
Optimal Decentralised Dispatch of Embedded Generation
in the Smart Grid

Sam Miller, Sarvapali D. Ramchurn, Alex Rogers
Agents, Interaction and Complexity Group

School of Electronics and Computer Science
University of Southampton, UK

{sjom106,sdr,acr}@ecs.soton.ac.uk

ABSTRACT
Distribution network operators face a number of challenges;
capacity constrained networks, and balancing electricity de-
mand with generation from intermittent renewable resources.
Thus, there is an increasing need for scalable approaches to
facilitate optimal dispatch in the distribution network. To
this end, we cast the optimal dispatch problem as a de-
centralised agent-based coordination problem and formalise
it as a DCOP. We show how this can be decomposed as
a factor graph and solved in a decentralised manner using
algorithms based on the generalised distributive law; in par-
ticular, the max-sum algorithm. We go on to show that
max-sum applied näıvely in this setting performs a large
number of redundant computations. To address this issue,
we present a novel decentralised message passing algorithm
using dynamic programming that outperforms max-sum by
pruning the search space. We empirically evaluate our al-
gorithm using real distribution network data, showing that
it outperforms (in terms of computational time and total
size of messages sent) both a centralised approach, which
uses IBM’s ILOG CPLEX 12.2, and max-sum, for large net-
works.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—intelligent agents, multiagent systems

General Terms
Algorithms, Theory, Performance

Keywords
DCOP, electricity, max-sum, coordination

1. INTRODUCTION
Due to recent incentives for cleaner electricity generation [13],
there has been an increasing amount of renewable generators
embedded in distribution networks [7, 9]. This poses a num-
ber of challenges for distribution network operators (DNOs).

Appears in: Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems – Inno-
vative Applications Track (AAMAS 2012), Conitzer, Winikoff,
Padgham, and van der Hoek (eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Firstly, electricity networks are already highly capacity con-
strained; adding additional generation that is not managed
effectively may overload the networks [14]. Secondly, it is
much harder to balance electricity demand with generation
from intermittent renewable resources. If the DNO fails to
balance the supply and demand, the network can potentially
become unstable which may result in brownouts, and in the
worst case, cascading blackouts.

Thus, there is a clear incentive for DNOs to implement
optimal dispatch1 methods that are able to address these
issues. That is, how should the generators be coordinated,
such that the cost of the network is minimised (i.e., in terms
of carbon dioxide (CO2) emissions or generator running ex-
penditure), whilst satisfying the loads and network con-
straints. Coordinating generators with respect to network
cost, is known as active network management (ANM), and
has recently been addressed in the power systems commu-
nity [3, 14].

Within the ANM domain, a number of authors address
the issues of coordinating generation from intermittent re-
sources in the transmission network (where lines are less
constrained than in the distribution network) [2, 8]. For
example, Davidson et al. present an algorithm for chang-
ing the power outputs of the generators in the transmission
network such that the cost of the network is minimised [2].
However, their technique involves a central authority calcu-
lating each generator’s power output; who must have all the
information about the entire network in order to calculate an
optimal solution. As the size of the network grows, solving
an optimisation problem in a centralised manner eventually
becomes infeasible due to the exponential nature of the con-
straints [6].

In contrast, others have attempted to improve upon cen-
tralised approaches by decomposing the optimal dispatch
problem and distributing the computation of its solution in
order to improve its scalability [8, 10, 16]. For example,
Kim and Baldick introduce a decentralised algorithm which
uses Lagrangian techniques [8]. However, their algorithm
has only been tested on problems containing up to two re-
gions. Thus, it is unclear whether this approach could be
applied to a large network. In the multi-agent systems liter-
ature, Kumar et al. introduce a message passing technique
which extends distributed pseudotree optimisation proce-
dure (DPOP) to solve the related area of research for re-
configuring feeder trees within a distribution network [10].
While this approach is decentralised, and was shown to work

1Optimal dispatch involves coordinating generators such
that the loads and constraints of the network are satisfied.

on realistic sized networks, it does not address the problems
highlighted above of incorporating an increasing amount of
distributed generators (DGs) in the distribution network,
and the need to coordinate their output.
Vytelingum et al. tackle the optimal dispatch problem

by managing the trading of electricity between nodes on a
network [16]. However, their technique has only been tested
on problems containing up to 16 nodes. Thus, again it is
unclear whether this approach could be applied to a larger
network. Moreover, their technique is partially centralised;
since each agent needs to know the entire network topology.
In a large network, maintaining this system-wide knowledge
is problematic, especially when faced with renewable gener-
ators whose output is continuously changing.
Against this background, in this paper we address the

challenge of coordinating large numbers of renewable gener-
ators, embedded in the distribution network, by decompos-
ing the optimal dispatch problem into a decentralised agent-
based coordination problem; represented as a distributed
constraint optimisation problem (DCOP). In more detail,
each node in the network is represented by an agent which
undertakes some of the computation required to solve the
optimal dispatch problem; such that demands within the
network are satisfied and CO2 emissions of the entire net-
work are minimised. We further decompose the DCOP as a
factor graph and solve in a decentralised manner using algo-
rithms based on the generalised distributive law (GDL) [1];
in particular, the max-sum algorithm [4]. We go on to show
that max-sum applied näıvely in this setting performs a large
number of redundant computations.
To address this issue, we present a novel message passing

algorithm, called DYDOP (DYnamic programming Decen-
tralised OPtimal dispatch), to calculate an optimal solution
in a decentralised fashion. In particular, we solve the op-
timal dispatch problem on the most common distribution
network types, namely radial networks, which tend to incor-
porate a high number of branches and sources [17]; for which
centralised solutions scale poorly. Other common types of
distribution networks include interconnected networks,2 typ-
ically found in urban settings [5]. However, relays through-
out the network ensure that all but one path is active at any
one time; Multiple paths are present for security of supply.
Therefore, our assumption of acyclic distribution networks
throughout this paper is fully justified. Crucially, our algo-
rithm handles the complexities of balancing flows within the
network, without needing central verification of a particular
solution. Thus, this paper makes the following contributions
to the state of the art:

1. We provide a new formalism of the optimal dispatch
problem as a DCOP. We show how this can be decom-
posed as a factor graph and solved using algorithms
based on the GDL family, such as max-sum.

2. We present DYDOP, a novel decentralised message
passing algorithm, that outperforms max-sum by only
exploring the search space of feasible generator and
distribution cable states.

3. We provide proof of the optimality of our algorithm
and empirically evaluate it, on a large distribution net-
work in India, showing that it outperforms (in terms

2In an interconnected network there are multiple paths from
a substation to a load.

of computational time and total size of messages sent)
both a highly optimised centralised approach, which
uses IBM’s ILOG CPLEX 12.2, and max-sum.

When taken all together, our results set the benchmarks for
the deployment of agent-based coordination algorithms to
solve the optimal dispatch problem in the smart grid.

The remainder of this paper is organised as follows: Sec-
tion 2 presents the formal model of the electricity network
used for optimal dispatch. Section 3 details a new formalism
of the optimal dispatch problem as a DCOP, and Section 4
shows how it can be solved by using max-sum. Section 5
presents our novel decentralised message passing algorithm
DYDOP, presenting proof of optimality. Section 6 gives an
empirical evaluation of DYDOP and Section 7 provides a
discussion for future work. Finally, Section 8 concludes.

2. ELECTRICITY NETWORK MODEL
We now formally describe the model of an electricity network
for which we need to solve the optimal dispatch problem.
Hence, we consider the electric distribution network to be a
network of generators, loads and distribution cables.

In more detail, we consider a set of n generators G =
{g1, ..., gn}. Each generator gi has a certain discrete power
output variable αi ∈ Si kW, where Si = {s

i
1, ..., s

i
qi
}, siqi ∈

R
+, qi ∈ Z

+ is the number of power output values for gen-
erator gi, and S is an n-ary Cartesian product of Si such
that S = {Si × ...× Sn}. Let α ∈ S denote the set of power
output variables for the generators in G. Let ei = CIiαi

denote the CO2 emissions that are produced when gi, with
carbon intensity CIi ∈ R

+kgCO2/kWh, outputs αi.
We consider a set of m loads L = {l1, ..., lm}. Each load

li has a certain power consumption βi ∈ R
− kW, where

β = {β1, ..., βm} is the set of power consumption variables
for the loads in L.

We denoteV = {v1, ..., vk} as the set of k nodes within the
network. A node relays power to other nodes but can also
contain a combination of generators and loads. Let adj(vi)
denote all nodes that are connected to vi via a distribution
cable, let L(vi) be the set of loads that are at vi and G(vi)
be the set of generators that are at vi.

T is the set of s distribution cables within the network,
where tij ∈ T denotes the distribution cable between vi
and vj . Each distribution cable has an associated thermal
capacity tcij ∈ R

+ kW, which is the maximum power the
cable can safely carry. It should be noted that we assume
that all the distribution cables have the same reactance.

Finally, W(V,T) is a finite undirected graph describing a
network of nodes and distribution cables. F is the set of all
power flows fij ∈ R kW, along the distribution cables in the
network. Given the above definitions, the optimal dispatch
problem, of finding an allocation of power outputs α , is
defined as the problem of minimising:

argmin
α

n
∑

i=0

CIiαi (1)

subject to the following constraints:

Constraint 1 The flow along a distribution cable cannot
exceed its capacity:

|fij | ≤ t
c
ij (2)

Constraint 2 The net flow from vi to vj must be the op-
posite of the net flow from vj to vi:

fij = −fji (3)

Constraint 3 The sum of the generators at vi, the sum
of the loads at vi and the net flow from all nodes w

connected to vi is zero:
∑

w∈adj(vi)

fwi +
∑

l∈L(vi)

βl +
∑

g∈G(vi)

αg = 0 (4)

Having presented a model of the electricity network, the
following section decomposes the problem into a DCOP.

3. DCOP REPRESENTATION
Formally, a DCOP is a tuple 〈X,D,U〉 consisting of a set
of h variables X = {x1, ..., xh} which can be assigned dis-
crete values in the set of finite domains D = {d1, ...,dh}
respectively. In our representation, X = {α,F}, with the
domain:

di =

Si when xi is a generator

when xi corresponds to the

{−tcab, ..., t
c
ab} distribution cable tab

between va and vb

(5)

We note the set of relations as U = {U1, ..., Uk} (also called
utilities) where Ui : di1 × ... × dij → R

+ denotes the cost
of each possible combination of the involved variable values.
We denote A to be the set of k agents. Each variable is
assigned to an agent. Only the agent who is assigned the
variable has knowledge of its domain and control over its
value. Moreover, the utility Ui corresponds to the utility of
agent i. In the context of the electricity network, Ui maps
to the CO2 emissions of vi with respect to the constraints of
the network (i.e., a lower cost means lower CO2 emissions):

Ui =

∑

g∈G(vi)

CIgαg if Equation (4) holds for vi

∞ otherwise

(6)

where ∞ is used to penalise states that lead to inconsis-
tent flows within the network (i.e., states that do not satisfy
Equation 4).
With this in mind, it can be seen that the optimisation

function for the electricity network, Equation (1), can be fac-
torised in terms of the agent utility functions using Equation
(6). The goal of the agents is to find an assignment X∗ for
the variables in X that minimises the sum of the costs:

argmin
X∗

k
∑

i=0

Ui (7)

Typically, a DCOP can be represented by a factor graph,
whose vertices correspond to variables and the edges denote
the dependencies between the variables (i.e., the utility func-
tions). Crucially, we provide a mapping of the DCOP to a
factor graph that preserves the acyclic topology of the elec-
tricity network. Moreover, this mapping balances all of loads
with generation, whilst satisfying the flow constraints of each
distribution cable, and the constraints of the generators, in
a fully decentralised way without needing centralised verifi-
cation. Figure 1(a) shows an electricity distribution network

consisting of distribution cables, generators and nodes. Ex-
ample values for generator’s maximum output, distribution
cable’s thermal capacity and power consumption at the loads
are given. Node v0 is connected to the rest of the electricity
grid. Figure 1(b) shows the corresponding factor graph. By
decomposing into a factor graph, the optimal dispatch prob-
lem can be solved using an algorithm from the GDL family,
such as max-sum.

We choose max-sum to solve the DCOP because it maps
directly onto a factor graph, and directly works with n-ary
constraints (i.e., functions connected to more than two vari-
ables, see U5 on Figure 1(b) for an example) without any
additional modifications. Other algorithms which transform
the DCOP into a depth first search (DFS) tree, such as
ADOPT [11] and DPOP [12], suffer from scaling issues with
the height and the width of the DFS tree respectively. Thus,
max-sum is a natural fit to the optimal dispatch problem in
a distribution network because networks of this nature often
contain a large number of nodes and branches.

In max-sum, functions and variables can be arbitrarily as-
signed to any agent. However, in our model, each agent is
assigned to compute one function which is associated to a
specific node within the network. Moreover, a natural as-
signment of variables to agents involves an agent controlling
the generator variables at its designated node, and the dis-
tribution cable variables connected to its node. If two or
more agent’s functions share the same variable, the variable
is arbitrarily assigned to one of them. In Figure 1(b), the
dashed circles give an example of the agents.

More importantly, since max-sum has been proven to con-
verge to an optimal solution on acyclic factor graphs, and
given that we provide a mapping from an acyclic electricity
network to an acyclic factor graph, max-sum will be able
to calculate the optimum solution to the optimal dispatch
problem. The following section introduces the max-sum al-
gorithm and explains how it can be applied to an electricity
network.

4. MAX-SUM OPTIMAL DISPATCH
The max-sum algorithm (or min-sum as is the case with
minimising CO2 emissions) uses message passing in order
to propagate the utilities of the variables around the factor
graph. Messages are sent from variable to function, and
from function to variable:

From variable to function:

Qb→a(xb) =
∑

a′∈A(b)\a

Ra′→b(xb) (8)

From function to variable:

Ra→b(xb) = min
Xa\b

Ua(Xa) +
∑

b′∈B(a)\b

Qb′→a(xb′)

 (9)

where B(a) is the set of variables connected to the function
a, A(b) is the set of functions connected to the variable xb,
and finally Xa\b ≡ {xb′ : b

′ ∈ B(a)\b}.
A max-sum message being sent from function to distri-

bution cable variable is a function of the flow in the cable
with its domain bounded by the thermal capacity of the dis-
tribution cable. Consider the following example, shown in
Figure 1(a). Let the distribution cable t59 between v5 and
v9 have a thermal capacity tc59 of 40kW, the load l9 at v3

v0
g0

t01
l0 t13

g1(30kW)

l3(-10kW)

l1v2 t35(100kW) g2(20kW)

v5
t12

l2 t24
v4

t58(20kW)

l5(-10kW)

l4
t46

v8

v6

t59(40kW)

l8(-40kw) v9

l6 t67
v7 g4(40kW)

l9(-10kW)

l7

g3

g5(30kW)

v1

v3

(a)

U0

U1

U2 U3

U4 U5

U6 U7
U8 U9

x0

x1

x2

x3
x4 x5

x6

x7 x8

x9 x10

x11
x12 x13

x14

(b)

v0

v1

v2 v3

v4 v5

v6

v7

v8 v9

t01

t12 t13

t24 t35

t46
t58 t59

t67

(c)

Figure 1: (a) An electricity distribution network. Showing example values for generator’s maximum output,
distribution cable’s thermal capacity and power consumption at the loads. Node v0 is connected to the rest
of the electricity grid. (b) A factor graph representation of the same network. (c) The tree representation
used by DYDOP.

be -10kW, and the generator g5 at v9 have a maximum out-
put of 30kW. The message R5→13(x13), sent from U5 to x13

on the corresponding factor graph, Figure 1(b), will have
domain x13 ∈ {−40, ..., 0, ..., 40}, having 81 utility values
corresponding to the 81 variable states, discretised by 1kW
steps. A +ve variable state indicates that the flow f59 is
traveling from v5 to v9, and a -ve variable state indicates
that f59 is traveling from v9 to v5.
A max-sum message being sent from function to generator

variable is bounded by the maximum output of the gener-
ator. Consider the following example. Let the generator
g1 at v3 have a maximum output of 30kW. The message
R3→1(x1) will have domain x1 ∈ {0, ..., 30}, having 31 util-
ity values corresponding to the 31 variable states. Each state
indicates the amount of power g1 is producing α1.
Messages are propagated around the factor graph until the

values of the messages converge. Messages are guaranteed
to converge to the optimal solution on acyclic graphs. At
which point each variable chooses its optimal state based on
the sum of the messages it has received:

Zb(xb) =
∑

a∈A(b)

Ra→b(xb) (10)

However, simply applying the max-sum algorithm näıvely
in this manner produces poor performance. This is because
much of the search space is infeasible and does not need to
be searched. For instance, consider the previous example
for the message R5→13(x13). The message has a total of 81
variable states. However, the maximum amount of power
that could travel along t59 from v5 to v9, in order to sat-
isfy l9, is only 10kW. Moreover, the maximum output of g5
means that the maximum amount of power that could travel
along t59 from v9 to v5, after l9 is satisfied, is 20kW. There-
fore, the utilities calculated for variable states {−40, ...,−21}
and {11, ..., 40} are all infeasible. This highlights the wasted
computation that a näıve implementation of max-sum per-
forms. The domain of the message is bounded by tc59. How-

ever, the actual feasible states are dependant on the load and
the available generation at v9, which is considerably less. As
the network size grows, this wasted computation becomes a
major overhead (as we show in Section 5.1.2).

Thus, to address this issue, we present a novel decen-
tralised message passing algorithm, DYDOP, which prop-
agates messages from leaf nodes to the root of the tree net-
work, such that only the utility of feasible states are calcu-
lated. As we show later, doing so greatly reduces the com-
putation time as it allows us to prune much of the search
space.

5. DYDOP OPTIMAL DISPATCH
We represent an acyclic electricity network as an acyclic
network of nodes connected by distribution cables; Figure
1(c) shows the electricity network in Figure 1(a) transformed
into this representation. DYDOP is applied to the acyclic
network and uses a dynamic programming approach. Each
node, which is controlled by an agent, has exactly one par-
ent node and zero or more child nodes, apart from one node
v0 which is the root node and has no parent. Leaf nodes
have no children, v7, v8 and v9. Each node is assumed to
have one or more generators, each with an associated carbon
intensity, and one or more loads. DYDOP proceeds in two
phases (which we describe in more detail in the following
section):

Phase 1 – Value Calculation PowerCost messages are
sent from the leaf nodes to the root node. A node waits
until it has received PowerCost messages from all of its
children before computing its own PowerCost message
which it sends to its parent. Each PowerCost message
describes the CO2 emissions of its own generation and
the generation of its children.

Phase 2 – Value Propagation When the root node re-
ceives PowerCost messages from all of its children,
it calculates its optimum power output such that all

the demands of the network are satisfied and the CO2

emissions are minimised. It then propagates power
flow values to all its children which in turn propagate
power flow values to their children.

The algorithm terminates when all leaf nodes receive a power
flow value, at which point each node knows exactly what
power it needs to output. We elaborate on the two phases
below.

5.1 Phase 1: Value Calculation
In what follows we give a detailed overview of the DYDOP’s
value calculation phase. Section 5.1.1 introduces the struc-
ture of a PowerCost message, Section 5.1.2 describes how
a leaf node constructs its PowerCost messages, and finally
Section 5.1.3 details how a node merges its children’s Pow-
erCost messages.

5.1.1 PowerCost Messages
A PowerCost message sent from vi to its parent v̂i, is an
array of y flowCO elements:

PowerCosti→î = [flowCO1, ...,flowCOy] (11)

A flowCO element describes the CO2 emissions that occur,
when vi and all of its children chi(vi) output certain amounts
of power, such that there is a specified flow of power between
vi and its parent v̂i along the distribution cable tîi:

flowCoj =< fîi,γ(fîi) > (12)

where fîi ∈ Z kW is the resultant power flow travelling along
tîi, and |fîi| ≤ tc

îi
where tc

îi
is the thermal capacity of tîi.

Note that fîi > 0 denotes the resulting power is flowing out
of vi to v̂i, fîi < 0 denotes the resulting power is flowing
into vi from v̂i, fîi = 0 denotes no power is flowing between
vi and v̂i. The function γ : R → R

+ kgCO2/h denotes
the CO2 emissions that result from vi and all of its children
generating certain amounts of power.3 Each flowCO element
that vi calculates maps to an OPCState which describes
vi’s power output along with the flowCO elements of each
of its children that results in the CO2 emission described
by the function γ. This mapping represents the dynamic
programming aspect of DYDOP since as power flow values
are propagated down the tree, during the value propagation
phase, the associated OPCState is used to find node vi’s
power output given a particular power flow fîi.

5.1.2 Constructing a PowerCost Message at a leaf
Only the leaf node’s power output needs to be taken into
consideration when a leaf PowerCost message is constructed.
For each power output vi can produce, it constructs a cor-
responding flowCO element with flow fîi calculated as:

fîi =
∑

l∈L(vi)

βl +
∑

g∈G(vi)

αg (13)

giving the resultant power flowing between vi and v̂i. The
CO2 emissions γ of the flowCO element, is calculated as:

γ(fîi) =
∑

g∈G(vi)

αgCIg (14)

3Node v9, Figure 1(c), with a carbon intensity of
0.3kgCO2/kWh and a power output of 20kW, will have a
resulting CO2 emissions of 6kgCO2/h and 10kW of result-
ing power travelling to v5.

Algorithm 1 Constructing a leaf node PowerCost message

1 . f o r αi ← 0 to genMax {
2 . rFlow ← αi + βi ;
3 . rCO ← αi ∗ CIi ;
4 . flowCO(rFlow , rCO) ;
5 . linkToOPCState (flowCO , αi) ;
6 .}
7 . sendPowerCostMessageToParent () ;

where CIg is the carbon intensity of generator g situated
at vi. See Algorithm 1 for a pseudocode representation of
constructing a leaf node PowerCost message. We iterate
through the generators different outputs, up to its maximum
(line 1). For each output the resultant flow is calculated,
(line 2) and the corresponding CO2 emissions, (line 3). A
flowCO element is created, (line 4), and then linked to the
generators output which resulted in the resultant CO2 emis-
sions, (line 5). All the flowCO elements created are added
to a PowerCost message and then sent to the nodes parent,
(line 7). Note that the OPCState’s that are linked to by
each flowCO element are never sent on to the parent node
and are instead kept for use during phase 2 of the algorithm.

Consider the following PowerCost9→5 message, which v9
sends to v5, see Figure 1(a). Let the distribution cable t59
have a thermal capacity tc59 of 40kW, the load l9 be -10kW,
the generator g5 have a maximum output of 30kW and g5
have a carbon intensity CI5 of 0.1kgCO2/kWh. The follow-
ing is part of the PowerCost9→5 message:

flowCoj = < 0, 1.0 > → [+10kW]
flowCoj+1 = < 1, 1.1 > → [+11kW]
flowCoj+2 = < 2, 1.2 > → [+12kW]

Now, flowCoj+2 indicates that a flow 2kW, from v9 to v5,
will result in 1.2kgCO2 emission with g5 outputting 12kW.
The total number of flowCO elements in PowerCost9→5 is
31. By contrast, compare with the example R5→13(x13) mes-
sage in Section 4, which has 81 variable states instead. This
further highlights the wasted computation that the näıve
implementation of max-sum performs.

5.1.3 Merging PowerCost messages
For each vi that has at least one child, the PowerCost mes-
sages that it receives must be processed in order to produce
its own PowerCost message that it sends to v̂i. The amount
of power that can flow from vi to v̂i, or from v̂i to vi, is
bounded by tc

îi
. With these bounds, vi is able to calculate

each valid flow that can travel into or out of it. For each valid
flow, vi calculates the minimum CO2 emissions that result
from vi’s output, and all of its children’s outputs. To calcu-
late the flowCO element for each resultant flow with the low-
est CO2 emissions value, vi iterates through every possible
power output that it can produce and every flowCO element
from each of its children’s PowerCost messages. A state rep-
resents the combination of one flowCO element from each
of its children and vi’s power output. The flow fîi of this
state is calculated as:

fîi =
∑

l∈L(vi)

βl +
∑

g∈G(vi)

αg +
∑

c∈chi(vi)

fci (15)

Algorithm 2 Merging PowerCost messages

1 . f o r αi ← 0 to genMax {
2 . f o r each chi ldPowerCost {
3 . rFlow ← αi + load + sum(OPCState) ;
4 . rCO ← (αi ∗ CIi) + sum(OPCState) ;
5 . i f (min (rFlow , rCO)) {
6 . PowerCost (rFlow , rCO) ;
7 . setNewMinimum(PowerCost) ;
8 . linkToOPCState (PowerCost , αi) ;
9 . }

10 . }
11 .}
12 . sendPowerCostMessageToParent () ;

where
∑

c∈chi(vi)

fci is the sum of the chosen flowCO elements’

flows from each of vi’s children. In order to choose the mini-
mum state for each resultant flow, the CO2 emissions of the
state must be calculated as follows:

γ(fîi) =
∑

g∈G(vi)

αgCIg +
∑

c∈chi(vi)

γ(fci) (16)

where
∑

c∈chi(vi)

γ(fci) is the sum of the chosen flowCO ele-

ments’ CO2 emissions from each of vi’s children. See Algo-
rithm 2 for a pseudocode representation of merging Power-
Cost messages. We iterate through the generators different
outputs, up to its maximum (line 1). For each output, we
iterate through every possible combination of the flowCO el-
ements from each of the its children’s PowerCost messages
(line 2). For a particular OPCState (i.e., a combination of
flowCO elements, one from each child, and the generators
output) the resultant flow is calculated by summing each
flow of the flowCO elements, in the OPCState, with the
generator output and the load, (line 3). Similarly, the re-
sultant CO2 emission is calculated by summing each CO2

emission of the flowCO elements, in the OPCState, together
with the product of the generators output and its carbon
intensity, (line 4). If the resultant CO2 emissions is the
minimum recorded for the particular resultant flow, (line
5), then the flowCO element is created, (line 6), and set as
the new minimum for that particular resultant flow, (line
7). The flowCO element is linked to the OPCState, (line 8).
All the flowCO elements created are added to a PowerCost
message and then sent to the nodes parent, (line 12).
As an example of merging PowerCost messages, consider

the following PowerCost5→3 message, v5 sends to v3, see
Figure 1(a). Let tc35 be 100kW, tc58 be 20kW, tc59 be 40kW,
l5 be -10kW, l8 be -40kW, l9 be -10kW, g2 have maximum
output 20kW, CI2 be 0.7kgCO2/kWh, g4 have maximum
output 40kW, CI4 be 0.25kgCO2/kWh, g5 have maximum
output 30kW and CI5 be 0.1kgCO2/kWh. The following is
part of the PowerCost5→3 message (after receiving messages
from v8 and v9):

flowCOj = < −10, 8 > → [+0kW]8(−20)9(20)

flowCoj+1 = < −9, 8.25 > → [+0kW]8(−19)9(20)

flowCoj+2 = < −8, 8.5 > → [+0kW]8(−18)9(20)

Now, flowCoj+1 indicates that a flow of 9kW, from v3 to v5,
will result in 8.25kgCO2 emission with g2 outputting 0kW,

a flow 19kW from v5 to v8, and a flow 20kW from v9 and v5.
The following section describes the second phase of DYDOP
whereby power output values are propagated from the root
node to the leaf nodes.

5.2 Phase 2: Value Propagation
Once the root node has received PowerCost messages from
all of its children, it calculates how much power to output
in order to satisfy all the loads within the network and min-
imise CO2 emissions. It does this by iterating through ev-
ery possible power output that it can produce and every
flowCO element from each of its children’s PowerCost mes-
sages. Equation (15) is used to calculate the resultant flow
of a state. If the flow is not equal to zero, then this par-
ticular state for the network is infeasible, since excess flow
means that supply and demand is imbalanced. For every
state that has a flow equal to zero, the CO2 emissions of the
network are calculated by using equation (16).

The state with the minimum CO2 emissions is selected as
the optimum state of the network. Power flow values are
then sent to each of the root node’s children telling them
which of their flowCO elements resulted in the minimum
CO2 emission. The child retrieves the correct flowCO ele-
ment by matching the power flow value sent to them with
the flow from the flowCO message. The OPCState which
is referenced by each child recipient’s corresponding flowCO
element tells the child exactly how much power to output.
The child recipient can then send the power flow of each
flowCO element specified in the OPCState to each of its
corresponding children. Power flow values are propagated
in this manner to the leaf nodes, at which point each node
in the network knows their optimum power output that re-
sults in the minimum CO2 emissions for the entire network.

5.3 Completeness and Correctness
In what follows, we prove that DYDOP applied to trees is
complete and correct:

Proposition 1. DYDOP is complete

Proof. To construct PowerCost messages, vi must iter-
ate through all of its own possible generator outputs, Si, and
every flowCO element from each of its children’s PowerCost
messages. Each flowCO element contains the minimum CO2

emissions that results from each l ∈ L(vi), and all of its chil-
dren’s loads, being satisfied. The root node chooses a feasible
state that results in the minimum CO2 emissions. There-
fore, at each node, all feasible states are evaluated and the
root node chooses the optimal state which minimises CO2.
Hence, the algorithm is complete.

Proposition 2. DYDOP is correct

Proof. This proof follows on from proposition 1. When
constructing messages, vi only evaluates feasible states; the
states that conform to equations (2) – (4) and each g ∈
G(vi)’s maximum power output. Each message will contain
the minimum CO2 emissions that result from a feasible set
of states. Therefore, any solution calculated by the algorithm
will be valid as it has explicitly conformed to the constraints
of the entire network. Hence, the algorithm is correct.

5.4 Computational Complexity
Here, the worst-case complexity of DYDOP is calculated,
with regards to the size of the network and the number of

children a node has, in order to show its suitability for large
optimal dispatch problems.

Proposition 3. The size of PowerCost messages that are
sent by DYDOP grows linearly with the size of the network

Proof. In the worst case, the maximum size of the mes-
sage vi has to create and send to v̂i is Φi:

Φi =
2tc

îi

Xαi

(17)

where Xαi
∈ Z

+ is the discretisation of αi and is currently
1; since each generator can produce power in 1 unit inter-
vals. If generators are restricted to produce power in greater
intervals, the size of the messages sent by each node can be
reduced. In the worst case, the size of the messages DYDOP
has to create and send in total is:

∑

vi∈V\vr

Φi (18)

where vr is the root node. Therefore, the size of the messages
DYDOP sends grows linearly in O(|V|).

Proposition 4. The number of states that vi must iter-
ate through is exponential with |chii|

Proof. When merging PowerCost messages, vi must it-
erate through all states in the Cartesian product of all of its
children’s states and its own power output values. There-
fore, the number of states a node must iterate through in the
worst case grows exponentially in O(Mcmax), where cmax

is the number of children a node has and M is the number
of states a child has with a discretisation of Xαi

.

Even though the worst-case complexity of DYDOP is expo-
nential in the number of children a node has, this is signifi-
cantly less than the total number of nodes in the entire net-
work. Thus, DYDOP may be able to exploit the structure
of the network, unlike a centralised algorithm that does not
explicitly take this structure into consideration, and com-
pute an optimal solution faster. Therefore, the following
section empirically evaluates DYDOP against a centralised
approach and max-sum.

6. EMPIRICAL EVALUATION
In order to empirically evaluate DYDOP against max-sum
and a centralised approach, we conducted an experiment on
a real distribution network. The distribution network used is
located in India and contains 76 substations;4 the majority
of the substations can further be connected to as many as
400 nodes. We only use one network because the topologies
of distribution networks are largely similar. Our experiment
was run in Java on a 2.67GHz Intel Xeon quadcore with
12GB of RAM, and was set up as follows. The number of
additional nodes that could be connected to each substation
was varied from 1 to 14, each with 50 iterations. During
each iteration, nodes are assigned uniformly random loads,
generators and carbon intensities. Each generator has 10
discrete power output levels and each distribution cable has
its specified thermal capacity.

4A substation connects several distribution cables together
and may contain generators, loads or transformers.

200 400 600 800 1000 1200 1400
0

1

2

3

4

5

6
x 10

4

Number of Nodes

T
im

e
to

 C
om

pu
te

 (
m

s)

Centralised
DYDOP
max−sum

Figure 2: Time to compute a solution. India dis-
tribution network, 76 substations, varied number of
nodes at each substation.

Figure 2 shows the computation time for the centralised
approach, max-sum and DYDOP (error bars omitted due
to being negligible). It can be seen that to start with, the
centralised approach is as fast at computing a solution com-
pared with DYDOP. However, after a network size of 460
nodes (which equates to only 6 additional nodes at each sub-
station) DYDOP becomes significantly faster at computing
a solution compared to the centralised approach. We used
IBM’s ILOG CPLEX 12.2 for the centralised approach which
is highly optimised for solving optimisation problems.

Both DYDOP and max-sum’s computation times increase
linearly with the size of the network. This is because they
both exploit the topology of the network. However, max-
sum’s computation time sharply increases compared with
DYDOP. This highlights the unnecessary computation that
max-sum is performing for infeasible variable states and
shows the advantage of DYDOP. This is further highlighted
in Figure 3 which shows that the total size of the messages
sent using max-sum is much higher than DYDOP. Max-sum
sends twice as many messages as DYDOP for the largest
number of nodes we tested.

In contrast, the centralised computation time increases
exponentially with the size of the network because it is un-
aware of the network structure, and seeks to solve the com-
binatorial optimisation by more standard approaches, such
as the simplex method. Thus, as more DGs are added to
distribution networks, it is clear that a centralised approach
will quickly take an infeasible amount of time to compute a
solution to the optimal dispatch problem.

In comparison, DYDOP is able to handle distribution net-
works with a large number of DGs and still calculate a solu-
tion in linear time. Therefore, our algorithm is a very good
candidate for DNOs to use when solving future optimal dis-
patch problems in the ever growing distribution networks.

7. DISCUSSION
We believe DYDOP can be readily applied in many real-
world electricity networks given the speed at which it re-
solves the generator outputs and the small amount of com-
munication it requires. Particular applications include micro-
grids with large numbers of small solar panels or micro-
storage devices (on University campuses or military bases).

200 400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7
x 10

4

Number of Nodes

T
ot

al
 S

iz
e

of
 M

es
sa

ge
s

max−sum
DYDOP

Figure 3: Sum total messages sent. India distri-
bution network, 76 substations, varied number of
nodes at each substation.

These applications typically involve network topologies that
are either trees or radial and therefore match the type of
network that DYDOP works on. Moreover, since the gener-
ators in these settings are typically low-power and discretise
their power outputs (e.g. solar panels and batteries typically
have set power outputs and can either be on or off), the as-
sumptions we make about discretised generator outputs is
perfectly valid in such settings.
Generalising our work to settings with non-discrete gen-

erator outputs will instead require handling continuous vari-
ables within DYDOP and it may be possible to extend some
of the techniques introduced by [15] to do so. Moreover, to
consider other distribution network topologies such as ring
main,5 we believe [18] can act as a starting point as they
show that GDL algorithms can be made to converge on net-
works with a single loop.

8. CONCLUSIONS
In this paper we addressed the optimal dispatch challenges
faced by DNOs. Namely how an increasing amount of cleaner
DGs can be added to already highly constrained distribution
networks, and coordinated in an efficient fashion using op-
timal dispatch. We provided a DCOP formulation of the
optimal dispatch problem; we showed how this can be de-
composed as a factor graph and solved in a decentralised
manner using algorithms based on GDL; in particular, the
max-sum algorithm. Furthermore, we showed that max-sum
applied näıvely in this setting performs a large number of re-
dundant computations.
To address this issue, we presented DYDOP, a novel de-

centralised message passing algorithm using dynamic pro-
gramming, that outperforms max-sum by pruning the search
space. It does this by propagating messages from leaf nodes
to the root and only calculates the utility for feasible variable
states. We empirically evaluated our algorithm using real
distribution network data, showing that it outperformed (in
terms of computational time and total size of messages sent)
both a centralised approach and the max-sum approach for
large networks.

5A ring main topology consists of a number of radial net-
works connected in a ring.

9. REFERENCES
[1] S. M. Aji and R. J. McEliece. The generalized distributive

law. IEEE Transactions on Information Theory,
46(2):325–343, 2000.

[2] E. M. Davidson, M. J. Dolan, S. D. J. McArthur, and
G. W. Ault. The use of constraint programming for the
autonomous management of power flows. In Proc. of the
15th Intl. Conf. on Intelligent System Applications to
Power Systems, pages 1–7, Curitiba, Brazil, 2009.

[3] Department for Business Enterprise and Regulatory
Reform. Active network management (ANM) technology.
Technical report, 2008.

[4] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings.
Decentralised coordination of low-power embedded devices
using the max-sum algorithm. In Proc. of the 7th Intl.
Conf. on Autonomous Agents and Multiagent Systems,
pages 639–646, Estoril, Portugal, 2008.

[5] T. Gönen. Electric power distribution system engineering.
McGraw-Hill New York, 2nd edition, 2007.

[6] M. E. Granada, M. J. Rider, J. R. S. Mantovani, and
M. Shahidehpour. Multi-areas optimal reactive power flow.
In Proc. of the Transmission and Distribution Conf. and
Exposition, pages 1–6, Bogota, Colombia, 2008.

[7] N. Hatziargyriou, N. Jenkins, G. Strbac, J. A. Pecas Lopes,
J. Ruela, and A. Engler. Microgrids-large scale integration
of micro-generation to low voltage grids. EU contract
ENK5-CT-2002-00610, Technical annex, 2002.

[8] B. H. Kim and R. Baldick. Coarse-grained distributed
optimal power flow. IEEE Transactions on Power Systems,
pages 932–939, 1997.

[9] J. K. Kok, M. J. J. Scheepers, and I. G. Kamphuis.
Intelligence in electricity networks for embedding
renewables and distributed generation. Intelligent
Infrastructures, pages 179–209, 2010.

[10] A. Kumar, B. Faltings, and A. Petcu. Distributed
constraint optimization with structured resource
constraints. In Proc. of the 8th Intl. Conf. on Autonomous
Agents and Multiagent Systems, pages 923–930, Budapest,
Hungary, 2009.

[11] P. J. Modi, W. M. Shen, M. Tambe, and M. Yokoo.
ADOPT: asynchronous distributed constraint optimization
with quality guarantees. Artificial Intelligence,
161(1-2):149–180, 2005.

[12] A. Petcu and B. Faltings. A scalable method for multiagent
constraint optimization. In Proc. of the 19th Intl. Joint
Conf. on Artificial Intelligence, pages 266–271, Edinburgh,
Scotland, UK, 2005.

[13] S. D. Ramchurn, P. Vytelingum, A. Rogers, and N. R.
Jennings. Putting the “smarts” into the smart grid: a grand
challenge for artificial intelligence. Communications of the
ACM, 2011.

[14] D. Roberts. Network management systems for active
distribution networks: a feasibility study. DTI Distributed
Generation Programme (Contractor: SP PowerSystems
LTD), Contract Number: K/EL/00310/00/00, URN, 2004.

[15] T. Voice, R. Stranders, A. Rogers, and N. Jennings. A
hybrid continuous max-sum algorithm for decentralised
coordination. In Proc. of the 19th European Conf. on
Artificial Intelligence, pages 61–66, Lisbon, Portugal, 2010.

[16] P. Vytelingum, S. D. Ramchurn, T. D. Voice, A. Rogers,
and N. R. Jennings. Trading agents for the smart electricity
grid. In Proc. of the 9th Intl. Conf. on Autonomous Agents
and Multiagent Systems, pages 897–904, Toronto, Canada,
2010.

[17] B. M. Weedy and B. J. Cory. Electric Power Systems. John
Wiley & Sons, 4th edition, 2004.

[18] Y. Weiss. Correctness of local probability propagation in
graphical models with loops. Neural computation,
12(1):1–41, 2000.

