
Improving BnB-ADOPT+-AC

Patricia Gutierrez Pedro Meseguer
IIIA - CSIC

Universitat Autonoma de Barcelona
08193 Bellaterra, Spain

{patricia|pedro}@iiia.csic.es

ABSTRACT
Several multiagent tasks can be formulated and solved as
DCOPs. BnB-ADOPT+-AC is one of the most efficient al-
gorithms for optimal DCOP solving. It is based on BnB-
ADOPT, removing redundant messages and maintaining soft
arc consistency during search. In this paper, we present sev-
eral improvements for this algorithm, namely (i) a better
implementation, (ii) processing exactly simultaneous dele-
tions, and (iii) searching on arc consistent cost functions.
We present empirical results showing the benefits of these
improvements on several benchmarks.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence

General Terms
Algorithms

Keywords
distributed constraint optimization, soft arc consistency

1. INTRODUCTION
Distributed Constraint Optimization Problems (DCOPs)

provide a useful framework for modeling many multiagent
coordination tasks. Some of them are meeting scheduling
[9], sensor network [6], traffic control [7], coalition structure
generation [15], among others. DCOPs involve a number
of distributed agents handling variables with finite domains
and cost functions over positive integers. Agents exchange
messages to coordinate and find a complete variable assign-
ment with minimal cost.

Several distributed search algorithms have been proposed
to optimally solve DCOPs: ADOPT [13], DPOP [14], NCBB
[2], OptAPO [10], among others. In this paper we consider
BnB-ADOPT [16], which uses depth-first branch-and-bound
search. In particular, we work on the BnB-ADOPT+-AC
version [4], which combines BnB-ADOPT+ with soft arc
consistency (AC) in DCOP resolution. Soft arc consistency
allows to calculate lower bounds that are useful to identify

Appears in: Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
June, 4–8, 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

sub-optimal values, when the individual cost of a value sur-
passes a suitable upper bound. In BnB-ADOPT+-AC sub-
optimal values are removed dynamically during search, with
two consequences. First, the search space of the problem be-
comes smaller, so its traversal can be done more efficiently.
Secondly, as result of these deletions more informed lower
bounds might appear, leading to further deletions. Although
this process requires some extra computation and informa-
tion exchange over the version not including AC, its overall
effect is very beneficial for the global performance, leading
to a substantial decrement in the amount of communication
and computation required for optimal DCOP solving [4].

In this paper we present several improvements for BnB-
ADOPT+-AC, namely (i) a better implementation (ii) search-
ing on arc consistent cost functions and (iii) processing ex-
actly simultaneous deletions. We present an empirical inves-
tigation on two benchmarks, first comparing BnB-ADOPT+

with the DP2 heuristic [1], with AC and with the combina-
tion AC-DP2. Interestingly, results show that combining AC
with DP2 (something theoretically possible) produces better
results than any of them in isolation. Second, the proposed
modifications are empirically evaluated. Their combination
always obtains the best results in both communication and
computation for all problems tested. For some cases, savings
reach up to one order of magnitude.

The paper is structured as follows. In Section 2 we sum-
marize some concepts needed in the rest of the paper. In Sec-
tion 3 we present a better implementation of BnB-ADOPT+-
AC which substancially reduces computation. In Section 4
we describe the issue of simultaneous deletions, providing
solutions involving extra messages. In Section 5 we explain
preprocess and search process using AC cost functions. We
experimentally evaluate these points in Section 6. Finally,
we conclude the paper in Section 7.

2. PRELIMINARIES

2.1 DCOP
A Distributed Constraint Optimization Problem (DCOP)

is defined by 〈X ,D, C,A,α〉, where X = {x1, . . . , xn} is a set
of variables; D = {D1, . . . , Dn} is the set of finite domains
of X , such that x1 takes values in D1,...,xn takes values in
Dn; C is a set of cost functions used to evaluate the costs of
value assignments; A = {a1, . . . , ap} is a set of agents and
α : X → A maps each variable to one agent. We use binary
Cij : Di × Dj 7→ N ∪ {0,∞} and unary Ci : Di 7→ N ∪
{0,∞} cost functions. The cost of a complete assignment,
in which every variable has assigned a value, is the sum

of all binary and unary cost functions evaluated on those
values. We make the common assumption that one agent
handles only one variable, and thus we use the terms variable
and agent interchangeably. Agents communicate through
messages, which are never lost and are delivered in the order
that they were sent. Message delay is random but finite.

A DFS pseudo-tree is a graph structure used to represent
a DCOP instance, where nodes in the graph correspond to
variables and edges connect pairs of variables appearing in
the same binary cost function. There is a subset of edges
called tree edges that form a rooted tree and are chosen fol-
lowing a depth-first (DFS) traversal of the graph. All other
remaining edges are called backedges. Tree edges connect
parent-child nodes, while backedges connect a node with its
pseudo-parents and pseudo-children. Two variables sharing
cost functions are in the same branch of the DFS tree. Sev-
eral distributed algorithms exploit a pseudo-tree arrange-
ment of their variables [13, 16], which allow agents posi-
tioned in different branches of the DFS to perform search in
parallel.

2.2 BnB-ADOPT
BnB-ADOPT [16] is a distributed search algorithm that

optimally solves DCOP. It is a depth-first branch-and-bound
version of ADOPT [13] showing better performance.

Agents in BnB-ADOPT are first arranged in a DFS pseudo-
tree, so they know their parent, pseudoparents, children and
pseudo-children. Agents i and j sharing cost function Cij
maintain a local copy of the cost function. Every agent xi
maintain a context which contains its knowledge about the
current value assignments of its ancestors. The context is
updated through message exchange. For every domain value
d and the current context, xi maintains a lower and upper
bound LB(d) and UB(d), and the bounds LB and UB, cal-
culated in the following way:

δ(d) =
X

(xj ,dj)∈context
Cij(d, dj)

LB(d) = δ(d) +
X

xc∈children
lbc(d) LB = min

d∈Di
{LB(d)}

UB(d) = δ(d) +
X

xc∈children
ubc(d) UB = min

d∈Di
{UB(d)}

where lbc(d) and ubc(d) store the LB and UB values of
children xc for domain value d.

The goal of every agent is to explore and ultimately choose
the value that minimizes LB. For pruning, agents store a
threshold TH, which is an estimated upper bound calculated
with the cost of the best solution found so far. The use of
TH allows agents to change value more efficiently.

Some communication is needed to calculate the global cost
of agents assignments and coordinate search towards the op-
timal solution. Three types of messages are used: VALUE,
COST, and TERMINATE, with the following meaning:

• VALUE(i; j; val; th): agent i informs child or pseu-
dochild j that it has taken value val with threshold
th;

• COST(k; j; context; lb;ub): agent k informs parent j
that with context its bounds are lb and ub;

• TERMINATE(i; j): agent i informs child j that i ter-
minates.

Each agent executes the following loop: it reads and pro-
cesses all incoming messages, decides about its value assign-
ment and sends a VALUE message to each child or pseu-
dochild and a COST message to its parent.

BnB-ADOPT+ is a version of BnB-ADOPT which re-
moves most of the redundant messages largely improving
its efficiency, specially in communication. See [5] for details.

2.3 Soft Arc Consistency
Search can be improved by enforcing soft arc consistency,

as a result some sub-optimal values can be identified and
removed, making the search space smaller and therefore,
speeding up the search process. Let (i, a) be agent xi taking
value a, > the lowest unacceptable cost and Cφ a zero-ary
cost function that represents a lower bound of any complete
assignment, we consider soft local consistencies defined in
[8], as follows.

• Node Consistency* : (i, a) is node consistent* (NC∗) if
Cφ + Ci(a) < >; xi is NC∗ if all its values are NC∗

and there is a ∈ Di s.t. Ci(a) = 0; a problem is NC∗

if every variable is NC∗.

• Arc consistency* : (i, a) is arc consistency (AC) wrt.
cost function Cij if there is b ∈ Dj s.t. Cij(a, b) = 0; b
is a support of a; xi is AC if all its values are AC wrt.
every binary cost function involving xi; a problem is
AC∗ if every variable is AC and NC∗.

AC∗ can be reached modifying the original problem to ob-
tain supports to NC∗ values and removing not NC∗ values.
Supports are obtained on every value by (1) projecting the
minimum cost from its binary cost functions to its unary
costs, and (2) projecting the minimum unary cost into Cφ.
Projection (1) requires the decrement of a minimum cost
λ from the binary cost functions, and the increment of λ
in the unary costs. Projection (2) requires the decrement
of a minimum cost λ from the unary cost functions, and
the increment of λ to Cφ. Every time a not NC* value is
removed on agent xi the AC* property must be rechecked
on neighboring agents. The systematic application of these
operations maintains the optimum in the resulting prob-
lem. These problems –the original and the AC* modified
problem– are refered as equivalent [8].

NC∗ has become standard in the soft local consistency
community, to the point that higher local consistencies using
it are named without asterisk [3]. Following this trend, in
the rest of the paper AC∗ is written AC.

2.4 BnB-ADOPT+-AC
In [4] this algorithm is called BnB-ADOPT+-AC*. Since,

nowadays AC* is written AC [3], we follow this terminology
and refer to this algorithm as BnB-ADOPT+-AC (without
asterisk).

BnB-ADOPT+-AC [4] is an algorithm that combines dis-
tributed branch-and-bound search with soft arc consistency.
Its search process is based on BnB-ADOPT+, maintaining
the same data and communication structure. The main
difference is that agents are able to detect and delete sub-
optimal values. A value can be found sub-optimal as result
of enforcing AC on a copy of the original cost functions.

The inclusion of AC in BnB-ADOPT+ have caused a num-
ber of modifications in the original algorithm, both in the
structure of the exchanged messages and in the computation
done. Regarding messages:

• COST messages include the variable subtreeContr that
aggregates the costs of unary projections to Cφ made
on every agent of the DFS subtree;

• VALUE messages include >, which is constantly re-
fined with the best solution found so far, and Cφ. Both
are calculated at the root agent of the DFS;

• a new DEL message is introduced to inform deletions
to neighbors; with message DEL(i; j; d), i informs neigh-
bor j that it has deleted value d. When received, neigh-
bors recheck the AC property on their values, which
may lead to further deletions.

Regarding memory, the domain of neighbors have to be
represented in each agent, so memory requirements increase
in O(nd). Regarding computation, values are tested for dele-
tion and cost functions are projected (binary into unary,
unary into Cφ). A value d is proved sub-optimal and can
be deleted unconditionally from the domain of xi if Ci(d) +
Cφ > >. Only the agent owner of a variable can delete val-
ues in its domain. AC enforcing is done in a preprocessing
step and also during search every time a value is deleted.

When performing projections in two constrained agents i
and j, changes on Cij should be done carefully since i and
j operate asynchronously and after a while they might end
up with different copies of Cij . In [4] authors explain how
to maintain a Legal Representation of Cost Functions. To
maintain a legal representation, i has to simulate the action
of j on its Cij copy, and vice versa. This can be done in the
following way. There is a pre-established ordering for pro-
jections. In preprocess, agents always project first on higher
agents and afterwards on lower agents (where higher/lower
is referred to the position of agents in the DFS tree). When
a deletion occurs in one agent, the agent projects binary
costs over neighbors and sends DEL messages to neighbors.
When a DEL message is received on a neighbor, the neigh-
bor projects binary costs over self . By this, it is assured
that the same cost is not counted twice when performing
projections which may lead to delete optimal values. For
details, see [4].

3. IMPROVING BNB-ADOPT+-AC IMPLE-
MENTATION

In BnB-ADOPT+-AC, agents check their domain every
time there is a potential opportunity for deletion. For ex-
ample, every time an agent processes a COST or a VALUE
message, it checks if some values can be deleted from its
domain. Since Cφ and > are informed in VALUE messages
and the contribution of every children to Cφ is informed
in COST messages, every time this information is updated
a new opportunity for value deletion might appear. Now,
we propose to check for deletions after the agent has com-
pletely processed the input queue. Such as it happens when
agents decide to change value, agents will first gather all
information from incoming messages before checking its do-
main. Also, instead of sending one DEL message for every
deleted value, we send a list of all deleted values in the same
DEL message. These modifications reduce computational
cost and assure that agents will send at most one DEL mes-
sage to each neighbour per cycle.

In BnB-ADOPT+-AC unary projections to Cφ are done
every time there is a possibility to increment the agents local

contribution to Cφ. This can happen when a value is deleted
or when AC is reinforced. Now, we propose to perform this
operation after the agent has completely processed the input
queue. We do this for the following reason. Every time there
is a unary projection, the unary costs of the agent are decre-
mented. In the centralized case, this decrement is quickly
compensated with an increment in the global Cφ, but in a
distributed setting this compensation is not immediate, it
takes some time. First the agent contribution must travel in
COST messages to the root agent, where is aggregated with
other contributions. Afterwards the aggregated Cφ is in-
formed in VALUE messages to lower neighbours. Since this
process might take several cycles, we delay the decrement
of unary costs on an agent until the next COST message is
sent.

Delaying checking for deletions and projections of unary
contributions to Cφ reduce considerably the computational
effort made by BnB-ADOPT+-AC, although in some cases
this causes some extra messages (since these operations are
not done as early as they could be). For empirical results
on this see Section 6.

4. SIMULTANEOUS DELETIONS
If deletions are non-simultaneous in BnB-ADOPT+-AC

[4](that is, if two deletions never occur at the same time on
neighboring agents), it is easy to see that projections are
always done in the same order on every agent, so cost func-
tions on both agents eventually remain equivalent. However,
in the case that deletions occur at the same time on neigh-
bouring agents, something different happens.

Consider the example in Figure 1. First row correspond to
actions taking place inside agent i and second row actions
taking place inside agent j. Every column show simulta-
neous operations, occurring at the same time on i and j.
Agents i and j only store the unary costs of their own do-
main. Black domain values and costs are the actual values
and costs stored in an agent. Gray domain values and costs
are what an agent believes of the neighbor agent. Lines rep-
resent binary costs Cij with cost one. Initially, Cφ = 0,
Ci(b) = 1, Cj(b) = 1 and the rest of unary costs are zero.

a
i

a
j

a
i

a
j

a
i

a
j
(1) (1)a

b
a
b

a
b

a
b

a
b

a
b

(1)

ti

(1)

(1) (1) (1)b bb
c

b
c

b b
cA

ge
n

() () ()

Deletion on i Projection i → j
i receives DEL from j

A

Projection j → i
i receives DEL from j

i j i j i j
a
i

a
j

a
i

a
j

(1) a
i

a
j

(1)

b b b b b b

tj

(1) (1) (1)

c c
P j ti j i

c

A
ge

nt

P j i i jDeletion on j Projection j → i
j receives DEL from i

A Projection i → j

Figure 1: Agents i and j, and the process of two si-
multaneous deletions. Possible values for each agent
are a, b, c, unary costs appear between parenthesis.
In black, what an agent knows of itself. In grey,
what an agent believes of the other agent. Lines in-
dicate pairs of values with cost 1, no lines indicate
cost 0.

On the first column, two simultaneous deletions take place.
On second column, both agents make a projection over the
neighbor. When projecting over the neighbor, binary costs
are reduced from Cij and the agent assumes that an incre-
ment in the unary costs of neighbor will eventually occur
when the DEL message arrives to the neighbor. But notice
that, because these operations occur at the same time, the
order of resulting projections is opposite on agent i and j.
This would not be the case if one deletion would have pre-
ceded the other. Then both agents would have kept the same
ordering in projections (for example, a projection first from
i to j and after from j to i) and they would have obtained
Cφ = 1. Notice that in the example Cφ remains zero.

Both agents projected at the same time a binary cost of 1
to the unary cost of its neighbor, but this operation has not
actually taken place on the neighbor, so this cost has been
lost from the problem. Notice that costs are not counted
twice and no illegal deletions are produced, but we have
lost a cost of 1 from the problem, which diminish deletion
opportunities. In addition, on the last column the resulting
cost functions on i and j are not equivalent. 1

We can avoid this undesirable behavior assuring synchronous
deletions. It is impossible that two agents know they are per-
forming deletions at the same time, but it is possible that
they communicate beforehand and agree on the order to fol-
low. If one deletion always precedes the other, projections
on neighboring agents maintain the same order. This as-
sures that cost functions remain equivalent and no costs are
lost from the problem.

4.1 Synchronizing Deletions
To maintain synchronous deletions, two main changes must

be done in BnB-ADOPT+-AC:

• Two new messages are introduced to synchronize dele-
tions: SYNC1 and SYNC2

• Agents have a locked property. While an agent is locked
it is able to read and process messages, but it will not
change its value or send messages to neighbors, except
for synchronization messages SYNC1 and SYNC2. An
agent is locked because it is waiting to delete a value,
or because a deletion is occurring in one or several
neighbors. A locked agent changes to unlocked when
it is no longer locked with any of its neighbors.

On Figure 2 a pseudocode of the synchronous deletion
process for BnB-ADOPT+-AC is shown. The rest of the
algorithm is shown in Figure 3. The pseudocode is based
on the implementation proposed in [4]. Modifications are
described below.

Synchronizing deletion contains the following steps:

1. After completely processing the input queue, the back-
track method is invoked and the agent checks its do-
main looking for sub-optimal values [line 47].

1One may wonder if the approach of [4] is correct and com-
plete. The answer is yes because search is done using a copy
of the original cost functions which is only modified to reflect
value deletions. There is another copy of cost functions used
for AC enforcement, on which cost projections are done, but
this copy is not used for search. This is further elaborated
in section 5.

1 procedure CheckDomainForDeletions()
2 for each v ∈ Dself do
3 if Cself (v) + Cφ > > or (

P
ch∈children lb(ch, v) > >

4 and childrenContexts(ch, v) = {self}) then
5 valuesToDelete.add(v);
6 if valuesToDelete.size > 0 then
7 for each k ∈ neighbors(self) do
8 if ¬hasStopped(k) then
9 sendMsg:(DEL, self , k , valuesToDelete);
10 locked(k) = true;
11 UpdateLockStatus();

12 procedure ProcessDelete(msg)
13 if locked(msg.sender) and self < sender then
14 processPending(msg.sender) = msg;
15 else
16 Dsender ← Dsender − {msg.valuesToDelete};
17 BinaryProjection(self , sender);
18 sendMsg:(SYNC1 , self ,msg.sender);
19 if ¬hasStopped(msg.sender) then
20 locked(msg.sender) = true;
21 UpdateLockStatus();

22 procedure ProcessSYNC1(msg)
23 locked(msg.sender) = false;
24 UpdateLockStatus();
25 if ¬locked then
26 Dself ← Dself − valuesToDelete;
27 valuesToDelete← ∅
28 for each k ∈ neighbours do
29 BinaryProjection(k , self); sendMsg:(SYNC2 , self , k);
30 for each msg ∈ processPending do
31 ProcessDelete(msg);
32 processPending.remove(msg);

33 procedure ProcessSYNC2(msg)
34 locked(msg.sender) = false;
35 UpdateLockStatus();

36 procedure UpdateLockStatus()
37 locked = false;
38 for each k ∈ neigbors(self) do if locked(k) then locked = true;

39 procedure ProcessStop(msg)
40 if msg.sender == parent then receivedTerminate← true;
41 locked(msg.sender) = false;
42 UpdateLockStatus();
43 hasStopped(msg.seder) = true;

44 procedure Backtrack()
45 if locked then return;
46 UpdateLBUB();
47 CheckDomainForDeletions();
48 if locked then return;
49 if LB(value) ≥ min(TH,UB) then
50 value← argminv∈Dself {LB(v)};
51 UnaryProjectionOverCo();
52 if value has changed then
53 SendValueToLowerNeighbors();
54 else
55 SendValueToChildrenToUpdateTH();
56 if (receivedTerminate or self == root) and LB == UB and
57 LB(value) == UB(value) then
58 SendStopMessageToLowerNeighbors();
59 SendCostToParent();

Figure 2: Pseudocode for Syncronizing Deletions.

2. A value v is proved sub-optimal under certain condi-
tions [lines 3-4]: when its unary cost plus Cφ exceeds
> or when the sum of its lower bounds exceeds > and
this bounds were sent with a context that contains
only the self agent (the bounds do not depend on any
other agent, for more detail see [4]). When agent i re-
alizes that it can delete values from its domain, instead
of immediately erasing them, it marks them as pend-

60 procedure AC-Preprocess()
61 for each i ∈ neigbors(self) do
62 if i < self then
63 BinaryProjection(self , i);
64 BinaryProjection(i, self);
65 else
66 BinaryProjection(i, self);
67 BinaryProjection(self , i);
68 CheckDomainForDeletions();
69 UnaryProjectionOverCo();

70 procedure BinaryProjection(i, j)
71 for each a ∈ Di do
72 v ← argminb∈Dj

{Cij (a, b)};
73 α← Cij(a, v);
74 for each b ∈ Dj do
75 Cij(a, b)← Cij(a, b)− α;
76 if i = self then Ci(a)← Ci(a) + α;

77 procedure Start()
78 for each d ∈ Di , ch ∈ children(self) do
79 InitChild(ch, d);
80 InitSelf();
81 Backtrack();
82 loop forever
83 if (message queue is not empty) then
84 while (message queue is not empty) do
85 pop msg off message queue
84 Process(msg);
86 Backtrack();

87 procedure InitSelf()
88 value← argminv∈Dself {LB(v)};
89 TH =∞;

90 procedure InitChild(ch, d)
91 lb(ch, d) = 0;
92 ub(ch, d) =∞;

93 procedure ProcessVALUE(msg)
94 add (msg.sender,msg.value) to context
95 CheckContextWithChildren();
96 if (msg.sender == parent) then
97 TH = msg.threshold;
98 if Cφ < msg.Cφ then Cφ = msg.Cφ;
99 if > < msg.> then > = msg.>;

100procedure ProcessCOST(msg)
101 d← value of self in msg.context
102 PriorityMerge(context,msg.context);
103 CheckContextWithChildren();
104 if (context compatible with msg.context)
105 childrenContexts(msg.sender, d) = msg.context;
107 lb(msg.sender, d) = max{msg.lb, lb(msg.sender, d)};
108 ub(msg.sender, d) = min{msg.ub, ub(msg.sender, d)};
109 subtreeContr(msg.sender) = msg.subtreeContr;

110procedure CheckContextWithChildren()
111 for each d ∈ Di , ch ∈ children(self) do
112 if (childrenContexts(ch, d) incompatible with context) then
113 InitChild(ch, d);

Figure 3: Pseudocode for Preprocess and Process
Phase.

ing to delete and sends DEL messages to neighbours
k1, k2, ..ki . Afterwards, i is locked with neighbours
k1, k2, ..ki, so i can process incoming messages but it
can not change its value or send VALUE, COST or
DEL messages [lines 6-11].

3. When neighbor k receives a DEL message from i it
can be the case that k is already locked with i, this
means that simultaneous deletions are taking place.
In this case, the higher agent is the one that processes
the DEL message first, otherwise the message remains

as process pending [lines 13-14] and will be processed
afterwards when the agent is unlocked [lines 30-32]. To
process the DEL message, k deletes the values of i from
its domain copy of i, and performs a projection Pi→k
from i to k. After this, it sends a message SYNC1 to
i to inform that the deletion has been processed, and
change its status to locked with i [lines 16-21].

4. Only after receiving SYNC1 message from all its neigh-
bours i is unlocked. At this point, all neighbours k
have done a projection Pi→k from i to k. Then, i
deletes the values from its domain, makes projections
Pi→k on every neighbor k, and send a SYNC2 messages
to neighbours [lines 23-29].

5. When neighbour k receives a SYNC2 message from i,
it unlocks from i [lines 34-35].

6. A special case should be consider on termination. When
an agent terminates execution it informs its lower neigh-
bours [lines 40-43]. Once an agent has stopped, it
will no longer be considered in the synchronizing pro-
cess because it will not be able to respond, causing
other agents to freeze forever. Therefore, before send-
ing DEL messages to an agent or updating the locked
status with an agent, it is first checked that the agent
has not stopped execution [line 8, line 19].

5. SEARCH ON AC COST FUNCTIONS
One of the main goals of AC is to construct strong lower

bounds. Zero-ary cost Cφ is a lower bound of the optimal
solution. Unary cost Ci(v) +Cφ is a lower bound of domain
value v. Lower bounds are useful to identify sub-optimal
values when Ci(v) +Cφ > >. In addition, they can provide
a heuristics for value selection which may improve search
efficiency.

In [1] authors propose a preprocessing technique for ADOPT
algorithm, and show that by calculating lower bounds for ev-
ery domain value they are able to speed up ADOPT search.
In [11] authors transform the original problem into an equiv-
alent one projecting costs in a preprocessing step, then ADOPT
is executed in the equivalent problem with performance im-
provements. In these two approaches authors aggregate
lower bounds and use them during ADOPT search, but no
deletions are performed.

We think deletions are a key point when enforcing soft
arc consistency, since they lead to refinements in the lower
bounds and further deletions. We perform deletions dur-
ing AC preprocessing and also during search. Aiming at
maintaining such deletions, we would like to use the same
cost functions to perform search and to enforce AC: this
would provide us a good value ordering (because costs are
updated in the AC cost functions), combined with the dele-
tions caused by AC enforcing.

Unfortunately, using the same cost functions for search
and for AC enforcing is not an easy task. Consider the fol-
lowing case in Figure 4. Suppose an agent x has child ch,
descendant d and ancestor a. There is a back-edge between
a and d (Figure 4 (left)). Suppose a deletion takes place on
descendant d and some costs c are moved from Cda to Ca
(Figure 4 (center)). As result, an increment of costs occurs
in a and a decrement occurs in ch subtree (this is because
when calculating costs, agents aggregate their back-edges
costs). The problem arises when COST messages arrive to

a

x

ch

dd

a
Increment Ca

Projection P d→a
Decrement Cda COST

x

COST
ch

COST

dd
Deletion in d

a
Deletion in a

Projection P a→d
Decrement Cad COST

x
Cad

COST
ch

COST

d
Increment Cd

Figure 4: Performing projections during search pro-
cess. Left: a problem instance. Center: a deletion
takes place on a descendant. Right: a deletion takes
place on an ancestor

x or a. If these messages where sent before deletion, they will
contain in their LB, UB the cost c, but this cost is no longer
in ch subtree, so the message must be ignored. Furthermore,
the lb and ub tables in x and a should be reinitialized, be-
cause they may contain aggregated costs involving c, which
will be counted twice if a COST message is sent from this
agents without reinitialization.

Similarly, some problems occur if a deletion takes place on
ancestor a and a cost c is moved from Cad to Cd (Figure 4
(right)). There will be a cost increment in ch subtree and a
decrement in a. If tables lb and ub are not reinitialized in x
and a, the new COST messages from ch subtree containing
c might not be accepted because the algorithm assumes that
LB and UB improve monotonically, unless there is a context
change.

Therefore, after deletions lb and ub tables must be reini-
tialized on neighbouring agent and even on other agents
in the DFS branch. These reinitializations after deletions
might lead to a serious degradation in performance, which
makes deletion useless for efficiency gains.

To avoid reinitializations, we propose the following ap-
proach:

• Two copies of the cost functions are used: Csearch and
CAC . Initially, they are identical.

• In preprocess, projections are performed on CAC . Since
we proposed a mechanism to synchronize deletions, it
is assured that all projections are done in the same
order on every agent, so no costs are lost from the
problem and after preprocessing Csearch and CAC rep-
resent equivalent problems (one is AC, the other is not
neccesarily AC).

• After preprocess, we make Csearch = CAC

• During search, costs are calculated using Csearch ag-
gregating binary, unary and zero-ary costs. Any new
projection performed during search is done only on
CAC .

• During search, any value deletion computed using CAC
is applied on Csearch. Observe that this is a legal op-
eration.

Notice that syncronous deletions are needed during pre-
processing to search in AC cost functions.

6. EXPERIMENTAL RESULTS
We evaluate experimentally the changes proposed in BnB-

ADOPT+-AC on two benchmarks: random DCOPs and
structured Meeting Scheduling. Experiments are executed
on a discrete event simulator and performance is evaluated
in terms of the total number of messages exchanged among
agents (#Total Msgs) and the number of non concurrent
constraint checks (#NCCC) [12]. In every cycle of the sim-
ulator, agents read incoming messages from the message
queue, process them and send outgoing messages. The sim-
ulation stops when all agents have stopped and no messages
are exchanged.

Binary random DCOP are characterized by < n; d; p1 >
where n is the number of variables, d is the domain size and
p1 is the network connectivity. A random instance contains
p1 ∗ n(n − 1)/2 cost functions. We tested random DCOP
instances with: < n = 10; d = 10; p1 = 0.3, . . . , 0.8 >. Costs
are selected from an uniform cost distribution. To introduce
some variability among tuple costs, two types of binary cost
functions are used, small and large. Small cost functions
extract costs from the set {0, . . . , 10} while large ones extract
costs from the set {0, . . . , 1000}. The proportion of large
cost functions is 1/4 of the total number of cost functions.
Results appear in Table 1, averaged over 50 instances.

Meeting scheduling instances are obtained from the public
DCOP repository [17]. In this formulation, variable repre-
sent meetings, domain represent time sots assigned for a
meeting, and costs functions are set between meetings that
share participants. We present cases A (23 variables), B (26
variables), C (71 variables) and D (72 variables). Results
appear in Table 2, averaged over 30 instances.

We compare with several extensions of BnB-ADOPT. This
algorithm has proved to be clearly more efficient than ADOPT
and as efficient as NCBB for DCOP solving [16]. Compar-
ison with other complete algorithm such as DPOP or Op-
tAPO is truly difficult to measure –and scapes to the pur-
pose of this paper. DPOP uses a linear number of messages
but their size can be exponential, while BnB-ADOPT uses a
linear size and exponential number of messages. OptAPO is
a partially centralized algorithm while BnB-ADOPT is fully
decentralized.

For every case in Meeting Scheduling and every network
connectivity in random DCOPs we show results for:

1. First row: BnB-ADOPT+ including a preprocessing
step to calculate DP2 heuristic [1]. The preprocessing
requires a single pass of messages from leafs to the
root of the DFS tree calculating lower bounds for every
value to focus search. This version improves over the
basic BnB-ADOPT+.

2. Second row: BnB-ADOPT+-AC as described in [4].

3. Third row: BnB-ADOPT+-AC with the DP2 prepro-
cess.

4. Fourth row: BnB-ADOPT+-AC with DP2 preprocess
and the implementation improvements described in Sec-
tion 3.

5. Fifth row: BnB-ADOPT+-AC with DP2 preprocess,
implementation improvements described in Section 3,
synchronous deletions and searching on AC cost func-
tions as described in Sections 4 and 5.

p1 Algoritm #Total Msgs #NCCC
BnB-ADOPT+ with
DP2 5,237 57,233
AC 2,753 95,278
AC-DP2 1,455 55,837
AC-DP2-Opt 1,709 21,917

0.3 AC-DP2-Opt-Sync 1,145 14,900
DP2 74,412 991,071
AC 29,318 1,241,569
AC-DP2 21,292 929,218
AC-DP2-Opt 29,176 369,061

0.4 AC-DP2-Opt-Sync 12,711 151,028
DP2 114,615 2,041,320
AC 68,746 4,278,971
AC-DP2 48,168 3,719,577
AC-DP2-Opt 52,276 1,086,782

0.5 AC-DP2-Opt-Sync 13,492 152,007
DP2 393,487 6,290,061
AC 283,767 25,342,026
AC-DP2 148,158 12,629,504
AC-DP2-Opt 155,435 2,819,398

0.6 AC-DP2-Opt-Sync 44,037 766,606
DP2 1,128,513 23,430,101
AC 1,256,489 137,506,730
AC-DP2 734,539 76,132,133
AC-DP2-Opt 842,227 16,878,749

0.7 AC-DP2-Opt-Sync 173,850 3,080,989
DP2 1,207,525 28,551,056
AC 1,885,804 226,355,134
AC-DP2 782,946 90,405,429
AC-DP2-Opt 907,013 20,900,258

0.8 AC-DP2-Opt-Sync 217,847 4,382,452

Table 1: Experimental results on random DCOPs
(10 variables) averaged over 50 instances.

When using DP2, communication and computational ef-
fort (#Total Msgs, #NCCCs) of DP2 preprocessing are in-
cluded in the results. When searching on AC cost functions
(fifth row), it is necessary to execute first the AC preprocess
and afterwards the DP2 preprocess, so the bounds aggre-
gated by DP2 correspond to the AC cost functions that will
be used during search.

For random instances (Table 1), on small and medium
connectivities, less messages are needed enforcing simple AC
that using BnB-ADOPT+ with DP2 (first and second row),
on the other hand more NCCCs are needed since enforcing
AC requires more computational effort. When combining
BnB-ADOPT+-AC with DP2 (third row), we observe a con-
sistent decrement in messages and NCCCs. This confirms
empirically that these techniques aiming to different objec-
tives –the first to provide heuristic values during search, the
second to erase sub-optimal values– can be enhanced when
combined.

Optimizing the implementation of BnB-ADOPT+-AC -
(fourth row) combined with DP2 we obtain important reduc-
tions in NCCCs. We observe a moderate increment (10%-
20%) in the number of messages. This effect is due to the
slight delay in deletions and projections on Cφ (as mentioned
in Section 3). However the decrement in computational ef-
fort is so important that globally we consider the modifica-
tions introduced as an improvement.

p1 Algoritm #Total Msgs #NCCC
BnB-ADOPT+ with
DP2 59,529 310,984
AC 156,448 7,875,894
AC-DP2 45,830 1,176,493
AC-DP2-Opt 55,873 350,132

A AC-DP2-Opt-Sync 39,947 263,345
DP2 20,802 73,900
AC 82,234 2,601,983
AC-DP2 18,643 384,778
AC-DP2-Opt 19,172 94,092

B AC-DP2-Opt-Sync 6,859 41,999
DP2 43,916 129,500
AC 444,730 13,549,666
AC-DP2 38,051 584,284
AC-DP2-Opt 42,745 119,395

C AC-DP2-Opt-Sync 13,946 37,770
DP2 26,448 55,073
AC 304,214 6,157,253
AC-DP2 26,271 329,370
AC-DP2-Opt 29,155 70,428

D AC-DP2-Opt-Sync 17,712 53,405

Table 2: Experimental results on Meeting Schedul-
ing instances (23, 26, 71 and 72 variables) averaged
over 30 instances.

Including simultaneous deletions and searching in AC cost
functions (fifth row) shows clear benefits in the number of ex-
changed messages and NCCC. Savings are higher on medium
and higher connected problems, reaching up to one order of
magnitude in some cases. This makes sense because on high
connected problems, removing a sub-optimal value means
avoiding context changes and reinitializations in many con-
nected agents which are lower in the DFS tree.

In Meeting Scheduling problems (Table 2), we also observe
important benefits. In these problem a simple preprocess to
calculate DP2 heuristic is better than maintaining AC (first
and second row). Moreover, we noticed during experimen-
tation that the lower bound obtained in the root agent by
DP2 preprocessing is actually very close to the optimal cost.
This lead us to think that these instances, although contain
a higher number of variables and cost functions than the ran-
dom instances, are relatively easy to solve in the sense that
only by DP2 preprocess we obtain a good estimation of the
optimal cost, before starting the search. Observe that even
in this case, our improved BnB-ADOPT+-AC version (fifth
row) is able to reduce messages and NCCC in all instances,
in some cases by a factor of 2 or 3.

From these results we can extract some conclusions. First,
it is beneficial to combined soft AC techniques with DP2
heuristic, the joint effort of both techniques is effectively
summed-up and the result is an improvement in perfor-
mance. Second, the combination of the proposed modifi-
cations causes substantial savings in both communication
and computation effort with respect to existing versions of
the considered algorithm. Third, maintaining soft AC to
delete sub-optimal values provides more savings when the
problem is connected and is hard to solve (the problem re-
quires many messages and computation and the cost of the
optimal solution can not be inferred accurately from a single
pass preprocessing technique such as DP2).

7. CONCLUSIONS
In this paper we improve the algorithm BnB-ADOPT+-

AC, originally presented in [4], in several ways. First, we
propose some modifications in the implementation of the al-
gorithm, where checking for deletions and projections to Cφ
are delayed until the agent executes the Backtrack proce-
dure. Experimentally we show that this alternative reduces
significantly the number of constraint checks, although the
number of messages is slightly increased. This is due to the
fact that an agent does not refine the Cφ or identify sub-
optimal values as early as it could. However the decrement
in computational effort is so important that we globally con-
sider this change as an improvement.

Secondly, we address the issue of simultaneous deletions
in the asynchronous setting of BnB-ADOPT+-AC. When
neighboring agents perform deletions at the same time, the
order of projections in both agents is opposite and as a result
some costs might be lost from the cost functions where AC
is enforced. During search, BnB-ADOPT+-AC uses original
cost functions while AC is enforced in a copy of these cost
functions, so the reported issue on simultaneous deletions
does not affect optimality or termination. However by los-
ing costs from the problem we lose information which could
lead to identify sub-optimal values. To avoid this, we pro-
vide a synchronization mechanism to assure that projections
are always done in the same order on every agent. This syn-
chronization mechanism assures that no costs are lost but it
requires some extra synchronization messages.

Finally, we propose to search on AC cost functions ob-
tained after a preprocessing step since lower bounds calcu-
lated for every value can provide a heuristic for value selec-
tion. To do this, we need to assure synchronous deletions
so Coriginal and CAC are equivalent after preprocessing (no
costs are lost). Deletions are able to improve search and
the inclusion of synchronization messages to guarantee that
no costs are lost in the preprocessing, is compensated with
message savings during search.

The aggregation of these three modifications produces a
complete algorithm with communication and computation
efforts substantially smaller than previous versions of BnB-
ADOPT+ (including either AC [4], DP2 heuristics [1] or a
combination of both). In most cases, messages and NCCCs
are reduced by at least a factor of 2, reaching up to one
order of magnitude for some cases. These results allow us to
consider the proposed approach as an important step foward
towards more efficient algorithms for optimal DCOP solving.

It remains as future work to apply and evaluate the im-
pact of the proposed techniques in other distributed search
algorithms.

8. ACKNOWLEDGMENTS
We sincerely thank the anonymous reviewers for their

comments, they helped us to make a better paper. Patri-
cia Gutierrez has an FPI scholarship BES-2008-006653. She
and Pedro Meseguer are partially supported by the project
TIN2009-13591-C02-02.

9. REFERENCES
[1] S. Ali, S. Koenig, and M. Tambee. Preprocessing

techniques for accelerating the DCOP algorithm
ADOPT. Proc. of AAMAS, 2005.

[2] A. Chechetka and K. P. Sycara. No-commitment
branch and bound search for distributed constraint
optimization. In Proc. of AAMAS, pages 1427–1429,
2006.

[3] M. Cooper, S. de Givry, M. Sanchez, M. Zytnicki, and
T. Werner. Soft arc consistency revisited. Artificial
Intelligence, 174:449–478, 2010.

[4] P. Gutierrez and P. Meseguer. BnB-ADOPT+ with
several soft arc consistency levels. Proc. of ECAI,
pages 67–72, 2010.

[5] P. Gutierrez and P. Meseguer. Saving messages in
BnB-ADOPT. Proc. of AAAI, 2010.

[6] M. Jain, M. Taylor, M. Tambe, and M. Yokoo.
DCOPs meet the realworld: Exploring unknown
reward matrices with applications to mobile sensor
networks. Proc. of IJCAI, 2009.

[7] R. Junges and A. L. C. Bazzan. Evaluating the
performance of DCOP algorithms in a real world
dynamic problem. Proc. of AAMAS, 2008.

[8] J. Larrosa and T. Schiex. In the quest of the best form
of local consistency for weighted CSP. Proc. of IJCAI,
2003.

[9] R. Maheswaran, M. Tambe, E. Bowring, J. Pearce,
and P. Varakantham. Taking DCOP to the real world:
Efficient complete solutions for distributed event
scheduling. Proc. of AAMAS, 2004.

[10] R. Mailler and V. Lesser. Asynchronous partial
overlay: A new algorithm for solving distributed
constraint satisfaction problems. Journal of Artificial
Intelligence Research, 25:529–576, 2006.

[11] T. Matsui, M. Silaghi, K. Hirayama, M. Yokoo, and
H. Matsuo. Directed soft arc consistency in pseudo
trees. Proc. of AAMAS, 2009.

[12] A. Meisels, E. Kaplansky, Igor, Razgon, and R. Zivan.
Comparing performance of distributed constraints
processing algorithms. Proc. of DCR, pages 86–93,
2002.

[13] P. Modi, W.-M. Shen, M. Tambe, and M. Yokoo.
ADOPT: Asynchronous distributed constraint
optimization with quality guarantees. Artificial
Intelligence, 161(1-2):149–180, 2005.

[14] A. Petcu and B. Faltings. A scalable method for
multiagent constraint optimization. In Proc.
IJCAI-05, pages 266–271, 2005.

[15] S. Ueda, A. Iwasaki, and M. Yokoo. Coalition
structure generation based on distributed constraint
optimization. Proc. of 24th AAAI, pages 197–203,
2010.

[16] W. Yeoh, A. Felner, and S. Koenig. BnB-ADOPT:
Asynchronous branch-and-bound DCOP algorithm.
Journal of Artificial Intelligence Research, 38:85–133,
2010.

[17] Z. Yin. USC DCOP repository.
http://teamcore.usc.edu/dcop, 2008.

