree splits into two trees: we will denote the vertex
sets of these trees by Vi,j and Vj,i, respectively (where i ∈ Vi,j ,
j ∈ Vj,i). We have

v∗(w) = v∗i,j(wi,j , wj,i) + v∗(wVi,j − wi,je
{i})

+ v∗(wVj,i − wj,ie
{j}). (1)

We observe that i and j can divide the value v∗i,j(wi,j , wj,i) be-
tween themselves in any way they wish. Indeed, there is a coali-
tion structure CS i,j ∈ CS({i, j}) such that v∗i,j(wi,j , wj,i) =
v(CS i,j), and every coalition in CS i,j receives contributions from
both i and j.

We will now derive some constraints on the outcomes in the con-
servative core.

PROPOSITION 5.4. If (CS ,x) is in the conservative core, then
the total payoff to i from interacting with j is at least v∗(wVi,j )−
v∗(wVi,j − wi,je

{i}) and at most v∗i,j(wi,j , wj,i)− v∗(wVi,j ) +

v∗(wVi,j − wi,je
{i}).

PROOF. Since v∗(wVi,j ) + v∗(wVj,i) ≤ v∗(w), from (1) we
obtain v∗(wVi,j ) − v∗(wVi,j − wi,je

{i}) ≤ v∗i,j(wi,j , wj,i) −
v∗(wVj,i) + v∗(wVj,i − wj,ie

{j}).
If i gets less than v∗(wVi,j )− v∗(wVi,j −wi,je

{i}) from inter-
acting with j, then the total payoff to Vi,j is less than v∗(wVi,j ), a
contradiction with (CS ,x) being in the conservative core.

Similarly, if i gets more than v∗i,j(wi,j , wj,i) − v∗(wVj,i) +

v∗(wVj,i −wj,ie
{j}) from interacting with j, then j gets less than

v∗(wVj,i) − v∗(wVj,i − wj,ie
{j}) from their interaction, which

implies that the total payoff to Vj,i is less than v∗(wVj,i), a contra-
diction.

Now, consider a coalition structure CS with v∗(w) = v(CS).
We now show how to assign payoffs to agents so that the resulting
outcome is in the conservative core; in doing so, we are guided by
Proposition 5.4. Note that we do not construct a pre-imputation
x ∈ I(CS) explicitly. Rather, we simply indicate the cumulative
payments to the agents: this is sufficient as long as we are only
interested in the conservative core.

THEOREM 5.5. For any discrete 2-OCF game G = (N, v)
whose interaction graph is a tree and any coalition structure CS ∈
CS(N) such that v∗(w) = v(CS), there is a payoff vector x ∈
I(CS) such that (CS ,x) is in the conservative core.

PROOF. Let CS be a coalition structure such that v∗(w) =
v(CS). Let r ∈ N be the root. Recall that Ti is the set of vertices
of the tree rooted in i, i.e., if p is the parent of i then Ti = Vi,p. We
allocate to agent i ∈ N :

• all payoff from coalitions he forms on his own;
• v∗(wTi)−v∗(wTi−wi,pe

{i}) from the interaction with his
parent p (assuming i 6= r);
• v∗i,j(wi,j , wj,i)− v∗(wTi) + v∗(wTi − wi,je

{i}) from the
interaction with each of his children j ∈ Ci.

This payoff division is feasible and efficient: the payoff from ev-
ery edge (i, j) is split between i and j. Thus, there exists a pre-
imputation x ∈ I(CS) supporting these payoffs. It remains to
show that the resulting outcome (CS ,x) is stable with respect to
the conservative arbitrator. We will require the following lemma.

LEMMA 5.6. Under the outcome (CS ,x), the total payoff to
agents in Vi,j is exactly v∗(wVi,j ), for any i ∈ N .

PROOF. The lemma is clearly true if i = r. If i 6= r, let
p be the parent of i. Agent i contributes weight wi − wi,p to
Ti. Since CS is an optimal coalition structure, agents in Ti earn
v∗(wTi −wi,pe

{i}), which they share among themselves. Further,
i also receives v∗(wTi) − v∗(wTi − wi,pe

{p}) from his parent.
Together, this adds up to v∗(wTi).

Now, suppose that a subset of agents S can profitably deviate
from (CS ,x) by forming some CS ′ ∈ CS(S); assume that S is
rooted at i. Let R consist of all vertices in Ti \ S whose parents
belong to S. Note that we have Ti = S ∪ (∪j∈RTj). Now, con-
sider a coalition structure over Ti where for each j ∈ R the agents
in Tj form the optimal coalition structure among themselves, and
agents in S form CS ′. By Lemma 5.6, in this new coalition struc-
ture the value of each Tj , j ∈ R, is the same as its payoff in
(CS ,x). On the other hand, since S can profitably deviate us-
ing CS ′, v(CS ′) > pS(CS ,x). We conclude that in this coalition
structure the agents in Ti earn more than in (CS ,x). However, by
Lemma 5.6 their total payoff in (CS ,x) is exactly v∗(wTi), which
is a contradiction.

Theorem 5.5 does not hold for other arbitration functions, as the
following example shows.

EXAMPLE 5.7. Consider a 3 player game wherew1 = 2, w2 =
2, w3 = 1. Also, v1(1) = 5, v1,2(1, 1) = 10, v2,3(1, 1) = 9. The
rest of the valuations are set to 0. One can verify that the refined
core of this game is empty.

Note also that the payoff division proposed in Theorem 5.5 de-
pends of the choice of the root, with nodes that are closer to the
root reaping the benefits from the collaboration with their chil-
dren. As a result, this payoff division scheme is not particularly
“fair”, as players who contribute equally to an interaction may not
be paid equally. Consider for example a two-agent setting where
both agents have a weight 1 and the value of their interaction is 1.
While, intuitively, both players have equal claim to the profit, only
one of them will get the payoff, while the other receives nothing.

6. INTERACTION HYPERGRAPHS WITH
BOUNDED TREEWIDTH

While 2-OCF games correspond to graphs, k-OCF games with
k > 2 can be modeled as hypergraphs, whose hyperedges are of
size at most k: the vertex set of this hypergraph in N and there is



an edge E ⊆ N if and only if v(q) > 0 for some q ∈ W with
supp(q) = E. The resulting hypergraph is called the interaction
hypergraph of the corresponding k-OCF game.

Several NP-hard combinatorial optimization problems on hyper-
graphs become tractable for hypergraphs whose treewidth is known
to be bounded by a constant [18]. Problems in cooperative game
theory are no exception: Ieong and Shoham [13] and Greco et.
al [12] show that when a certain graphical representation of a coop-
erative game has bounded treewidth, several computational prob-
lems (e.g. deciding if the core is not empty) become tractable.
Thus, it is only natural to ask whether our previous tractability re-
sults for 2-OCF games on trees can be extended to cases where the
treewidth of the interaction hypergraphs in question is bounded by
a constant. The answer appears to be mostly positive.

We begin by formally introducing the notion of treewidth of a
hypergraph H = (V, E) as given by Gottlob et al. [11]; this def-
inition is based on the original notion of treewidth given in [18].
Given a hypergraph H , a tree decomposition of H is a tree T with
node set V (T ) and edge set E(T ) such that each node X ∈ V (T )
is a non-empty subset X ⊆ V of vertices of H . We require that if
E ∈ E , then there is some X ∈ V (T ) such that E ⊆ X . More-
over, the nodes are required to have the running intersection prop-
erty: if z ∈ X ∩ Y , then all nodes Z that are on the path between
X and Y contain z as well. The width of a tree decomposition T ,
denoted ω(T ), equals maxX∈V (T ){|X| − 1}. The treewidth of
H , tw(H), is the minimum of ω(T ) over all tree decompositions
of H . If tw(H) = d, then a tree decomposition of H with width d
can be found in O(|H|d) time.

Given a tree decomposition T of H with node set V (T ) and
two nodes X,Y ∈ V (T ), we can associate the edge between
X and Y with the set X ∩ Y . Note that X ∩ Y is not empty if
(X,Y ) ∈ E(T ). Given a subtree T ′ of T , we define N(T ′) to be⋃

X∈V (T ′ X . We will now show how to adapt the proofs of Theo-
rems 5.1, 5.2, and 5.3 for hypergraphs with bounded treewidth.

THEOREM 6.1. Given a k-OCF game (N, v) whose interaction
hypergraph admits a tree decomposition T of width d and a partial
coalition q ∈ W , we can compute v∗(q) in time poly(n,Ψd+1).

PROOF. We will give the proof for the case q = w; the general
case can be handled similarly (see the proof of Theorem 5.1). We
pick one of the sets R ∈ V (T ) to be the root of T . Given a node
X ∈ V (T ), we denote by TX the subtree of T that is rooted at
X and by p(X) the parent of X in T (if X = R, we assume
p(X) = X). For every vector q ∈ W(X ∩ p(X)), we denote by
TX(r) the tree TX with X ∩ p(X) devoting r to interacting with
TX ; note that |X ∩ p(X)| ≤ d. Let uX(r) denote the most that
N(TX(r)) can make; clearly, we have v∗(w) = uR(w).

We will now show how to compute uX(q) for each node X and
each q ∈ W(X ∩ p(X)). As in the proof of Theorem 5.1, we pro-
ceed by dynamic programming, starting from the leaves and termi-
nating at R. Fix a node X , and let CX = {C1, . . . , C`} be the set
of X’s children; we denote by uX(q; j) the most that N(TX) can
make if X devotes q to interacting with C1, . . . , Cj and none to
the rest of its children. We have uX(q; 0) = v∗(q); this quantity
can be computed in time O((Ψ + 1)d) by Theorem 4.1. Further,
uX(q; j) is given by

max{uX(q− y; j − 1) + uCj (y) | y ∈ W(Cj ∩X);y ≤ q}.

The requirement that y ≤ q is necessary, as Cj ∩ p(X) may be
non-empty, in which case the amount that Cj ∩X can give to TCj

is limited by its previous commitment to the parent of X . Hence,
we can compute uX(q) = uX(q; `) in time linear in |CX | and
polynomial in Ψd+1; summing over all nodes of T , we obtain the

desired bound on the running time.

We can use similar techniques to compute the most that a set can
get by A-deviating from some outcome (CS ,x).

THEOREM 6.2. Given a k-OCF game, an outcome (CS ,x) and
a set S ⊆ N such that the interaction graph induced by S has
treewidth d, we can computeA∗(CS ,x, S) in poly(n,Ψd+1) time.

PROOF SKETCH. We denote by αL(w) the most that A will
give a subset L ⊆ S of size at most d + 1 if it decides to leave
q ∈ W(L) of its weight allocated to non-S members. Since the
support of any coalition contains at most d + 1 players, comput-
ing αL(w) can be done in a similar manner to Theorem 5.2. Now,
given a tree decomposition of S with width d, we again replace the
most that any subset L ⊆ S with |L| ≤ d + 1 can make with the
value v̄∗(q) = max{v∗(x + y) + αi(q − y) | 0 ≤ y ≤ q}
and repeat the computation described in Theorem 6.1. Correctness
holds for similar reasons to those described in Theorem 5.2.

We can also provide an analogue to Theorem 5.3; we omit the
proof due to space constraints.

THEOREM 6.3. Given a k-OCF game whose interaction hyper-
graph H has treewidth at most d, we can check if an outcome
(CS ,x) is in the A-core in time poly(n,Ψd+1).

Using Theorem 6.3, we obtain the following corollary.

COROLLARY 6.4. Suppose that the treewidth of the interaction
hypergraph of a discrete k-OCF game is at most d. Then, given
a coalition structure CS and an arbitration function A, we can
check in time poly(n,Ψd+1) if there exists an imputation x such
that (CS ,x) is A-stable (and output x if it exists).

Briefly, this problem can be encoded as a linear program. Even
though this program has exponentially many constraints, it can be
solved in time poly(n,Ψd+1) using the algorithm described in the
proof of Theorem 6.3 as a separation oracle.

Finally, we remark that even the conservative core of OCF games
with bounded treewidth may be empty. Thus, an analogue of The-
orem 5.5 does not hold.

EXAMPLE 6.5. Consider a 2-OCF game with N = {1, 2, 3}
and wi = 1 for all i ∈ N . Set vi,j(1, 1) = 1 for any i 6= j ∈
N , and suppose that v ≡ 0 for all other partial coalitions; this is
essentially the classic 3-player majority game [2], which is known
to have an empty core. The argument for the classic case can be
adapted to show that the conservative core of our game is empty.

7. RELATED WORK
Our work builds directly on the overlapping coalition formation

framework of [3, 23]. The main difference between our model and
that of [3, 23] is the assumption that the agents’ resources are dis-
crete; however, all theoretical results proven in these papers can be
shown to hold for the discretized setting.

Restricting the size of admissible coalitions to ensure tractability
is a fairly standard approach, see, e.g., the classic work of She-
hory and Kraus [20]. More recently, Shrot et al. [22] and Chit-
nis et al. [5] investigated the parameterized complexity of (non-
overlapping) coalitional games, with the maximum coalition size
as a parameter. They show that, in the absence of additional con-
straints on the characteristic function, restricting the coalition size
is insufficient for tractability; this is consistent with our results
(Theorem 4.2).



Many of our tractability results rely on restricting the interac-
tion between the agents to trees and tree-like structures. This bears
close similarity to models in classic cooperative game theory that
limit agent interaction. The first such model, proposed by Myer-
son [17], describes cooperative games where agent interaction is
limited by an underlying graph structure; in this model, a coalition
may form only if it corresponds to a connected subgraph. Coopera-
tive games on graphs have been subsequently studied by a number
of authors; see, e.g., [7, 9, 16, 17]. In particular, Demange [7]
describes cooperative games where agents form a hierarchical tree
structure and proposes an algorithm that computes a core allocation
in this setting; our analysis of 2-OCF games on trees is somewhat
similar to this work. However, deriving results in the OCF model is
significantly more complicated than in the non-overlapping setting,
and the algorithm of [7] cannot be applied directly to our model.
Section 6 is inspired by the work of Ieong and Shoham [13] and
Greco et al. [12], who analyze the complexity of core-related solu-
tion concepts for interaction graphs with bounded treewidth in the
non-overlapping setting.

Recently, Anshelevitz and Hoefer [1] introduced network con-
tribution games: in these games, each agent has a weight that he
may divide among his neighbors, and the value of an interaction
depends on the weight each agent devotes to the edge. Their anal-
ysis differs from ours in that they assume that the payoff from an
edge is divided equally between the agents and study the resulting
non-cooperative game.

Finally, we remark that the study of computational aspects of
coalitional games is a well-established research topic, which re-
ceived a significant amount of attention in recent years; see, e.g.,
[4]. Our work makes the first step towards extending this analysis
to OCF games.

8. CONCLUSIONS AND FUTURE WORK
Finding optimal coalition structures and stable outcomes are key

issues in the analysis of OCF games; we show that these problems
are hard in general, but formulate several conditions that make them
tractable. We mostly focus on 2-OCF games and acyclic agent in-
teraction graphs; however, we show that our results extend to k-
OCF games with constant k and interaction (hyper-)graphs with
bounded treewidth.

While our work focuses on achieving computational efficiency
by restricting agent interaction, one can also obtain tractability re-
sults for OCF games by other means. A natural way of doing so
is to extend existing representation languages for non-overlapping
coalitional games, such as, e.g., MC-nets [13]—and the algorithms
for them—to the OCF setting; the analysis of threshold task games
in [3] can be viewed as an example of this approach.

Another way of dealing with hardness results is by designing
approximation algorithms, i.e., procedures that output a coalition
structure that is almost optimal and/or stable. Designing such algo-
rithms (or proving hardness of approximation results) is a fruitful
direction for future research.

We have focused mostly on one solution concept: the arbitrated
core. Other solution concepts, such as the arbitrated nucleolus,
have been proposed and analyzed in [23]. It would be interesting to
analyze the computational complexity of finding a nucleolus out-
come, or the Shapley value of an agent in cooperative games with
overlapping coalitions.

Acknowledgements
This research was supported by the National Research Foundation
(Singapore) under grant 2009-08, by NTU SUG (Edith Elkind), and
by SINGA graduate fellowship (Yair Zick).

9. REFERENCES
[1] E. Anshelevich and M. Hoefer. Contribution games in social

networks. In ESA’10, pages 158–169, 2010.
[2] R. Brânzei, D. Dimitrov, and S. Tijs. Models in cooperative

game theory. Springer, 2005.
[3] G. Chalkiadakis, E. Elkind, E. Markakis, M. Polukarov, and

N. Jennings. Cooperative games with overlapping coalitions.
Journal of AI Research, 39:179–216, 2010.

[4] G. Chalkiadakis, E. Elkind, and M. Wooldridge.
Computational Aspects of Cooperative Game Theory.
Morgan and Claypool, 2011.

[5] R. H. Chitnis, M. T. Hajiaghayi, and V. Liaghat.
Parameterized complexity of problems in coalitional
resource games. In AAAI’11, pages 620–626, 2011.

[6] V. D. Dang, R. K. Dash, A. Rogers, and N. R. Jennings.
Overlapping coalition formation for efficient data fusion in
multi-sensor networks. In AAAI’06, pages 635–640, 2006.

[7] G. Demange. On group stability in hierarchies and networks.
Journal of Political Economy, 112(4):754–778, 2004.

[8] X. Deng and C. Papadimitriou. On the complexity of
cooperative solution concepts. Mathematics of Operations
Research, 19(2):257–266, 1994.

[9] U. Faigle. Cores of games with restricted cooperation.
Mathematical Methods of Operations Research,
33(6):405–422, 1989.

[10] M. R. Garey and D. S. Johnson. Computers and
Intractibility. W. H. Freeman and Company, 1979.

[11] G. Gottlob, N. Leone, and F. Scarcello. Hypertree
decompositions: A survey. In MFCS’01, pages 37–57, 2001.

[12] G. Greco, E. Malizia, L. Palopoli, and F. Scarcello. On the
complexity of core, kernel, and bargaining set. Artificial
Intelligence, 175(12–13):1877–1910, 2011.

[13] S. Ieong and Y. Shoham. Marginal contribution nets: a
compact representation scheme for coalitional games. In
ACM EC’05, pages 193–202. ACM, 2005.

[14] V. Lesser. Cooperative multiagent systems: A personal view
of the state of the art. IEEE Trans. on Knowl. and Data Eng.,
11:133–142, 1999.

[15] S. Martello and P. Toth. Knapsack Problems: Algorithms and
Computer Implementations. John Wiley & Sons, 1990.

[16] R. Meir, J. S. Rosenschein, and E. Malizia. Subsidies,
stability, and restricted cooperation in coalitional games. In
IJCAI’11, pages 301–306, 2011.

[17] R. Myerson. Graphs and cooperation in games. Mathematics
of Operations Research, 2(3):225–229, 1977.

[18] N. Robertson and P. D. Seymour. Graph minors. III. Planar
tree-width. J Comb Theory, B, 36(1):49–64, 1984.

[19] A. Schrijver. Theory of Linear and Integer Programming.
Wiley, Chichester, 1986.

[20] O. Shehory and S. Kraus. Task allocation via coalition
formation among autonomous agents. In IJCAI’95, pages
655–661, 1995.

[21] O. Shehory and S. Kraus. Formation of overlapping
coalitions for precedence-ordered task-execution among
autonomous agents. In ICMAS’96, pages 330–337, 1996.

[22] T. Shrot, Y. Aumann, and S. Kraus. Easy and hard coalition
resource game formation problems: a parameterized
complexity analysis. In AAMAS’09, pages 433–440, 2009.

[23] Y. Zick and E. Elkind. Arbitrators in overlapping coalition
formation games. In AAMAS’11, pages 55–62, 2011.


