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ABSTRACT
In story-based games or other interactive story systems, a
Drama Manager is an omniscient agent that acts to bring
about a particular sequence of plot points for the user to
experience. We present a Drama Manager that uses play-
er modeling to personalize the user’s story according to his
or her storytelling preferences. In order to deliver personal-
ized stories, a Drama Manager must make decisions on not
only which plot points to be included into the unfolding s-
tory but also the optimal sequence of the events the user
should experience. A prefix based collaborative filtering al-
gorithm based on users’ structural feedback is proposed to
address the sequential selection problem. We demonstrate
our system on a simple interactive story generation system
based on choose-your-own-adventure stories to evaluate our
algorithms. Results on human users and simulated users
show that our Drama Manager is capable of capturing user-
s’ preference and generating personalized stories with high
accuracy.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert
Systems—games, Industrial automation

General Terms
Algorithms, Design

Keywords
Interactive story generation, drama manager, player model-
ing, prefix based collaborative filtering

1. INTRODUCTION
Computer games use story to motivate player activity and

to create a sense of causal continuity across a series of chal-
lenges [15]. While stories in games are often linear, progres-
sively more games and virtual simulated environments allow
variability in the story. A Drama Manager (DM) is an om-
niscient agent that monitors the virtual world in which the
user is immersed and acts to determine what happens next
in the player’s story experience, often coordinating and/or
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instructing virtual characters [1]. In short, a Drama Manag-
er is an agent that reasons about and attempts to enhance
the user’s experience in a virtual world.

Prevailing approaches to Drama Management develop a-
gents that select successive plot points in response to player
actions [9, 20, 14, 13, 7, 8]. In these systems, the DM is
a surrogate for the human designer who provides some for-
m of high-level specification for a “good” story experience.
Although these action-response systems may improve play-
er enjoyment, DM decisions do not take into account the
user’s preferences. We argue that the DM must also be a
surrogate for the user by taking into consideration the user’s
preferences; the DM should model and act on the user’s in-
dividualistic preferences do deliver optimized, personalized
experiences.

Player modeling is a widely applied technique in computer
games to capture users’ preferences in order to increase en-
joyment and reduce frustration and boredom [3]. Previous
approaches to player modeling in story-based games have
attempted to optimize player experience by classifying play-
ers according to well-defined player types [10, 4, 18]. and
using pre-defined mappings of classes to plot point selection
rules. These approaches require a designer to pre-determine
the meaningful player types, even though there is no clear
evidence of links between player types models and prefer-
ences for story content. User modeling can be cast as a rec-
ommendation process and collaborative filtering (CF) has
been successfully applied to modeling user preferences over
movies, products, books, music, etc [17]. Collaborative fil-
tering algorithms attempt to detect users’ rating “patterns,”
extract similarities between users’ patterns, and make pre-
dictions of new user’s ratings based on previous ratings from
the users who share similar patterns. Collaborative filtering
can be applied to the problem of selecting the plot point to
occur next in a game, although to the best of our knowledge
CF has not previously been used for Drama Management.

The techniques described above—player type classifica-
tion and collaborative filtering— make one-shot recommen-
dations and/or decisions. Unfortunately, stories are sequences
of plot points and a player’s assessment of the story he or
she is experiencing is thus a function of the history of plot
points experienced so far. In this paper, we present a novel
approach to player modeling in games to select the most op-
timal sequence of plot points in a game: Prefix Based Col-
laborative Filtering (PBCF), which learns user preferences
over fragments of story and then applies it to the Drama
Management problem of selection of successive plot points
in a game.



As a form of collaborative filtering, PBCF is a robust ap-
proach to player modeling in story-based computer games
that uses machine learning to learn the most appropriate
dimensions for the model from structured feedback—i.e.,
ratings of previously played story content. Player models
can be built without making rigid assumptions about the
model dimensions and those models will be more capable of
describing, distinguishing, and capturing users’ preferences.
We show how a DM agent can make more effective decisions
about how to act on the world for the benefit of the user,
essentially optimizing the player’s game experience. It is not
enough to make a local decision about what should happen
next in a game; a DM must determine the best possible fu-
ture sequence of events the user should experience based on
all previous events. Therefore, our DM agent, using PBCF,
learns preferences over sequences of story events.
Our contributions are as follows: We (1) propose a new al-

gorithm, PBCF, that performs sequential recommendation;
(2) build a flexible and robust preference model that does
not rely on assumptions about the model dimensions; (3)
incorporate the preference model into the Drama Manager
which is allowed to select plot points based on users’ pref-
erences instead of user actions.We evaluate the algorithm
in a simplified testbed domain based on Choose-Your-Own-
Adventure book serials1 using human users and simulated
users.

2. RELATED WORK
Drama Manager agents have been widely used to guide the

users through an expected story experience set by designers.
Two approaches to drama management—search-based dra-
ma management [20, 9, 16] and declarative optimization-
based drama management [14, 2]—transform the problem
of selecting the next best plot point into a search problem
where the DM searches for possible future histories of plot
points based on an evaluation function set by the designer.
The Façade interactive drama [8] uses a reactive plot point
selection technique to determine the next set of behaviors
for two virtual characters. Riedl and colleagues [13] use a
partial-order planner to re-plan a story when the user per-
forms actions that change the virtual world in ways that
prevent story progression as expected. Similarly, Porteous
and Cavazza [11] use a planner with designer-provided con-
straints to control virtual characters and push a story for-
ward. A DM by Magerko et al. [7] predicts player actions
and attempts to prevent story failures by directing virtual
characters to perform actions or change goals. These Dra-
ma Management techniques all respond to player actions to
move the story forward in a way partially or completely con-
ceived by a human designer. That is, the DM is a surrogate
for the human designer.
Relatively little work has been done to determine how a

story should unfold in a game or virtual environment based
on player models. The PaSSAGE system [18] automatically
learns a model of the player’s preference through observa-
tions of the player in the virtual world, and uses the model
to dynamically select the branches of a Choose-Your-Own-
Adventure style story graph. PaSSAGE uses Robin’s Laws
five game player types: Fighters, Power Gamers, Tacticians,
Storyteller, and Method Actors. A player is modeled as a
vector where each dimension is the strength of one of the

1http://en.wikipedia.org/wiki/Choose Your Own Adventure

types. As the player performs actions, dimensions are in-
creased or decreased in accordance to rules. Peinado and
Gervás [10] use the same player types. Seif El-Nasr [5] us-
es a four-dimension player model: heroism, violence, self-
interestedness, and cowardice. These player modeling tech-
niques assume players can be classified according to several
discrete play styles and that, even with continuous charac-
teristic vector combining the discrete user styles, optimal
story choices can be made by a DM. These systems fur-
ther assume that role playing game player classifications (or
ad-hoc types) are applicable to story plot choices. In ad-
dition, these systems assume that plot points could be se-
lected in isolation from each other based on a comparison
between their attributes and the player model. In this pa-
per, we propose a collaborative filtering based player model-
ing approach that learns player model dimensions from user
feedback—ratings—and further solves sequential plot point
recommendation/selection problems.

Roberts, et al. [14, 2] developed an algorithm, Target-
ed Trajectory Distribution Markov Decision Process (TTD-
MDP), to solve non-Markov Decision Processes by wrapping
all the previous MDP states into one node of a trajectory
tree. Their objective was to produce probabilistic policies
for the trajectory tree that minimize divergence from a tar-
get distribution of trajectories. They apply their process to
declarative optimization-based drama management by mod-
eling stories as state space trajectories. TTD-MDPs require
a target distribution across trajectories/stories. Further, as
a reinforcement learning technique, it must simulate a user.
While the simulated user may utilize a player model, that
model would need to first be acquired. Our approach learns
the player model and does not require a target distribution
over trajectories.

3. PREFIX BASED COLLABORATIVE FIL-
TERING

A story can be decomposed into a sequence of plot points,
which usually represent single events or tasks in the story.
In a interactive story-based game or virtual world, a Drama
Manager is in charge of which plot points to be presented to
the users and in what order. This is a NP complete problem
given all the plot points. To address this, temporal and
semantic constraints are imposed among these plot points to
reduce the size of the story space [20, 9]. When constraints
are known, a branching story graph containing the possible
successors to each plot point can be built automatically or
by hand. The question a DM must answer is: what is the
best path in the branching story graph for an individual
user? By answering the quest with a player model, we aim
to create an optimal experience for the a particular user.

The architecture of our Drama Manager system is illus-
trated in Figure 1. The DM has an existing story library or
database which contains all possible story permutations, as
described in the next section. The DM obtains the current
system states from the interactive system interface. Then
the best path is selected by the DM according to the player
model, which is built entirely based on player feedback.

3.1 Story Representation
A branching story graph is a representation that specifies

which plot points are allowed to follow other plot points.
For the purposes of a Drama Manager agent, it provides
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Figure 1: The architecture of the interactive story
generation system.
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Figure 2: (a) Branching story graph of a simple s-
tory library which contains three stories. (b) The
prefix graph of the story library.

the set of options for the next plot point at any given time.
Figure 2(a) illustrates a very simple branching story graph,
where nodes represent plot points and links represent pos-
sible alternative successors. While simple, many other plot
representations are reducible to the branching story graph
representation [12, 14]. A story is a path through the graph
starting at the root node and terminating at a leaf node. Fig-
ure 2(a) contains three complete, possible stories ({1,2,3,4},
{1,2,3,5}, {1,2,6,5}). Note that the branching story graph
is usually a graph instead of a tree.
We transform it into a prefix graph as in Figure 2(b). In

the prefix graph, each node represents a prefix of a story.
The children of a node are those prefixes that can directly
follow the parent prefix. Apparently, the prefix graph will
be a tree or forest since any prefix cannot have more than
one parent node. In our system, only the prefix graph is
stored in the story library.
In our approach, we ask users to rate the “story-so-far”—

the portion of the story that they have observed leading up
to the current point in time. Notice that it is easier and
more accurate for the users to rate the story-so-far instead
of each new plot point since history matters in stories. Be-
cause the branching story graph has been transformed into
a prefix graph, the rating is stored with the prefix that cor-
responds to the story-so-far. Further, the system does not
need to solve a credit assignment problem as in reinforce-
ment learning to determine how much of a final rating each
plot point is responsible for.

3.2 Player Modeling
Different users can different preference over stories. We

aim to extract the dimensions of these preferences from the
users’ ratings instead of constraining ourselves to a few pre-

Prefix User 1 User 2 User 3 …

A (1) * * 2 …

B (1, 2) 1 * 2 ….

C (1, 2, 6) * * * …

D (1, 2, 3) 4 3 * …

… … … … …

Figure 3: Illustration of the prefix-rating matrix. A,
B, C and D represent the prefixes. The larger the
digital number, the higher the preference. The stars
represent those missing ratings.

defined dimensions as in prior works by Thue et al., [18],
Peinado et al. [10], and [4]. The basic assumption of our
player modeling algorithms is that those people who share
similar preference in the past tend to share it again in the
future, hence we use a form of collaborative filtering.

Unlike in traditional recommendation systems, where col-
laborative filtering is usually used as one-shot recommen-
dation of content based on preferences, we must solve the
problem of sequences of recommendations where the order
of plot points matters. In other words, the story generation
can be viewed as as a non-Markov Decision Process, where
at each step the DM’s selection of optimal next plot point is
based on all previous plot points. For example, if the story
prefix {1, 2, 3} has been presented to the user (node D in
Figure 2(b)), then the DM’s next selection should be based
on all the user’s ratings on previous three prefix nodes (A, B,
and D). A user who leaves positive feedback on node B and
negative feedback on node D should be different from anoth-
er one who leaves negative feedback on both node B and D.
A prefix based CF approach is proposed to model players in
a way that allows non-MDP problems to be solved. While
other techniques similarly roll history into state nodes, as
in our prefix trees and equivalent structures in TTD-MDPs
[14, 2], our approach uses structured feedback to guide tree
navigation, inferring ratings when feedback data is sparse.

In this paper, stories are presented to the user plot point
by plot point and a preference rating for the story-so-far is
collected after every plot point. Then a prefix-rating matrix
including the story prefix ratings from all users can be ob-
tained. A n by m prefix-rating matrix contains the ratings
for n prefixes from m users. One column of the matrix rep-
resents all the ratings of the corresponding user for the all
the prefixes. One row of the matrix represents ratings for
the corresponding prefix from all the users. Figure 3 shows
a simple illustration of the prefix-user matrix. The matrix
is usually very sparse, i.e. containing a lot of missing rat-
ings, because there is no way of expecting any given user
to have read and rated all the prefixes in the library. The
prefix-user matrix is treated as the product-user matrix as
in traditional CF [17].

Two collaborative filtering learning algorithms are tested
in this paper: probabilistic Principle Component Analysis
(pPCA) [19] and Non-negative Matrix Factorization (NMF)
[6, 21]. Next we briefly introduce the two algorithms and
their application in our player modeling.

3.2.1 Probabilistic PCA
For a n dimensional vector r, probabilistic PCA assumes



that it can be factorized as follows:

r = Wx+ µ+ ǫ (1)

where x is a n′ dimensional vector in the hidden or reduced
dimension space (usually n′ < n) and W is a n by n′ matrix.
µ is the mean vector which permits r to have nonzero mean.
ǫ ∼ σ2I is the Gaussian noise.
Let the vector r be any one column of the prefix-rating ma-

trix. pPCA projects the corresponding user’s prefix-rating
vector into the hidden space or the reduced dimension s-
pace x just as in traditional principle component analysis.
The hidden space vector x models the corresponding user’s
preference type. Note that from Equation 1 we can get:

r|x ∼ N(Wx+ µ, σ
2I) (2)

Thus the basic assumption of pPCA algorithm is that the
user’s prefix rating vector (the column of the prefix-user ma-
trix) obeys a multi-dimensional Gaussian distribution.
If the prefix-user matrix contains missing values, the EM

algorithm can be used to computeW and σ [19]. The hidden
space vector x can then be computed from the observed
ratings, and the missing ratings can be estimated with W ,
σ and x.

3.2.2 Non-negative Matrix Factorization
The purpose of NMF is to factorize an n by m matrix R

as follows:

R = W ∗H (3)

where W ∈ R
n∗m′

and H ∈ R
m′∗m are two non-negative

matrices (usually m′ < m). Non-negative here means that
all the entries in the matrix are greater than or equal to
zero. If R contains missing values, the EM algorithms can
be used to compute W and H [21]. Then the missing values
in R are recovered using the estimated W and H.
If R is the prefix-rating matrix (n prefixes and m user-

s), the m′ columns of the matrix W , wj j = 1, ...m′, can
be viewed as a set of bases that represent different types
of users. Then hi, the ith column of H, will correspond to
the ith user’s preference. In practice, it will be difficult to
interpret the player types that correspond to each hi. How-
ever, if we have prior knowledge about some preference types
(e.g., fighter, tactician), that is, we know their ratings for
all the prefixes (e.g., fighter’s rating vector wf , tactician’s
rating vector wt), then the matrix W can be seeded with
the rating vectors (wf , wt) as fixed columns. Simulated
experiments in Section 4 shows that such prior can indeed
increase player modeling accuracy when they are known to
accurately distinguish users with regard to stories.

3.3 Player Modeling Processes
The entire Drama Management system is composed of two

phases: model training and story generation. In the model
training phase, the process can be summarized as follows:

1. Build the story library storing the prefix forest.

2. Collect data and populate the prefix-rating matrix R.

3. Compute the player model parameters: W , σ and µ

for the pPCA, or W for NMF.

For a new user, after we get some initial ratings r from
him or her, the story generation phase is as follows:

1. Model the new user’s preference using r through com-
puting x for pPCA, or h for NMF.

2. Calculate the full rating vector r′ (with no missing
values) from x using Equation 1 or Equation 3.

3. Select the highest rated full-length story that is a
descendant of the current prefix in the prefix graph.
Present the corresponding next plot point in the se-
lected full-length story.

4. Collect user’s rating on the story-so-far (i.e., the rec-
ommended prefix).

5. Include the new rating into r and go to step 1.

Note that it is not necessary to collect ratings after each pre-
fix in the story generation phase; we do it in our system for
the purpose of collecting as much data as possible to build
a more accurate player model. With every new rating, the
DM will get better understanding of the current user’s pref-
erence and recommend next prefixes with higher confidence.

4. EVALUATION AND RESULTS
Based on the theory that all interactive systems can be

translated into a branching story graph, we built a simple
interactive storytelling system that can automatically guide
the user through a particular branching path. The system
presents the stories to the user one plot point by one plot
point. After every plot point, it asks the user for the prefer-
ence rating on the story-so-far. Instead of the user choosing
the branch, the system then recommends the next branch
by some means (using our model, or random). In the sys-
tem, the ratings are digital integers ranging from 1 to 5.
While our test bed is simple compared to modern computer
games, it represents the fundamentals of other Drama Man-
agers. By limiting player interaction to providing ratings of
the story-so-far we aim to control the experimental variable
of player agency to further facilitate validation of our pref-
erence model. We have performed two sets of experiments:
on human users and on simulated users.

4.1 Story Library
The story library is built through transcribing the stories

from four Choose-Your-Own-Adventure books—The Abom-
inable Snowman, Journey Under the Sea, Space and Beyond,
and The Lost Jewels of Nabooti—all of which are adventure
stories. Every book contains a branching story tree. At the
end of each page in the book, the reader is presented with
a multi-choice question, the answer to which leads the read-
er to different pages of the book to continue down different
branches of the story. Figure 4 shows the branching story
graph from one of the books.

We chose to transcribe Choose-Your-Own-Adventure book-
s to control for story quality, as opposed to authoring stories
ourselves. In the system, every story is pruned and tran-
scribed to contain exactly six plot points2. As in Figure 2,
these branching story graphs are transformed into the prefix
graphs which are stored in the story library. Thus our story
library is a forest containing 154 possible stories (about 1000
words per story) and 326 prefixes.

2We do this for implementation purpose. It is not necessary
for every story to contain exactly the same number of plot
points; our system can be easily extended to handle stories
of varied number of plot points.
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Figure 4: Illustration of the branching story rep-
resentation of stories in The Abominable Snowman.
The nodes in the graph represent pages in the book
(plot points). Every story start from the root node
and end on one of the leaves.

4.2 Experiments with Human Users
We conducted an evaluation of our system on human user-

s. The evaluation consisted of two phases: model training,
and story generation testing. In the model training phase,
31 users have participated in the experiments (18 male and
13 female). 26 of them are college graduate students and
the other 5 users are research scientists and staff. All the
users who have never read the choose-your-own-adventure
stories are given a sample adventure story which is out of
the story library to familiarize themselves (five out of the
31 users have been exposed to choose-your-own-adventure
series before the experiments).
Every user in the training phase read ten stories randomly

selected from the library. A random story is a random walk
from a root of any tree in the forest to a leaf node. Each
story is presented to the user one plot point at a time and
a rating is collected after every plot point. The experiment
took about half an hour for each player. We obtain a 326
by 31 prefix-rating matrix R with ∼ 86% ratings missing.
We computed the Root Mean Square Error (RMSE) in

order to get the best parameters for model training. The
prefix-rating matrix R is randomly split into training part
Rt which contains 90% of the ratings, and validation part
Rv which contains the remaining 10% of the ratings. Note
that Rt and Rv are still the same dimension as the original
matrix R and both of them contains missing values. We
train the NMF and pPCA on the training set Rt with dif-
ferent parameters. The resulting models are used to predict
the ratings in the validation matrix. The Root Mean Square
Error (RMSE) can be computed as follows:

RMSE =

√

1

|O|

∑

i,j∈O

(Rv
ij −Rv′

ij )
2 (4)

where Rv′

is the predicted validation matrix, O is the set of
entries indices that are not missing in the validation matrix
Rv and |O| is the number of entries that are not missing
in Rv. The random splitting process is repeated for ten
times and the average RMSEs on the validation sets are

Algorithms RMSE
NMF dim3 1.2423
NMF dim4 1.1781
NMF dim5 1.1371
NMF dim6 0.9901
NMF dim7 1.1108
NMF dim8 1.1354
NMF dim9 1.2464

pPCA 1.2016

Table 1: The average RMSE for different parameter-
s of NMF and pPCA algorithms. NMF dimi means
NMF algorithm with the number of player styles
(number of columns of the matrix W ) i.

Random Personalized Accuracy p-value
All 2.9449 3.8899 0.828 < 0.0001

Existing 3.032 4.035 0.863 < 0.0224
New 2.8993 3.8138 0.809 < 0.0001

Table 2: The average ratings for the random and
personalized full-length stories. The accuracies are
the percent of pairs in which the average rating of
the personalized stories is larger than the average
rating of the random stories.

reported in Table 1. The dimi in the table mean the number
of columns of the matrix W in Equation 3 is i. The RMSEs
in the table suggest that there are probably six types of users
in current training set when it comes to story preferences.

Another 22 graduate students (17 male and 5 female) were
recruited for the second phase: testing of the model’s ability
to predict ratings. This phase is divided into four steps. In
the first step, the users read five random stories and leave
ratings after every plot point, as in the training phase. In
the second step, the DM starts to choose new personalized
stories and branches according to the users’ ratings and the
player models built in the training phase. The final NMF
and pPCA models are trained on the entire prefix-rating
matrix R with the best parameters which correspond to the
least RMSE. These personalized stories are presented to the
users plot point by plot point in the same way as the first five
random stories and the users’ ratings after every plot point
are collected. Then, as in Sharma et al. [16], the DM then
presents another five personalized stories in the third step,
followed by five random stories in the last step in order to
eliminate any prejudice introduced by the order in which the
stories are presented to the users. Thus, every user in the
testing phase is required to read 20 stories (10 total random
stories and 10 total personalized stories).

For comparison of model performance on new users versus
existing users, we also invited 11 participants from the train-
ing phase back to also participate in the validation phase.
The experiment process is exactly the same as above. Ta-
ble 2 shows the results for the new users and existing users
when the player model is trained with NMF algorithms set
for six dimensions (the variant with the lowest RMSE).

Results are shown in Table 2, the first line exhibits the s-
tatistical results on all the 32 testing users. The second line
and the third line give the results of the 11 users from the



training group and the 21 users out of the training group
respectively. The first column “Random” and the second
column “Personalized” show the average ratings of all the
random and all the personalized stories in the story gener-
ation phase respectively. For every user in the story gen-
eration phase, we also compare the pair of average story
ratings from the first step and the second step, and the pair
of average story ratings from the third and the fourth step.
The “Accuracy” column shows the percent of pairs in which
the average rating of the personalized stories is larger than
the average rating of the random stories, indicating the DM
correctly choosing preferred stories. The last column shows
the significance of the difference between random and per-
sonalized averages using a one-tailed t-test.

4.3 Experiments with Simulated Users
In order to establish more complete analysis on PBCF, we

also conducted experiments with simulated users. Simulated
users are more consistent over time, allowing us to make
observations about our algorithm on a controllable data set
to study its capability. Note that it is not necessary for
the simulated users actually being good imitations of the
human users’ preferences. Instead, as long as the simulated
users are consistent, they can be used to experiment with
the capability of our system to capture users’ preference and
build user models. In addition, we can get as much rating
data as we need from simulated users.
The simulated users are built based on the Robin’s Laws

player types, which assumes there are five types of player-
s for games: Fighters (who prefer combat), Power Gamers
(who prefer gaining items and riches), Tacticians (who prefer
thinking creatively), Storytellers (who prefer complex plots)
and Method Actors (who prefer to take dramatic action-
s) [18, 10]. Every simulated user is assigned with a five-
dimensional characteristic vector. Each entry of the vector
(ranging from 0 to 1) specifies the corresponding characteris-
tic of the simulated user. For example, vector [0.8, 0, 0, 0.6, 0]
means the simulated user is a combination of fighter and s-
toryteller and tends to enjoy fighting a little more.
To run experiments with simulated users, all story prefix-

es in our database were labeled according to Robin’s Laws
player types. The labeling of prefixes was performed by
three college students, one of whom is an author on this
paper. To mitigate bias, the label for each prefix is the av-
erage label produced by each of the human labelers. Thus
each prefix label is a five-dimensional vector, where each ele-
ment expresses the average belief about how the story-so-far
matches players of different types.
We assume that a simulated user of a particular type ac-

cording to the Robin’s Laws player types tends to prefer
a story or story prefix that most closely matches the us-
er’s type. For example, a simulated user with characteris-
tic vector u = [0.8, 0, 0, 0, 0] will prefer for a story prefix i

with label pi = [1, 0, 0, 0, 0] over a story prefix j with label
pj = [0, 1, 0, 0, 0]. Consequently, we assume that the rating
r of a simulated user u for a prefix p is proportional to co-

sine distance between the vector u and p: r ∼ u
T
p

|u||p|
. In

practice, the ratings are computed by scaling the cosine dis-
tances to between 1 and 5. In addition, we add random noise
with standard Gaussian distribution (mean 0 and variance
1) to all the ratings in order to simulate the human user
case where it could be inaccurate for the human users to
quantitate preference into digital labels.

During the model training phase of the experiments, we
generate 120 simulated users with characteristic vectors ran-
domly chosen from {[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0,
0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]}. Each simulated user then
reads 10 random stories and leaves a preference rating after
every plot points as human users. A 326 by 120 prefix-rating
matrix is populated at the end of the model training phase.

The testing phase is divided into four steps that are exact-
ly the same as the human user’s experiment story generation
phase. In every step each simulated user is required to read
five random or personalized stories. To test the generaliza-
tion ability of our algorithm, a new group of 1000 simulated
users are used in the testing phase. Each is assigned with a
random characteristic vector (the five entries of the charac-
teristic vector are values ranging from 0 to 1).

For the purpose of comparison, we implement all the fol-
lowing algorithms:

• BaselineP : pPCA is used to learn the player models
from simulated users’ ratings on full-length stories in-
stead of prefixes, then directly recommends the full-
length stories instead of choosing branches through
recommending prefixes. This algorithm behaves simi-
lar to a traditional movie recommendation system where
full-length movies are recommended based on others’
ratings on the full-length movies.

• BaselineN : The same as BaselineP except using NMF.

• Vector : A vector based player modeling algorithm that
is similar to the model learning technique used by Thue
et al. [18]. A vector that simulates a player starts out
as [0, 0, 0, 0, 0]. For every plot point encountered, the
DM updates the characteristic vector based on the fea-
tures of the current story prefix including the new plot
point. The DM generates successive plot points by rec-
ommending the following prefix based on the updated
user vector, or chooses randomly when there is no clear
preference.

• pPCA: The prefix based algorithm using pPCA, same
as with the human users.

• NMFwoP : The prefix based algorithm using NMF with-
out prior knowledge, same as with the human users.

• NMFwP : The prefix based algorithm using NMF with
Robin’s Laws player types as prior knowledge as dis-
cussed in Section 3.2.2. In the case of simulated users,
we can compute the correct rating vector wj for each
known player type j, where j = 1, ...5 correspond to
the five player types in the training phase. Then these
vectors wj can be included into the matrix W in E-
quation 3 as fixed columns during training process.

The experiment results for these algorithms on the 1000 test-
ing simulated users are shown in Table 3. The results are all
statistically significant at p-values approaching zero (using
one-tailed t-tests on random and personalized averages) due
to the large number of testing users.

It is interesting to explore the learning speed of the player
model as the number of stories read in every step changes,
which was set to 5 for testing with human and synthetic
users. Figure 5 shows the average accuracies of 1000 simu-
lated users for different algorithms as the number of stories
read in every step changes. As shown in the figure, the NM-
F algorithms can achieve accuracies higher than 70% even
when one new simulated user reads only one story.



Algorithm Random Personalized Accuracy
BaselineP 2.2190 2.5305 0.668
BaselineN 2.1752 2.4582 0.643
Vector 2.2010 2.8335 0.617
pPCA 2.2350 2.9607 0.798

NMFwoP 2.2362 3.3950 0.894
NMFwP 2.2013 4.0027 0.949

Table 3: The testing results for the simulated users
using several variations of the DM algorithm.
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Figure 5: The accuracies of the six algorithms as the
number of stories read in every step changes.

We also test the influence of the training set size on the
player model training process. Figure 6 shows the average
RMSEs of the three prefix based algorithms with different
number of simulated users for training. Each RMSE value in
the figure is an average computed from 10 random splittings
of the training data. As seen from the figure, the training
RMSEs decrease as the the training set size grows. Due to
the Gaussian noise in the rating data, the RMSE values for
the NMFwP algorithm become stable after the number of
training users goes above 100 even if it has the perfect prior
knowledge of the player models.

4.4 Discussions
Both the experiments on human users and simulated user-

s achieve high story generation accuracies on the current
Choose-Your-Own-Adventure data set for the prefix based
algorithms. We observe that over 80% of the time, new hu-
man users will rate DM-generated stories higher than ran-
dom stories. We achieve this rate after the new users have
only rated 5 sample stories. The accuracy of about 86% is
achieved when the testing users’ data are already part of
the trained model. The average ratings for the personal-
ized stories are higher than the random stories. The results
show that our prefix based player modeling algorithms can
capture the users’ preference and generate new stories with
high confidence.
Even with Gaussian noise added to the synthetic ratings,

our player modeling algorithms achieve higher accuracies on
the simulated users than on the human users. Although from
the learning process we know that there does exist features
of story rating behavior that are predictive of future rating
behavior, it is still difficult if not impossible to interpret
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Figure 6: The average RMSEs of the three prefix
based algorithms with different number of simulated
users for training.

these features. We do not believe that these features are as
clear cut as Robin’s Laws player types, Seif El-Nasr’s types,
or other factorized personality models. The preference types
of human users should be more complicated than the linear
combinations of several presumed categories, which is also
the reason to build the player models from data instead of
constraining ourselves to a few pre-defined dimensions.

For the simulated users, the NMF algorithm usually per-
forms better than the pPCA algorithm which could due to
our linear model assumption for the simulated users. The
linear characteristic model for simulated users coincides with
the basic assumption of the NMF algorithm, which also as-
sumes that users (columns of the matrix R in Equation 3)
are linear combinations of a set of bases (columns of the ma-
trix W in Equation 3). Although NMF is a natural fit for
the synthetic users, it is also superior to pPCA for human
data in terms of RMSEs in our experiments.

Figure 5 shows that the prefix based algorithms can ac-
quire player preference much faster than applying traditional
CF algorithms directly on full-length stories (baseline algo-
rithms BaselineP and BaselineN ). The main reason is that
the prefix based algorithms can obtain more preference in-
formation (the ratings on all the prefixes) from users than
the baseline algorithms in both model learning and story
generation phases. It also demonstrates that these ratings
on prefixes do strongly correlate with users’ preference and
can help to improve player models. The figure also shows
that the Vector approach learns the player model much slow-
er than our algorithms and is thus less accurate on average.
This is because the Vector approach cannot acquire any in-
formation from the training data.

Although there are only 154 full-length stories and 326
prefixes in the story library, the well-known scalability of col-
laborative filtering algorithms suggests that our algorithms
can be extended to handle larger scale problems as long as
we have enough rating data. In traditional recommendation
systems, CF algorithms can easily process products-user ma-
trix with dimension of hundreds of thousands and achieve
high recommendation accuracies [17]. The number of pre-
fixes could be exponential in the number of plot points. But
in practice we can effectively add constraints between plot
points to limit the size of the prefix database. Notice that in
our system, the number of total prefixes grows linearly with



the number of total stories given a limit of maximum num-
ber of plot points in each story because of the constraints
imposed by the branching story graph representation.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a PBCF algorithm to address

the sequential recommendation problem. The player models
built with the PBCF algorithm enable the Drama Manager
to make successive story choices on behalf of the users. We
examine the algorithm in a simple interactive story gener-
ation system built with choose-your-own-adventure series.
The evaluation results on both human users and simulated
users demonstrate that our algorithm is able to capture the
users’ preference and generate stories with high confidence.
Although the current system is simple, it represents one

of the most important fundamentals of Drama Managemen-
t: delivering new stories based on a pre-authored library of
legal stories through player modeling. Although player mod-
eling techniques in Drama Management has not been widely
explored, we believe that it is an essential part of building an
agent that is responsible for optimizing the player’s experi-
ence in a game or virtual world. Our approach combines the
robustness of machine learning with intuitions about the se-
quential nature of stories. The Drama Manager agent built
in this way is capable of generating personalized stories and
guiding the users through a better experience.
There are many avenues for future work. A larger story

space is required to verify the scalability of our algorithm-
s. The experiment results on simulated user show that prior
knowledge does help to increase the accuracies. It will be in-
teresting to investigate how to include prior knowledge in the
case of human users. Furthermore, the player choices and
other unstructured feedback are still missing in the current
system. The DM operates like a story generator in current
system, although we implement this as a control to validate
the algorithm. When the algorithm is placed in a full vir-
tual world that supports human player choice, then other
well-known techniques for managing player choice, such as
re-planning [13] can be added to the player modeling.
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