
Max/Min-sum Distributed Constraint Optimization through
Value Propagation on an Alternating DAG

Roie Zivan and Hilla Peled
Industrial Engineering and Management department,

Ben Gurion University,
Beer-Sheva, Israel

{zivanr,hillapel}@bgu.ac.il

ABSTRACT
Distributed Constraint Optimization Problems (DCOPs) are NP-
hard and therefore the number of studies that consider incomplete
algorithms for solving them is growing. Specifically, the Max-sum
algorithm has drawn attention in recent years and has been applied
to a number of realistic applications. Unfortunately, in many cases
Max-sum does not produce high quality solutions. More specifi-
cally, when problems include cycles of various sizes in the factor
graph upon which Max-sum performs, the algorithm does not con-
verge and the states that it visits are of low quality.

In this paper we advance the research on incomplete algorithms
for DCOPs by: (1) Proposing a version of the Max-sum algo-
rithm that operates on an alternating directed acyclic graph (Max-
sum_AD), which guarantees convergence in linear time. (2) Identi-
fying major weaknesses of Max-sum and Max-sum_AD that cause
inconsistent costs/utilities to be propagated and affect the assign-
ment selection. (3) Solving the identified problems by introducing
value propagation to Max-sum_AD. Our empirical study reveals
a large improvement in the quality of the solutions produced by
Max-sum_AD with value propagation (VP), when solving prob-
lems which include cycles, compared with the solutions produced
by the standard Max-sum algorithm, Bounded Max-sum and Max-
sum_AD with no value propagation.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: [Multiagent systems]

General Terms
Algorithms, Experimentation

Keywords
DCOP, Incomplete Algorithms, GDL

1. INTRODUCTION
The Distributed Constraint Optimization Problem (DCOP) is a

general model for distributed problem solving that has a wide range
of applications in Multi-Agent Systems and has generated signifi-
cant interest from researchers [10, 12, 21, 15, 16].

A number of studies on DCOPs presented complete algorithms
[10, 12, 5]. However, since DCOPs are NP-hard, there is a growing

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

interest in the last few years in incomplete DCOP algorithms [9,
21, 17]. Although incomplete algorithms do not guarantee that the
obtained solution is optimal, they are applicable for large problems
and compatible with real time applications.

Local search algorithms for DCOPs are incomplete algorithms
whose general structure is synchronous. In each step of the al-
gorithm an agent sends its assignment to all its neighbors in the
constraint network and receives the assignment of all its neighbors.
They differ in the method agents use to decide whether to replace
their current value assignments to their variables, e.g., in the max
gain messages algorithm (MGM) [9]; the agent that can improve
its state the most in its neighborhood replaces its assignment. A
stochastic decision whether to replace an assignment is made by
agents in the distributed stochastic algorithm (DSA) [21].

An incomplete algorithm that does not follow the standard struc-
ture of distributed local search algorithms and has drawn much at-
tention recently is the Max-sum algorithm [4]. Max-sum is an in-
complete GDL algorithm [1]. In contrast to standard local search
algorithms, agents in Max-sum do not propagate assignments but
rather calculate utilities (or costs) for each possible value assign-
ment of their neighboring agents’ variables. The general structure
of the algorithm is exploitive, i.e., the agents attempt to compute
the best costs/utilities for possible value assignments according to
their own problem data and recent information they received via
messages from their neighbors.

The growing interest in the Max-sum algorithm in recent years
included its use for solving DCOPs representing various multi-
agent applications, e.g., sensor systems [17, 15] and task alloca-
tion for rescue teams in disaster areas [13]. In addition, a method
for approximating the distance of the solution found by Max-sum
from the optimal solution for a given problem was proposed [14].
This version required the elimination of some of the problem’s con-
straints in order to reduce the DCOP to a tree structured problem
that can be solved in polynomial time. Then, the sum of the worst
costs for all eliminated constraints serves as the bound on the ap-
proximation of the optimal solution.

Previous studies have revealed that Max-sum does not always
converge to a solution [4]. In fact, in some of the cases where it
does not converge, it traverses states with low quality and thus, at
the end of the run a poor quality solution is reported. This pathol-
ogy apparently occurs when the constraint graph of the problem in-
cludes cycles of various sizes [4]. Unfortunately, many DCOPs that
were investigated in previous studies are dense and indeed include
such cycles (e.g., [10, 5]). Our experimental study revealed that
on random problems of different density parameters and problem
sizes, and on problems with structured constraints (graph coloring),
Max-sum does not converge.

In this paper we contribute to the development of incomplete



algorithms for solving DCOPs by:

1. Proposing a new version of the Max-sum algorithm that uses
an alternating directed acyclic graph (DAG). The proposed
algorithm (Max-sum_AD) avoids cycles by performing iter-
ations of the algorithm in which messages are sent according
to a predefined order. The order divides the set of neigh-
bors for each agent to two disjoint subsets, one of agents that
come before it in the order in which it receives messages, and
the other of neighbors that come after it in the order in which
it sends messages (notice that the order is on the direction of
messages and not on the agents’ actions).

In order not to ignore constraints of the DCOP, after a num-
ber of iterations in which all agents perform concurrently,
which guarantees the convergence of the algorithm, the order
from which the direction of the DAG is derived is reversed.
Then, the algorithm is performed on the reversed DAG until
it converges again. We prove that the maximal number of
iterations in a single direction required for the algorithm to
converge is equal to the longest path in the DAG, l (linear
in the worst case). Thus, by performing l iterations in each
direction we converge to a solution after considering all the
constraints in the DCOP.

2. We identify major weaknesses of Max-sum and Max-sum_AD,
which are their performance in the presence of ties and the
possibility that best costs/utilities computed for the same vari-
able consider different value assignments and thus are not
valid. We demonstrate that the propagation of such incon-
sistent information results in a distorted selection of assign-
ments by the agents.

3. We solve the problems of inconsistent cost propagation and
tie breaking by using value propagation. After performing
the algorithm in both directions and allowing it to converge
for the second time after considering all the problem’s con-
straints, we require that agents add to the messages they send
the value assignment they have selected and that only con-
straints with these values are considered. Thus, we prevent
the possibility that different agents consider costs/utilities that
are based on conflicting value assignments. We note that
value propagation has been used in previous studies for com-
plete GDL algorithms [12, 18]) for breaking ties, including
for the production of the optimal solution for the tree struc-
ture factor graph in Bounded Max-sum [14]. However, to
best of our knowledge, ours is the first use of value propaga-
tion in GDL algorithms for solving DCOPs with cyclic factor
graphs.

Our empirical study demonstrates the success of Max-sum_AD
combined with value propagation in comparison with the standard
Max-sum algorithm and with Bounded Max-sum when solving ran-
dom DCOPs and graph coloring problems (problems that include
cycles on which Max-sum fails to converge).

The rest of this paper is organized as follows: We present related
work in Section 2. DCOPs are presented in Section 3. Section 4
presents the standard Max-sum algorithm. The Max-sum_AD al-
gorithm is presented in Section 5. Section 6 identifies the need for
value propagation (VP) and further describes how VP is combined
with Max-sum_AD. Section 7 includes an evaluation of the pro-
posed algorithm in comparison with Max-sum and Bounded Max-
sum. In Section 8 we discuss how dynamic spanning trees can
be generated as part of the Max-sum_AD algorithm which can be
used to produce bounded approximation of the optimal solution.
Our conclusions are presented in Section 9.

2. RELATED WORK
Many algorithms for solving DCOPs were proposed in the last

decade. These can be divided into complete and incomplete algo-
rithms. While some complete algorithms such as ADOPT, BnB-
ADOPT [10, 20], and AFB [5] perform distributed search, GDL-
based complete algorithms implement a dynamic programming ap-
proach [1, 12, 18]. The first to apply this approach to DCOP were
Petcu and Faltings by proposing the DPOP algorithm [12]. DPOP
performs dynamic programming on a pseudo-tree structure. Since
pseudo trees may have limited branching in dense problems, recent
studies investigated alternative structures (e.g., junction trees) in
order to increase the parallelism in GDL based algorithms [3, 18].

The other set of incomplete algorithms for solving DCOPs in-
cludes search algorithms as well. As mentioned in the Introduction,
in standard local search algorithms for DCOPs (e.g., DSA) agents
exchange messages in synchronous iterations and the algorithms
differ in the method agents use to decide when and how to replace
their assignment.

In [9, 11], a different approach towards local search for solving
DCOPs was proposed. In these studies, completely exploitive al-
gorithms are used to converge to local optima solutions, which are
guaranteed to be within a predefined distance from the global opti-
mal solution. The approximation level is dependent on a parameter
k, which defines the size of coalitions that agents can form. These
k size coalitions transfer the problem data to a single agent, which
performs a complete search procedure in order to find the best as-
signment for all agents within the k size coalition. As a result, the
algorithm converges to a state that is k optimal (k-opt) [11], i.e., no
better state exists if k agents or fewer change their assignments.

The production of k-opt solutions may require solving an expo-
nential number of problems of size k. To overcome this shortcom-
ing, recent studies have proposed alternatives for the selection of
small local environments that would be solved optimally in order
to produce quality guarantees on the overall solution. One alterna-
tive, t-distance, created environments dependent on the distance of
nodes in the constraint network [6]. While this alternative reduced
the number of problems that need to be solved it did not bound the
size of the problems that are solved. The most recent approach in-
cluded the generation of environments that were bounded both by
distance and size [19]. Thus, the number of problems to solve is
bounded by the number of agents and the problems to solve by the
predefined size.

Aggregation of agents’ constraints was also used in an attempt to
cope with the in-convergence of Max-sum [4]. It included the union
of groups of agents to clusters of adjacent agents represented by a
single agent in the cluster. The constraints between the agents in
the cluster were aggregated and held by the agent representing the
cluster. Thus, it required that some constraints would be revealed
in a preprocessing phase to agents that are not included in the con-
straints (the constraint between agents A1 and A2 is revealed to
agentA3). Furthermore, the amount of aggregated information was
not limited and in dense problems could result in a single agent
holding a large part of the problem’s constraints (partial central-
ization). Another approach is to aggregate constraints and unite
nodes in the constraint graph so that the resulting graph would be
a tree [18]. However, the result of this rearrangement of the con-
straint graph is the need to perform exponential computation and
transfer exponential communication that will result in a complete
solution.

In this paper we focus on incomplete GDL algorithms that avoid
partial centralization and clustering of agents, and attempt to solve
the original DCOPs as do standard complete algorithms (e.g., ADOPT
and DPOP), one-opt distributed local search algorithms (e.g., DSA



and MGM) and as the standard Max-sum algorithm does [14].
The alternating direction approach we implement in this paper

is inspired by algorithms for solving asymmetric distributed con-
straints problems [2]. However, unlike in the case of asymmetric
problems where the motivation for this approach was preserving
privacy, in this paper the motivation is strictly algorithmic.

3. DISTRIBUTED CONSTRAINT OPTIMIZA-
TION

To avoid confusion, and without loss of generality, in the rest of
this paper we will assume all problems are minimization problems
as presented in the early DCOP papers (e.g., [10]). Thus, we as-
sume that all constraints define costs and not utilities. The GDL
algorithm for minimization problems is actually a Min-sum GDL
algorithm. However, we will continue to refer to it as Max-sum
since this name is widely accepted. Our description of a DCOP
is also consistent with the definitions in many DCOP studies, e.g.,
[10, 12, 5].

A DCOP is a tuple 〈A,X ,D,R〉. A is a finite set of agents
A1, A2, ..., An. X is a finite set of variables X1,X2,...,Xm. Each
variable is held by a single agent (an agent may hold more than
one variable). D is a set of domains D1, D2,...,Dm. Each do-
main Di contains the finite set of values that can be assigned to
variable Xi. We denote an assignment of value d ∈ Di to Xi

by an ordered pair 〈Xi, d〉. R is a set of relations (constraints).
Each constraint C ∈ R defines a non-negative cost for every pos-
sible value combination of a set of variables, and is of the form
C : Di1 × Di2 × . . . × Dik → R+ ∪ {0}. A binary con-
straint refers to exactly two variables and is of the form Cij :
Di × Dj → R+ ∪ {0}. A binary DCOP is a DCOP in which
all constraints are binary. A partial assignment (PA) is a set of
value assignments to variables, in which each variable appears at
most once. vars(PA) is the set of all variables that appear in PA,
vars(PA) = {Xi | ∃d ∈ Di ∧ 〈Xi, d〉 ∈ PA}. A constraint
C ∈ R of the form C : Di1 ×Di2 × . . . ×Dik → R+ ∪ {0} is
applicable to PA if Xi1 , Xi2 , . . . , Xik ∈ vars(PA). The cost of
a partial assignment PA is the sum of all applicable constraints to
PA over the assignments in PA. A complete assignment is a partial
assignment that includes all the variables (vars(PA) = X ). An
optimal solution is a complete assignment with minimal cost.

For simplicity, all DCOPs considered in this paper are binary
DCOPs in which each agent holds exactly one variable.

4. STANDARD MAX-SUM
The Max-Sum algorithm [4] is a GDL algorithm [1] that oper-

ates on a factor graph [7] that is a bipartite graph in which the
nodes represent variables and constraints. 1 Each node represent-
ing a variable of the original DCOP is connected to all function-
nodes that represent constraints that it is involved in. Similarly,
a function-node is connected to all variable-nodes that represent
variables in the original DCOP that are included in the constraint
it represents. Agents in Max-sum perform the roles of different
nodes in the factor graph. We will assume that each agent takes the
role of the variable-nodes that represent its own variables and for
each function-node, one of the agents whose variable is involved in
the constraint it represents, performs its role. Variable-nodes and
function-nodes are considered “agents" in Max-sum, i.e., they can
send messages, read messages and perform computation.

Figure 1 demonstrates the transformation of a DCOP to a factor
graph. On the top we have a DCOP with three agents, each holding
1We preserve the terminology of [4] and call constraint represent-
ing nodes in the factor graph “function-nodes".

Figure 1: Transformation of a DCOP to a factor graph

Max-sum (node n)
1. Nn ← all of n’s neighboring nodes
2. while (no termination condition is met)
3. collect messages from Nn

4. for each n′ ∈ Nn

5. if (n is a variable-node)
6. produce message mn′

using messages from Nn \ {n′}
7. if (n is a function-node)
8. produce message mn′

using constraint and messages from Nn \ {n′}
9. send mn′ to n′

Figure 2: Standard Max-sum.

a single variable. All variables are connected by binary constraints.
On the bottom we have a factor graph. Each agent takes the role
of the node representing its own variable and the role of one of the
function-nodes representing a constraint it is involved in, e.g., in
this factor graph agent A1 takes the role of function-node f1 which
represents the constraint between its own variable x1 and variable
x3 held by agent A3.

Figure 2 presents a sketch of the Max-sum algorithm.2 The
code for variable-nodes and function-nodes is similar apart from
the computation of the content of messages to be sent. For variable-
nodes only data received from neighbors is considered. In mes-
sages sent by function-nodes the content is produced considering
data received from neighbors and the original constraint represented
by the function-node.

It remains to describe the content of messages sent by the factor
graph nodes. A message sent from a variable-node x to a function-
node f at iteration i, includes for each of the values d ∈ Dx the
sum of costs for this value it received from all function neighbors
apart from f in iteration i − 1. Formally, for value d ∈ Dx the
message will include: ∑

f ′∈Fx,f ′ 6=f

cost(f ′.d)− α

where Fx is the set of function-node neighbors of variable x and
cost(f ′.d) is the cost for value d included in the message received
from f ′ in iteration i − 1. α is a constant that is reduced from
all costs included in the message (i.e., for each d ∈ Dx) in order
to prevent the costs carried by messages throughout the algorithm
2In contrast to previous papers on Max-sum, we present it using a
pseudo-code. This is following standard DCOP literature, e.g., [10,
12, 21]. Nevertheless, only the presentation is different. The algo-
rithm itself is identical to the algorithm presented in [4, 14].



from growing arbitrarily. Selecting α to be the average on all costs
included in the message is a reasonable choice for this purpose [4,
14]. Notice that as long as the amount reduced from all costs is
identical, the algorithm is not affected by this reduction since only
the differences between the costs for the different values matter.

A message sent from a function-node f to a variable-node x in
iteration i includes for each possible value d ∈ Dx the minimal cost
of any combination of assignments to the variables involved in f
apart from x and the assignment of value d to variable x. Formally,
the message from f to x includes for each value d ∈ Dx:

minass−xcost(〈x, d〉, ass−x)

where ass−x is a possible combination of assignments to variables
involved in f not including x. The cost of an assignment a =
(〈x, d〉, ass−x) is:

f(a) +
∑

x′∈Xf ,x′ 6=x

cost(x′.d′)

where f(a) is the original cost in the constraint represented by f
for the assignment a, Xf is the set of variable-node neighbors of
function-node f , and cost(x′.d′) is the cost that was received in
the message sent from variable-node x′ in iteration i − 1, for the
value d′ that is assigned to x′ in a.

While the selection of value assignments to variables is not used
to generate the messages in the Max-sum algorithm, in every iter-
ation an agent can select its value assignment and the assignment
selected by agents at the end of the run is the reported solution.
Each variable-node selects the value assignment that received the
lowest sum of costs included in the messages that were received
most recently from its neighboring function-nodes. Formally, for
variable x we select the value d̂ ∈ Dx as follows:

d̂ = mind∈Dx

∑
f∈Fx

cost(f.d)

Notice that the same information used by the variable-node to select
the content of the messages it sends is used for selecting its value
assignment.

5. MAX-SUM ON AN ALTERNATING DAG
(MAX-SUM_AD)

In order to guarantee the convergence of Max-sum we need to
avoid the pathology described in [4], caused by cycles in the fac-
tor graph. To this end we select an order on all nodes in the factor
graph. For example, we can order nodes according to the indices of
agents performing their role in the algorithm. A node whose role is
performed by agent Ai is ordered before a node whose role is per-
formed by agent Aj if i < j. For variable and function nodes held
by the same agent, we can determine (without loss of generality)
that a variable-node is ordered before the function-nodes and break
ties among function-nodes using their indices.

Once we define an order on all nodes in the factor graph, each
agent (node) can divide its set of neighbors to two disjoint subsets,
the subset of neighbors in the factor graph that come before it in the
order, from whom it receives messages, and the subset of neighbors
that are ordered after it, to whom it sends messages.

Next, we perform the algorithm for l iterations allowing nodes
to send messages only to nodes which are “after" them according
to this order (in the case of ordering by indices, send messages
only to agents with larger indices than their own). Notice that all
agents perform concurrently in each iteration of the algorithm, thus
the order does not affect the agents’ actions, only the direction of
messages.

Max-sum_AD (node n)
1. currebt_order ← select an order on all nodes in the factor graph
2. Nn ← all of n’s neighboring nodes
3. while (no termination condition is met)
4. Nprev_n ← {n̂ ∈ Nn :

n̂ is before n in current_order}
5. Nfollow_n ← Nn \Nprev_n

6. for(k iterations)
7. collect messages from Nprev_n

8. for each n′ ∈ Nfollow_n

9. if (n is a variable-node)
10. produce message mn′ using

messages from Nn \ {n′}
11. if (n is a function-node)
12. produce message mn′ using constraint

and messages received from Nn \ {n′}
13. send mn′ to n′

14. current_order ← reverse(current_order)

Figure 3: Max-sum_AD.

After l iterations in the selected direction, the order is reversed
and messages are sent for the next l iterations only in the opposite
direction (i.e., to agents with lower indices). In each direction the
Max-sum algorithm is performed as described in Section 4 with the
exception of the restriction on the messages that are sent. Agents
always consider the last message received from all their neighbors
(regardless of the direction) when producing a new message. For
example, when variable-node x produces a message it would send
to function-node f , all of the most recent messages x received from
its neighboring functions f ′ ∈ Fx, f ′ 6= f are considered. Notice
that the most recent message from a neighbor that is before x ac-
cording to the current order was received following the previous
iteration, while from a neighboring function-node that is after x ac-
cording to the current order, the last message was received before
the last alternation of directions.

The resulting algorithm Max-sum_AD has messages sent ac-
cording to a directed acyclic graph (DAG), which is determined
by the current order. Each time the order changes, we get a DAG
on which messages on each edge of the graph are sent only in a
single direction.

Figure 3 presents a sketch of the Max-sum_AD algorithm. It
differs from standard Max-sum in the selection of directions and the
disjoint sets of neighbors from whom the nodes receive messages
and to whom they send messages (lines 1, 4, 5 and 14).
Next we prove the convergence of Max-sum_AD when performed
in a single direction.

LEMMA 1. Given o, an order on the nodes of the factor graph
FG, for any node n ∈ FG, if l is the length of the longest path
in FG according to o that reaches n, then after l iterations, the
content of the messages n receives does not change as long as mes-
sages are sent according to o.

Proof: We prove by a complete induction on the length of the
longest path to node n according to o. A node n′, which is first
according to o, i.e., the length of the longest path that reaches it
according to o is equal to zero, does not receive messages from any
other node. We assume the correctness of the Lemma for any node
n′ that the longest path that reaches it is l′ < l. We now check
the correctness of the Lemma for node n, where the longest path
reaching it is equal to l. The longest path to all of the neighbors
of node n that are ordered before it according to o must be shorter
than l. Thus, according to the assumption, after l − 1 iterations of



Figure 4: Example of the need to break ties

the algorithm the messages they receive will not change. Since the
content of messages produced by agents in the Max-sum algorithm
is dependent on the content of messages they received last, then
from the l′th iteration and on these neighbors of node n will be
sending identical messages to n. Thus, the Lemma holds for node
n as well. �.

The first immediate corollary from Lemma 1 is that after a num-
ber of iterations equal to the diameter of the factor graph FG, all
the nodes in FG will continue to receive the same messages until
o is reversed. Moreover, since agents use the last messages they
have received in order to select their value assignments, the value
assignments will not change either. Thus, the algorithm converges
to a single complete assignment.

The decision to escape this fixed assignment by changing direc-
tion is an algorithmic decision. If this decision is made, the algo-
rithm will converge again after a linear number of iterations in the
reversed order, but not necessarily to a better solution. We demon-
strate in our empirical study that one version of Max-sum_AD mono-
tonically improves the states it converges to after each direction
change and that another does not.

Notice, that after the first alternation of direction, although we
send messages only in a single direction, the data passed in the
last messages that were received before the change in direction is
used for the calculation of the content of the following messages
to be sent and for value assignment selections. Thus, after the first
change of direction, all the constraints of the problem are consid-
ered.

6. MAX-SUM_AD WITH VALUE PROPAGA-
TION

In this section we introduce value propagation into the Max-
sum_AD algorithm. We start by presenting the motivation for this
addition and then go into the algorithmic details.

6.1 Motivation for Value Propagation
In order to understand the need for value propagation in Max-

sum in general and specifically in Max-sum_AD we identify two
phenomena that deteriorate the ability of agents to identify the value
assignments that will minimize the cost of the solution.

We illustrate the first phenomenon in the following example:
The factor graph depicted in Figure 4 presents the standard need
for value propagation as identified in previous studies on complete
GDL algorithms [12, 18]. Each of the function-nodes computes for
each of the values of its neighboring variable-nodes the minimal
cost that it can offer by assigning a value to its other variable-node
neighbor. In this specific symmetric example, each function identi-
fies that for each value a, when assigning b to the other variable the
cost is 0. Similarly for each value b, when assigning a to the other
variable the cost is 0 as well. Thus, all messages sent by function-
nodes to variable-nodes contain zeros for all values. As a result,

Figure 5: Example of the need for value propagation beyond
ties
messages from variable-nodes to function-nodes contain zero costs
as well. In other words, in this specific problem, no information is
propagated to the agents throughout the algorithm run. At the end
of the run the variable-nodes are indifferent regarding their possible
value assignments and if they all select value a the solution cost is
3. It is easy to see that there exists a solution in which one variable
is assigned a and the other two assign b with a cost of 1.

While for complete algorithms ties are the only motivation for
value propagation, the following example demonstrates that this is
not the case in an incomplete Max-sum algorithm such as Max-
sum_AD. Consider the factor graph depicted in Figure 5. Assume
the order is according to the agents’ indices. Function f1 will send
to x3 costs 2 and 1 for its values a and b, respectively. Similarly,
f2 will send to x2 costs 1 and 2 for its values a and b, respectively.
Thus, the algorithm will converge to a solution that includes as-
signments 〈x2, a〉 and 〈x3, b〉. However, the selection of a for x2
was under the assumption that value a is selected for x1 while the
selection of b for x3 is under the assumption that x1 is assigned
b. Since only one of them can be assigned to x1 the contribution
of functions f1 and f2 to the solution cost is 6. If we would have
selected first the assignment of x1 and then the assignments for x2
and x3 accordingly, we could have reached a solution in which the
contribution of those two functions was 3 (e.g., 〈x1, a〉,〈x2, a〉 and
〈x3, a〉). This inconsistency in the use of the information prop-
agated by Max-sum_AD does not affect only the assignment se-
lection. The information passed by messages is used to generate
additional messages and therefore inconsistent information is prop-
agated further to other agents in the distributed system. 3

6.2 Introducing value propagation into Max-
sum_AD

We overcome the pathologies we identified above by using a
value propagation procedure similar to the method used in com-
plete GDL algorithms for avoiding ties [12, 14, 18]. On iterations
in which we perform value propagation we require that variable-
nodes include in their messages to function-nodes their selected
value assignments. Function-nodes select the best cost considering
only the value assignments they received from their variable-node
neighbors, which are ordered before them. Formally, in iterations in
which we perform value propagation the message sent by function-
node f to variable x includes as before for each d ∈ Dx:

minass−xcost(〈x, d〉, ass−x)

However, for a variable-node from which a value assignment was
received in its latest message, the term minass−x considers only

3We demonstrate the phenomenon for Max-sum_AD since it is eas-
ier to follow. In standard Max-sum, such inconsistent information
concerning the conflicting assignment of some node is propagated
in all directions and through cycles, fed back to the node itself.



Figure 6: Solution cost of the Max-sum versions when solving
problems with low density (p1 = 0.2)

this value assignment. Specifically, if a value assignment was re-
ceived from each of the neighboring variable-nodes thenminass−x

is a single partial assignment.
In order to demonstrate the value propagation procedure, con-

sider once again the factor graph depicted in Figure 5. Variable-
node x1 selects value a and includes this selection in the messages
to function-nodes f1 and f2. Then f1 calculates for the values of x3
the costs 2 and 5 for values a and b, respectively. Similarly, func-
tion f2 calculates costs 1 and 5 to the values a and b of variable-
node x2.

The timing for starting value propagation has a major effect on
its success. If we would start value propagation from the first iter-
ation, the sum of costs that indicate to agents which value assign-
ments are better will not be propagated through the system. Thus,
the selection of the first value assignment will be done in complete
entropy and the following assignments can lead to an assignment
with low quality. Instead, we start the value propagation procedure
only after the algorithm converged in both directions (after the sec-
ond order alternation). At this time agents have considered all the
problem’s constraints and have enough knowledge to make a qual-
ity selection of value assignments. Our experimental study also
indicates that the best assignment found by Max-sum_AD without
value propagation is after its second convergence (just before the
second change of direction).

7. EXPERIMENTAL EVALUATION
In this section we present experiments that demonstrate the ad-

vantage of the proposed Max-sum_AD algorithm when combined
with value propagation, over existing versions of the Max-sum al-
gorithm.

The first set of experiments was performed on minimization ran-
dom DCOPs in which each agent holds a single variable. Each
variable had ten values in its domain. The network of constraints in
each of the experiments was generated randomly by selecting the
probability p1 for a constraint among any pair of agents/variables.
The cost of any pair of assignments of values to a constrained pair
of variables was selected uniformly between 1 and 10. Such uni-
form random DCOPs with constraint networks of n variables, k
values in each domain, a constraint density of p1 and a bounded
range of costs/utilities are commonly used in experimental eval-
uations of centralized and distributed algorithms for solving con-
straint optimization problems [8, 5].

The experimental setup included problems generated with 50
agents each. The factor graph generated for all versions of the
Max-sum algorithm had agents performing the role of the variable-
nodes representing their own variables, and for each constraint, we
had the agent with the smaller index involved in it perform the role

Figure 7: Solution cost when solving problems with high den-
sity (p1 = 0.6)

of the corresponding function-node.
We compared the Max-sum_AD algorithm with and without value

propagation with the Max-sum and Bounded Max-sum algorithms
[14]. We generated 50 random problems and ran the algorithms
for 1400 iterations on each of them. The results we present are
an average of those 50 runs. To make sure that the Max-sum_AD
algorithms converge, we changed directions every 100 iterations,
which is the longest possible path in the DAG (in case the graph
has a chain structure). For each of the algorithms we present the
sum of the costs of constraints included in the assignment it would
have selected in each iteration.

Figure 6 presents the costs of the solutions found by the four al-
gorithms when solving problems of relatively low density (p1 =
0.2). It is most apparent that the Max-sum algorithm does not con-
verge and it traverses complete assignments with high costs. The
results of Bounded Max-sum are slightly better than the results of
standard Max-sum. Max-sum_AD converges to a solution of lower
cost even before the first direction change (in the first 100 iter-
ations) and to a much better solution after the direction change.
However, after the following direction changes it converges to so-
lutions with higher costs. The solutions with the lowest costs are
found by Max-sum_AD with value propagation. Since we begin
the value propagation only after the second direction change, in the
first 200 iterations it is identical to Max-sum_AD. However, after
the second direction change it converges to a solution with a much
smaller cost. It is interesting to mention that after the following
direction changes it continues to improve until it finally converges
to the solution with the lowest cost after the fifth direction change.

Figure 7 presents similar results for problems with higher con-
straint density – p1 = 0.6. Here, it is notable that Bounded Max-
sum finds solutions with higher costs than the standard Max-sum
algorithm. This is reasonable since the more dense the problem
is, the more edges are removed from the graph by Bounded Max-
sum in order to produce the tree structured factor graph or, in other
words, more constraints are ignored when producing the solution.
The final difference in cost between the two versions of the Max-
sum_AD algorithm seems similar to the results obtained for low
density problems. However, here on dense problems, most of the
reduction in cost by Max-sum_AD_VP was made after the second
change of direction when the value propagation phase began. In
addition, it is notable that the value propagation version of Max-
sum_AD keeps improving even after 800 iterations (7 direction
changes).

In our second set of experiments we present the relation be-
tween the costs of the solutions found by the different versions of
the Max-sum algorithm and the optimal solution. Figures 8 and 9
present results of the four Max-sum versions solving smaller ran-
dom problems on which we could run an exhaustive algorithm and



Figure 8: Solution cost when solving small problems with low
density (p1 = 0.3)

find the optimal solution. The problems included 10 agents, each
holding a single variable with 5 values in its domain. Once again,
we generated sparse and dense problems. However, the density pa-
rameters used were p1 = 0.3 and p1 = 0.7. This is because a lower
density parameter for such small problems may generate problems
with multiple components. On these small problems we could guar-
antee convergence by changing directions in Max-sum_AD every
20 iterations. Therefore, we ran the algorithms for a smaller num-
ber of iterations (500). The results presented include the factor
from the optimal solution obtained by dividing the average cost of
the assignments found by the algorithms in each iteration by the
cost of the optimal solution.

It is interesting to observe that for both density parameters Max-
sum_AD with value propagation found a solution with an average
cost very close to the average optimal cost (1.12 factor for the
sparse problems and 1.07 for the dense problems). It is also no-
table that Bounded Max-sum finds solutions with low quality for
these problems (e.g., a factor larger than 2.5 of the average opti-
mal cost for the dense problems). We assume this is caused by
the smaller domains in these problems, which result in problems
in which the constraints have larger differences among them. Thus,
ignoring some of the constraints as done by Bounded Max-sum can
have a larger effect on the result. It is interesting to notice the phe-
nomenon that applies both to standard Max-sum and Max-sum_AD
without value propagation. They both produce better results in the
beginning of the run (i.e., in the early iterations of the algorithm)
and then their performance deteriorates. This phenomenon is more
apparent when solving low density problems. It is clear that the de-
terioration that these algorithms exhibit is prevented by value prop-
agation. Thus, we assume that this deterioration is related to the
propagation of inconsistent costs through the distributed system as
we described in Section 6.1.

In the last set of experiments we generated graph coloring prob-
lems that include many ties. The problems we used included 50
agents, each holding a single variable and 3 colors in the domain
of each variable. The density parameter was p1 = 0.05, i.e., each
agent had 2.5 neighbors on average. The problems are standard
graph coloring problems, i.e., neighbors with identical colors in-
duce a cost of 1 while for neighbors with different colors the cost is
zero. The results presented in Figure 10 validate the observation we
presented in Section 6.1 of Max-sum’s weakness in the presence of
ties. Both Max-sum and Max-sum_AD without value propagation
are stuck with their initial assignment since no information is prop-
agated through the system. On the other hand, Bounded Max-sum
and Max-sum_AD_VP both include value propagation; therefore
they are able to break the ties and produce high quality solutions.
Max-sum_AD with VP still finds a solution with a smaller cost than
Bounded Max-sum.

Figure 9: Solution cost when solving small problems with high
density (p1 = 0.7)

Figure 10: Solution cost when solving graph coloring problems

8. BOUNDED APPROXIMATION IN MAX-
SUM_AD

While incomplete algorithms are not guaranteed to find the opti-
mal solution, some of the recent studies on incomplete methods for
DCOPs have offered quality guarantees and bounds on the distance
of the produced solution from the optimal solution (e.g., [11, 14]).
Specifically, Bounded_Max-sum [14] exploits the ability of Max-
sum to find an optimal solution on a tree structured graph, and pro-
duces a bound from the optimal solution by reducing the problem
to such a graph and accounting for the costs of the removed edges.
This approach can be applied in Max-sum_AD as well. Using the
messages of the Max-sum_AD algorithm we can dynamically gen-
erate a spanning tree of the factor graph and then run the algorithm
on this tree in both directions to obtain the optimal solution.

In order to generate a spanning tree of the factor graph we need
to identify cycles in the factor graph. To this end, we can carry
the path (list of nodes) in a single direction on the algorithm’s
messages. When node n receives two messages in a single di-
rection from two different neighbors that indicate that a node n′

contributed to the costs calculation of both messages, it detects a
cycle. By removing one of the edges through which it received
these messages the agent can eliminate the cycle. If all cycles are
eliminated, the result will be a spanning tree that was found in lin-
ear time. Running Max-sum_AD in both directions on the gener-
ated tree and then using value propagation in an additional iteration
would give us the optimal assignment for this tree structured graph.
Accounting for removed edges as in [14] would result in a bounded
approximation.

We note that the method described above is naive in its selection
of removed edges and therefore is expected to give worse bounds
than the bounds found by [14]. We leave for future work the in-



vestigation of the information that can be accumulated in the alter-
nating process of Max-sum_AD that can result in producing tighter
bounds.

9. CONCLUSION
The Max-sum algorithm offers an innovative approach for solv-

ing DCOPs. Unfortunately, when problems include cycles of vari-
ous sizes in the factor graph, the algorithm does not converge and
the states it visits are of low quality.

In this paper we proposed a new version of the Max-sum algo-
rithm, Max-sum_AD, which guarantees convergence. Max-sum_AD
uses an alternating DAG to avoid cycles. We proved that when the
algorithm is performed in a single direction, it converges after a
linear number of iterations. After performing a linear number of
iterations in each direction the algorithm converges to a high qual-
ity solution after considering all of the problem’s constraints. If we
keep alternating directions the algorithm converges to states that
are not necessarily monotonically improving. In fact, our empirical
results reveal that after the second direction change, the algorithm
explores states of lower quality.

We further identify a possible reason for this behavior of the al-
gorithm. We demonstrate that costs calculated by the algorithm
propagated and used for selecting value assignments by agents are
often considering different value assignment for the same variable
and thus are inconsistent. In order to overcome this shortcoming
of the algorithm we propose the use value propagation. To vali-
date that we propagate values with high quality we begin the value
propagation phase after the algorithm has converged for the second
time and considered all the problem’s constraints.

Our empirical study shows the advantage of the combination of
Max-sum_AD with value propagation over previous versions of
the Max-sum algorithm. Value propagation allows the algorithm
to monotonically improve the solutions it finds in each direction
until it converges to a solution with much higher quality than the
other version of Max-sum find. On small problems for which we
were able to find the optimal solution using a complete algorithm,
Max-sum_AD_VP found solutions that approximate the optimal
solution by a factor of roughly 1.1 on average.

Acknowledgment: We thank Arnon Netzer and Or Peri for pro-
ducing the results of the complete algorithm and for their advice on
how to improve the paper.

10. REFERENCES
[1] S. M. Aji and R. J. McEliece. The generalized distributive

law. IEEE Transactions on Information Theory,
46(2):325–343, 2000.

[2] I. Brito, A. Meisels, P. Meseguer, and R. Zivan. Distributed
constraint satisfaction with partially known constraints.
Constraints, 14(2):199–234, 2009.

[3] I. Brito and P. Meseguer. Improving dpop with function
filtering. In AAMAS, pages 141–148, 2010.

[4] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings.
Decentralised coordination of low-power embedded devices
using the max-sum algorithm. In Proc. 7th International
Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS-08), pages 639–646, 2008.

[5] A. Gershman, A. Meisels, and R. Zivan. Asynchronous
forward bounding. J. of Artificial Intelligence Research,
34:25–46, 2009.

[6] C. Kiekintveld, Z. Yin, A. Kumar, and M. Tambe.
Asynchronous algorithms for approximate distributed

constraint optimization with quality bounds. In AAMAS,
pages 133–140, 2010.

[7] F. R. Kschischang and B. J. F. andH. A. Loeliger. Factor
graphs and the sum-product algorithm. IEEE
TRANSACTIONS ON INFORMATION THEORY,
47:2:181–208, Febuary 2001.

[8] J. Larrosa and T. Schiex. Solving weighted csp by
maintaining arc consistency. Artificial Intelligence,
159:1–26, 2004.

[9] R. T. Maheswaran, J. P. Pearce, and M. Tambe. Distributed
algorithms for dcop: A graphical-game-based approach. In
Proc. Parallel and Distributed Computing Systems PDCS),
pages 432–439, September 2004.

[10] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt:
asynchronous distributed constraints optimizationwith
quality guarantees. Artificial Intelligence, 161:1-2:149–180,
January 2005.

[11] J. P. Pearce and M. Tambe. Quality guarantees on k-optimal
solutions for distributed constraint optimization problems. In
IJCAI, Hyderabad, India, January 2007.

[12] A. Petcu and B. Faltings. A scalable method for multiagent
constraint optimization. In IJCAI, pages 266–271, 2005.

[13] S. D. Ramchurn, A. Farinelli, K. S. Macarthur, and N. R.
Jennings. Decentralized coordination in robocup rescue.
Comput. J., 53(9):1447–1461, 2010.

[14] A. Rogers, A. Farinelli, R. Stranders, and N. R. Jennings.
Bounded approximate decentralised coordination via the
max-sum algorithm. Artif. Intell., 175(2):730–759, 2011.

[15] R. Stranders, A. Farinelli, A. Rogers, and N. R. Jennings.
Decentralised coordination of continuously valued control
parameters using the max-sum algorithm. In AAMAS (1),
pages 601–608, 2009.

[16] M. E. Taylor, M. Jain, Y. Jin, M. Yokoo, and M. Tambe.
When should there be a "me" in "team"?: distributed
multi-agent optimization under uncertainty. In Proc. of the
9th conference on Autonomous Agents and Multi Agent
Systems (AAMAS 2010), pages 109–116, May 2010.

[17] W. T. L. Teacy, A. Farinelli, N. J. Grabham, P. Padhy,
A. Rogers, and N. R. Jennings. Max-sum decentralised
coordination for sensor systems. In AAMAS ’08: Proceedings
of the 7th international joint conference on Autonomous
agents and multiagent systems, pages 1697–1698, 2008.

[18] M. Vinyals, J. A. Rodríguez-Aguilar, and J. Cerquides.
Constructing a unifying theory of dynamic programming
dcop algorithms via the generalized distributive law.
Autonomous Agents and Multi-Agent Systems,
22(3):439–464, 2011.

[19] M. Vinyals, E. Shieh, J. Cerquides, J. A. Rodriguez-Aguilar,
Z. Yin, M. Tambe, and E. Bowring. Quality guarantees for
region optimal dcop algorithms. In Proc. of 10th Int. Conf.
on Autonomous Agentsand Multiagent Systems (AAMAS
2011), pages 133–140, Tapei, 2011.

[20] W. Yeoh, A. Felner, and S. Koenig. Bnb-adopt: An
asynchronous branch-and-bound dcop algorithm. J. Artif.
Intell. Res. (JAIR), 38:85–133, 2010.

[21] W. Zhang, Z. Xing, G. Wang, and L. Wittenburg. Distributed
stochastic search and distributed breakout: properties,
comparishon and applications to constraints optimization
problems in sensor networks. Artificial Intelligence,
161:1-2:55–88, January 2005.


