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ABSTRACT
Real life coordination problems are characterised by stochas-
ticity and a lack of a priori knowledge about the interactions
between agents. However, decentralised constraint optimi-
sation problems (DCOPs), a widely adopted framework for
modelling decentralised coordination tasks, assumes perfect
knowledge of these factors, thus limiting its practical ap-
plicability. To address this shortcoming, we introduce the
MAB–DCOP, in which the interactions between agents are
modelled by multi-armed bandits (MABs). Unlike canoni-
cal DCOPs, a MAB–DCOP is not a single shot optimisation
problem. Rather, it is a sequential one in which agents need
to coordinate in order to strike a balance between acquir-
ing knowledge about the a priori unknown and stochastic
interactions (exploration), and taking the currently believed
optimal joint action (exploitation), so as to maximise the
cumulative global utility over a finite time horizon. We pro-
pose Heist, the first asymptotically optimal algorithm for
coordination under stochasticity and lack of prior knowl-
edge. Heist solves MAB–DCOPs in a decentralised fashion
using a generalised distributive law (GDL) message passing
phase to find the joint action with the highest upper confi-
dence bound (UCB) on global utility. We demonstrate that
Heist outperforms other state of the art techniques from the
MAB and DCOP literature by up to 1.5 orders of magnitude
on MAB–DCOPs in experimental settings.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems

General Terms
Algorithms, Theory, Experimentation

Keywords
Coordination, Distributed Problem Solving, Uncertainty

1. INTRODUCTION
Many real life applications can be modelled as systems of
coordinating autonomous agents. Examples include wireless
sensor networks (WSN), teams of UAVs deployed in disaster
response scenarios and scheduling multi-processor jobs with
unknown duration in distributed computing environments.
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These application domains often require decentralised so-
lution techniques, as these yield scalable solutions, exhibit
rapid response times and are robust to failure by avoiding
the existence of a centralised point of control. As a result,
building effective and efficient coordination algorithms has
been a focus of attention within the multi-agent community.

This focus has led to the development of the framework
of the distributed constraint optimisation problem (DCOP)
[13]. In a DCOP, the agents’ objective is to maximise a
global utility function, that can be factorised into a sum
of local utility functions that represent the interactions be-
tween agents. However, the canonical DCOP framework
makes two strong assumptions that limit its practical appli-
cability. First, the local utility functions are assumed to be
known a priori. Second, it is assumed that the local utility
functions are non-stochastic, i.e. that the same interaction
always yields the same outcome. In reality, not only are util-
ity functions typically noisy, they are also unknown before
the agents’ deployment. As an example, consider a WSN
that is deployed by dropping sensor nodes from an aircraft.
Since their position, neighbourhood and the environmental
conditions are unknown before deployment, the utility func-
tions that model the information gain received from their
interactions need to be learnt online.

Crucially, in stochastic and a priori unknown environ-
ments, agents are no longer faced with a one shot optimi-
sation problem as encoded in a canonical DCOP. Rather,
we now have a problem in which agents have to coordi-
nate to solve a sequence of “DCOP-like” problems in order
to simultaneously reduce uncertainty about the local util-
ity functions (exploration) and maximise the global utility
(exploitation). This implies the need for striking a balance
between exploration and exploitation. Focusing solely on
exploration results in certainty about the agents’ environ-
ment, but wastes resources by taking suboptimal actions.
Similarly, consistently taking the joint action that is cur-
rently believed to be the best is also suboptimal because
this belief might be incorrect.

To date, this challenge has not been satisfactorily ad-
dressed by the DCOP community; existing DCOP algo-
rithms either do not consider the trade off between explo-
ration and exploitation, or fail to make this trade off in
a principled and efficient manner. Indeed, most existing
DCOP algorithms, such as ADOPT, DPOP, and max-sum,
are not able to represent either stochastic or unknown func-
tions [13, 5, 12, 15, 14]. In particular, other local approxi-
mate algorithms have been proposed for problems with func-
tions that are a priori unknown but non-stochastic [17, 6],
or stochastic but with a priori knowledge about the un-



derlying distributions [2]. More recently, the E-DPOP al-
gorithm has been proposed for solving DCOPs with utility
functions whose values are influenced by exogenous sources
of stochasticity. These sources are modelled by random vari-
ables, whose underlying probability distributions are either
known [10] or unknown [9]. Whilst a significant contribution
to the field, it divides exploration and exploitation into two
distinct phases, a process that is known to make its per-
formance dependent on the specific problem instance [16].
Moreover, as acknowledged by the authors, E-DPOP is an
incomplete algorithm when applied to non-linear evaluation
functions, and as a result can perform arbitrarily poorly on
general problem instances [10].

In contrast, the multi-armed bandit (MAB) community
has addressed the trade off between exploration and ex-
ploitation in a principled fashion from a single agent per-
spective [8, 3, 18]. A MAB is a simple analytical tool for
modelling decision making under uncertainty. In more de-
tail, a MAB is a slot machine with multiple arms, each of
which yields a reward, drawn from an unknown but fixed
probability distribution. The aim of the problem is to se-
quentially pull the arms so as to maximise the cumulative re-
ward over a finite time horizon. To achieve this, a number of
computationally efficient pulling algorithms have been pro-
posed, such as ε-first [4], ε-greedy [16] and upper confidence
bound (UCB) [3]. Whereas the former two are sensitive to
the choice of the ε parameter, the latter provides optimal
theoretical guarantees on the regret (the difference between
its performance and that of the theoretical optimal solution)
without any need for parameter tuning.

Thus, to address the shortcoming of canonical DCOPs, we
develop Heist1, which combines the robustness and scala-
bility of decentralised coordination with the optimal explo-
ration/exploitation trade off that the MAB algorithms pro-
vide. Heist solves MAB–DCOPs, an extension of canoni-
cal DCOPs, in which each local utility function becomes a
MAB. This effectively models both the stochastic nature of
realistic decentralised coordination problems, as well as the
absence of a priori knowledge. Unlike a DCOP, a MAB–
DCOP is not a single shot optimisation problem, but rather
a sequential problem in which agents need to coordinate
their joint actions over multiple time steps, so as to maximise
the cumulative global utility received over a finite time hori-
zon. Heist achieves this by repeatedly choosing the joint
action with the highest estimated upper confidence bound
(UCB) on the sum of local utilities received in a single time
step, which is a non-linear combination of the confidence
bounds on the local utilities. Heist optimally computes
this joint action using a message passing algorithm known
as generalised distributive law (GDL) [1]. The GDL algo-
rithm has been shown to be very efficient for solving various
factorisable optimisation problems, such as the one we face
in this paper. By using the GDL to maximise the UCB in
a decentralised fashion, Heist is computationally efficient,
and provides optimal asymptotic bounds on the regret of the
global cumulative performance.

In more detail, this paper contributes to the state of the
art as follows:

• We introduce MAB–DCOPs, a new formalism to rep-
resent decentralised coordination problems with stochas-
ticity and the absence of a priori knowledge about lo-
cal utility functions.

1Heist coordinates a group of bandits, hence its name.

• We develop Heist, a novel algorithm to solve MAB–
DCOPs, and prove that it provides optimal asymptotic
bounds on the regret of the global cumulative utility.

• We empirically evaluate Heist in a reproducible con-
trolled environment, and show that it outperforms other
state of the art techniques from the MAB and DCOP
literature (among which max-sum and ε-first) by up
to 1.5 orders of magnitude on MAB–DCOPs.

The remainder of this paper is structured as follows. In
Section 2 we discuss related work on MABs and DCOPs. In
Section 3 we formally define MAB–DCOPs. In Section 4,
we present Heist, empirically evaluate it in Section 5, and
conclude in Section 6.

2. PRELIMINARIES
As discussed in the introduction, our approach lies on the
nexus of DCOPs and MABs. Therefore, in this section we
discuss these two bodies of literature in more detail.

2.1 DCOPs
Decentralised coordination problems can be encoded as DCOPs,
which are defined as follows:

Definition 1. A DCOP is a tuple 〈A,X,D,U, F 〉 where:

• A = {1, . . . , |A|} is a set of agents.

• X = {x1, x2, . . . , xn} is a set of variables.

• D = {D1, . . . , Dn} is a set of finite domains, where Di

is the domain of variable xi.

• F : X → A is a function that assigns variables to
agents. Each agent controls (the value of) the variables
that are assigned to it.

• U = {U1, . . . , Um} is a set of local utility functions
defined over a local scope xj ⊆ X, which assigns a real
value to each assignment to xj.

2

The solution of a DCOP is an assignment X∗ to variables
X that maximises the sum of the utility functions:

X∗ = argmax
X

m
∑

j=1

Uj(xj) (1)

Many algorithms have been developed to solve DCOPs.
Some of these [15, 14] exploit the generalised distributive
law (GDL) to achieve computation and communication ef-
ficiency [1]. The GDL message passing algorithm exploits
the factorisability of a broad class of optimisation problems
(which includes DCOPs) in order to solve them in an ef-
ficient and decentralised manner. A defining property of
these problems is that the valuation algebra of their global
objective function is a commutative semi-ring, an algebraic
structure which is defined as follows:

Definition 2. A commutative semi-ring is a triple 〈R,⊕,⊗〉,
where R is a non-empty set and ⊕ and ⊗ are two (abstract)
binary associative and commutative operators over R, such
that ⊗ distributes over ⊕. Furthermore, there exists an iden-
tity element 0 ∈ R such that x ⊕ 0 = x for all x ∈ R, and
an identity element 1 ∈ R such that x⊗1 = x for all x ∈ R.

2In the DCOP literature, these are also known as constraint
functions.



The objective functions of the typology of problems solved
by the GDL can be defined in terms of operators ⊕ and ⊗, a
set of variablesX and a set of functions U , similar to those in
Definition 1. They can be encoded as factor graphs [7], undi-
rected bipartite graphs in which vertices represent variables
X and functions U , and edges encode the “is a parameter
of” relation. The decentralised GDL message passing algo-
rithm operates directly on a factor graph, and consists of
two separate algorithms (Algorithms 1 and 2), one for each
type of factor graph vertex. Algorithm 1 performs the com-
putation associated with variables, and is executed by agent
F (xi) that controls variable xi, while Algorithm 2 performs
the computation associated with functions, and is executed
by one of the agents whose variables are a parameter of Uj .

Algorithm 1 The GDL algorithm for variable xi. M(i) is
the set of indices of neighbouring functions. Rj→i(xi) is a
message from function Uj computed in Algorithm 2

1: procedure GDL Variable(i)
2: while stopping condition has not been met do
3: for all j ∈ M(i) do ⊲ For all adjacent functions
4: if |M| = 1 or no messages received yet then
5: Send Qi→j(xi) = 1 to Uj

6: else
7: Send Qi→j(xi) =

⊗

k∈M(i)\j

Rk→i(xi) to Uj

8: end if
9: end for
10: Wait for new messages from all Uj : j ∈ M(i)
11: end while
12: return Zi(xi) =

⊗

j∈M(i)

Rj→i(xi)

13: end procedure

Algorithm 2 The GDL algorithm for function Uj . N (j) is
the set of indices of neighbouring variables. Qi→j(xi) is a
message from variable xi computed in Algorithm 1.

1: procedure GDL Function(j)
2: while stopping condition has not been met do
3: Wait for new messages from all xi : i ∈ N (j)
4: for all i ∈ N (j) do ⊲ For all adjacent variables
5: Send to xi message Rj→i(xi) =

⊕
xj\xi



Uj(xj)⊗
⊗

k∈N (j)\i

Qk→j(xk)





6: end for
7: end while
8: end procedure

The following theorem is a fundamental property of the
GDL message passing algorithm:

Theorem 1. If the factor graph is acyclic and the stop-
ping criterion is chosen such that the algorithm is run for
a number of iterations equal to the diameter of the factor
graph, the following equation holds for each variable xi ∈ X:

Zi(xi) = ⊕
X\xi

m
⊗

j=1

Uj(xj) (2)

For proof of this theorem, see [11] (Chapter 26) and [1] (The-
orem 3.1). The same result can be obtained for cyclic factor
graphs by first transforming these into junction trees and us-
ing a slightly modified formulation of this algorithm [1]. For

ease of exposition, in this paper we only consider acyclic fac-
tor graphs, in the knowledge that our algorithms and results
also apply to junction trees with minimal modifications.

By instantiating the GDL algorithm for the max-sum com-
mutative semi-ring 〈R,max,+〉, we obtain an algorithm for
solving DCOPs (this algorithm is known as max-sum [15]).
To see why this is the case, note that Equation 2 becomes:

Zi(xi) = max
X\xi

m
∑

j=1

Uj(xj) (3)

This is the maximum marginal global utility that can be
obtained for each assignment to variable xi. As a direct
consequence of this, setting x∗

i = argmaxxi
Zi(xi) yields

the variable assignment that maximises Equation 1. Note
that this is only the case if the optimal solution is unique. If
not, the solution can be made unique by adding small ran-
dom values to the utility functions [15] (this is the method
used in our experiments), or an additional utility propaga-
tion phase may be used [14]. We return to the GDL algo-
rithm in Section 4 when we present Heist, which uses the
GDL algorithm instantiated for a special semi-ring designed
to maximise the upper confidence bound on received utility.

2.2 Multi–Armed Bandits
A MAB is a slot machine with K arms, each of which de-
livers rewards drawn from an unknown distribution. The
agent’s goal is to choose which arms to pull so as to max-
imise expected cumulative reward over a finite time horizon
T . In more detail, let P be a pulling policy (a sequence
of pulls), and i(t) denote arm chosen at time t by P , and
ri(t)(t) the reward received by pulling that arm at time t.
Then, we can formalise the agent’s goal as follows:

P ∗ = argmax
P

T
∑

t=1

ri(t)(t) (4)

where P is the set of all possible policies. Clearly, if the
reward distributions of each arm were known, the optimal
policy would be to always pull the arm with the highest
expected reward. This hypothetical scenario sets a perfor-
mance benchmark known as regret against which to compare
any policy. The regret RP (T ) of a policy P after T time
steps is the difference between the expected reward of the
theoretical optimal policy and that obtained by P :

RP (T ) =
T
∑

t=1

[µ∗ − µ(i(t))] (5)

where µ(i) is the expected reward of arm i and µ∗ = maxi µ(i).
As mentioned in the introduction, there exist a number of

pulling policies for minimising regret. Among these, UCB is
one of the most widely used, since it is non-parametric and
achieves asymptotically optimal regret. In more detail, UCB
pulls each arm once at the beginning, then at each subse-
quent time step t, UCB selects arm i∗(t) with the maximum
upper confidence bound on the expected reward:

i∗(t) = argmax
i∈[1,K]

[

µ̂(i, t) +

√

2 ln t
(umax − umin)2

n(i, t)

]

(6)

where µ̂(i, t) is the sample mean of the rewards of arm i
received until t, and n(i, t) is the number of times UCB
pulled arm i before time step t. UCB assumes the support
of the reward function is bounded, i.e. ri(t) ∈ [umin, umax].



Figure 1: The MAB–DCOP from Example 1

The two terms in Equation 6 determine the trade off be-
tween exploration and exploitation. The larger the first, the
more exploitation is favoured, since it is an estimate of the
expected reward of arm i. The larger the second, the more
exploration is favoured, since it represents the uncertainty in
this estimate. In Section 4, we show how Heist generalises
the UCB algorithm to maximise the sum of rewards received
from multiple (local) MABs in a MAB–DCOP and trades off
exploration and exploitation in a decentralised fashion.

3. MAB–DCOPS
A MAB–DCOP is a DCOP where each utility function Uj

is replaced by a MAB, such that each joint assignment xj ∈
Dxj

of the agents connected to that MAB becomes an arm
of that bandit. Thus, in a MAB–DCOP, there is no a pri-
ori knowledge about the utility functions that govern the
agents’ interactions, and these interactions are subject to
stochasticity. In more detail, for each j ∈ {1, . . . ,m}, the
utility Uj (xj) obtained by choosing xj ∈ Dxj

is drawn
from an unknown, but fixed, distribution, with (unknown)
expected value µ (xj), and bounded support [umin, umax].
The agents’ goal is to choose an optimal joint assignment
X∗(t) = 〈x∗

1(t), . . . , x
∗
n(t)〉 at each time t, such that the

expected cumulative utility over a finite time horizon T is
maximised:

[X∗(1), . . . , X∗(T )] = argmax
X(1),...,X(T )

E

[

T
∑

t=1

m
∑

j=1

Uj(xj(t))

]

= argmax
X(1),...,X(T )

T
∑

t=1

m
∑

j=1

µ(xj(t)) (7)

where xj(t) is the chosen assignment to xj at time t. To
illustrate MAB–DCOPs, consider the following example.

Example 1. Consider the MAB–DCOP in Figure 1 with
two binary variables x1 and x2, and two functions U1(x1)
and U2(x2), at time t = 10. Utility functions are represented
as tables, each cell of which has a tuple (µ̂(xj , t), n(xj , t)),
where µ̂(xj , t) is the sample mean of the utility received for
the assignment xj at t, and n(xj , t) is the number of times
that assignment has been sampled. Given the current sample
means, assignment (x1 = 0, x2 = 0) seems to be optimal.
However, (x1 = 0, x2 = 1) could be the real optimal, since
U1(0, 1) and U2(1) have only been sampled at most twice.

As this example suggests, to solve MAB–DCOPs, agents
need to coordinate over the assignments to variables X at
each time step, in order to trade off exploration (reducing
uncertainty about the expected utility of each joint assign-
ment) and exploitation (using the joint assignment that is
believed to maximise reward).

Similar to MABs, we can define the regret of a coordina-
tion algorithm in a MAB–DCOP as a measure of the per-
formance of a particular algorithm. In more detail, let A =
XA(1), XA(2), . . . denote a coordination algorithm that choo-
ses joint assignment XA (t) = 〈xA

1 (t), . . . , x
A
n (t)〉 at time t.

The regret RA (T ) for T time steps can be formalised as:

RA (T ) = T ·max
X

m
∑

j=1

µ(xj)−
T
∑

t=1

m
∑

j=1

µ
(

x
A
j (t)

)

(8)

Heist, which is described next, is an algorithm that en-
ables agents to make the trade off between exploration and
exploitation in a principled manner by provably achieving
an asymptotically optimal regret.

4. THE HEIST ALGORITHM
In this section, we present Heist, an algorithm for solv-
ing MAB–DCOPs with asymptotically optimal regret. Us-
ing Heist, agents coordinate at each time step to identify
the best joint assignment to variables X, i.e. the arms that
should be pulled on the local MABs (functions U) to min-
imise regret over time horizon T . In more detail, at each
time step t, Heist uses a GDL message passing phase to
find the joint assignment X∗(t) that maximises the UCB
on the received utility. The formulation of this UCB is dif-
ferent from the UCB given in Equation 6—in fact, it is a
generalisation—since the objective in a MAB–DCOP is to
maximise the sum of rewards of multiple local MABs, in-
stead of a single MAB:

X∗(t) = argmax
X





m
∑

j=1

µ̂(xj , t) +

√

√

√

√2 ln t
m
∑

j=1

(urange)2

n(xj , t)





(9)
Here, µ̂(xj , t) is the sample mean at time t of the utility
obtained by assignment xj from MAB Uj , n(xj , t) is the
number of times a specific assignment to xj was made, and
urange = umax − umin.

Example 2. In Example 1, X∗(10) = (x1 = 0, x2 =

1), with a UCB equal to 7 +
√

2 ln(10)
(

1 + 1
2

)

, assuming

urange = 1.

Calculating joint action X∗(t) in Equation 9 is not trivial.
For instance, this problem cannot be solved using a DCOP
algorithm, since the objective function is not decomposable
into a sum of factors (i.e. it is non-linear). As a result, the
application of a canonical DCOP algorithm to this prob-
lem can lead to sub-optimality [10] (which we will show in
the empirical evaluation). In contrast, Heist is optimal by
applying GDL to the GDL–UCB semi-ring, a special semi-
ring, which is guaranteed to preserve the joint assignment
with the optimal UCB.

Now, at each time t, Heist proceeds in two steps. First, it
uses GDL instantiated for the GDL–UCB semi-ring to com-
pute the maximum marginal UCB of each variable assign-
ment — the maximumUCB that can be achieved for each as-
signment to an individual variable—in a decentralised fash-
ion. Second, each agent uses the result of the first step to
choose the variable assignments for the variables it controls
that maximise the global UCB in Equation 9.

Before proceeding, with slight abuse of notation, we change
the signature of local utility functions to output tuples of
the form: Uj(xj , t) = (µ̂(xj , t), b(xj , t)

2). Here, µ̂(xj , t) is
the sample mean of assignment xj ∈ Dxj

at time t and

b(xj , t) = urange

√

2 ln t/n(xj , t) is its (local) upper confi-
dence bound t (cf. the two terms in Equation 6).

Heist is split up into two algorithms, one for variables
(Algorithm 3) and one for functions (Algorithm 4). Before



Algorithm 3 The Heist message passing algorithm for
variable xi

1: tmin := maxk∈[1,m] |Dxk
| ⊲ Wait for initial samples (line 7)

2: for t = tmin + 1 to T do ⊲ For each joint pull
3: Zi(xi) = GDL Variable(i) ⊲ See Algorithm 1

4: Set x∗
i (t) := argmax

xi

[

max
(µ̂,b2)∈Zi(xi)

(µ̂+ b)

]

5: Send message sample(x∗
i (t)) to all Uj : j ∈ M(i)

6: end for

Algorithm 4 The Heist message passing algorithm for
function Uj . Line numbering continued from Algorithm 3.

7: for each xj ∈ Dxj
, sample Uj(xj) once

8: tmin := maxk∈[1,m] |Dxk
|

9: for t = tmin + 1 to T do ⊲ For each joint pull
10: execute GDL Function(j) ⊲ See Algorithm 2
11: Wait for sample(x∗

i (t)) messages from all xi : i ∈ N (j)
12: Pull arm x∗

j (t) = {x∗
i (t) | i ∈ N (j)}

13: Update sample mean µ̂(x∗
j , t) and sample count n(x∗

j , t)

14: end for

communication commences, functions first sample the utility
for their local domains (line 7) which takes maxk∈[1,m] |Dxk

|
time steps. This is analogous to the UCB algorithm, which
pulls each arm once at the start. Then, functions and vari-
ables execute the GDL message passing algorithm (lines 2
and 8) instantiated for the GDL–UCB semi-ring, which is
defined as follows:3

Definition 3. The GDL–UCB semi-ring is a semi-ring
〈R,max≻,+++〉 such that:

• R = P(R × R) a set of sets4 of tuples, which have
the same signature as the tuples output by functions
Uj—the first element of each tuple is a sample mean
µ̂, and the second is a squared bound b2. The identity
elements are 0 = {(−∞,−∞)} and 1 = {(0, 0)}.

• max≻ is an operator that takes multiple sets S1, . . . , Sk ⊆
R as input and outputs a set S′ such that:

S′ = max≻(S) =

{

s ∈
k
⋃

i=1

Si | ∀s
′ ∈

k
⋃

i=1

Si : s
′ 6≻ s

}

Operator max≻ filters out so-called dominated tuples
from sets S1, . . . , Sk—those that cannot maximise the
global UCB. Domination is formally defined by binary
operator ≻ such that (µ̂1, b

2
1) ≻ (µ̂2, b

2
2) iff:

(µ̂1 − µ̂2 > b2 − b1)∧
(

µ̂1 − µ̂2 >
√

b22 + u2
range2 ln t−

√

b21 + (urange)22 ln t

)

∧

(

µ̂1 − µ̂2 >

√

b22 + u2
range

2 ln t

t
−

√

b21 + (urange)2
2 ln t

t

)

• +++ is a binary operator such that if S1, S2 ∈ R, then
S1+++S2 = {(µ̂1+µ̂2, b

2
1+b22) | ∀(µ̂1, b

2
1) ∈ S1,∀(µ̂2, b

2
2) ∈

S2}. Thus, +++ sums all pairs of tuples in S1 and S2.

As a consequence of the non-linearity of the objective
function in Equation 9, choosing the assignment that max-
imises the sum of UCBs on local utility, does not (neces-
sarily) produce optimality of the UCB on the sum of local

3Proofs of correctness and explanation of the operators can
be found in the Appendix.
4Here, P(S) denotes the powerset of set S.

utilities. Thus, we cannot simply discard one tuple (µ̂1, b
2
1)

in favour of tuple (µ̂2, b
2
2) if µ̂1+ b1 < µ̂2+ b2. This problem

is addressed by the definition of the max≻ operator, which
is designed to discard only those tuples that are guaranteed
to lead to global sub-optimality. As a result, it imposes a
partial order over tuples to preserve the tuple that produces
global optimality.

Executing the GDL algorithm on the GDL–UCB semi-
ring yields the marginal function Zi(xi) for each variable xi

(line 3). It can be proved that for each assignment xi ∈ Di,
the set Zi(xi) contains a tuple (µ̂, b2), such that µ̂ + b is
the maximum achievable global UCB given that assignment
(Theorem 2). Using this marginal function Zi(xi), the sec-
ond phase of Heist first computes the maximum UCB for
each assignment xi (line 4, expression between brackets) and
then selects the assignment with the maximum UCB (re-
mainder of line 4). Then, in line 5, each variable informs
adjacent functions of its assignment, after which all func-
tions sample assignments (line 12).

Example 3. The following demonstrates the operation of
Heist on a single time step (t = 10) of the MAB–DCOP
from Example 1. Let c = 2 ln(10), and urange = 1.

GDL Iteration 1:

Q1→1(x1) = Q2→1(x2) = Q2→2(x2) = {(0, 0)}

R1→1(0) = {(5, c)}, R1→1(1) = {(2, c/3), (1.1, c)}

R1→2(0) = {(3, c/5)}, R1→2(1) = {(5, c)}

R2→2(0) = {(5, c/8)}, R1→2(1) = {(2, c/2)}

GDL Iteration 2:

Q1→1(x1) = (0, 0), Q2→1(x1) = R2→2(x1), Q2→2(x1) = R2→1(x1)

R1→1(0) = {(7, c(1 + 1/2))}, R1→1(1) = {(7, c(1/3 + 1/8))}

R1→2(0) = {(3, c/5)}, R1→2(1) = {(5, c)}

R2→2(0) = {(5, c/8)}, R1→2(1) = {(2, c/2)}

At this point, GDL has converged. We can now calculate
the marginals Zi(xi):

Z1(0) = (7, 2 ln(10)(1 + 1/2)), Z1(1) = (7, 2 ln(10)(1/3 + 1/8))

Z2(0) = (8, 2 ln(10)(1/5 + 1/8)), Z2(1) = (7, 2 ln(10)(1 + 1/2))

By calculating the UCB associated with these tuples, we

obtain x∗
1 = 0, x∗

2 = 1, with a UCB of 7+
√

2 ln(10)
(

1 + 1
2

)

,

which indeed maximises Equation 9 (cf. Example 2).

For the GDL message passing phase of Heist, we can derive
the following result:

Theorem 2 (Main result 1). If the factor graph is
acyclic and the stopping criterion is chosen such that GDL
message passing phase is run for a number of iterations that
is equal to the diameter of the factor graph, the following
equation holds for each t > maxk∈[1,m] |Dxk

|:

max
(µ̂,b2)∈Zi(xi)

(µ̂+b) = max
X\xi





m
∑

j=1

µ̂(xj , t) +

√

√

√

√2 ln t
m
∑

j=1

(urange)2

n(xj , t)





Put differently, Theorem 2 states that, after the initial pulls,
set Zi(xi) contains the tuple that yields the marginal maxi-
mum UCB that can be obtained for each assignment to xi,
i ∈ [1, n]. As a direct consequence, line 12 pulls the arm on
each function with the highest overall UCB (Equation 9).
This observation leads to the following theorem:



Theorem 3 (Main result 2). Suppose the factor graph
is acyclic and the stopping criterion is chosen such that
GDL message passing phase is run for a number of iter-
ations that is equal to the diameter of the factor graph at
every time t. Let XE = argmaxX

∑m

j=1 µ(xj) be the joint

assignment that maximises the (unknown) expected utility.
Let d (X) = µ

(

XE
)

− µ (X) denote the difference between

the expected utility of the optimal action XE and that of a
particular joint action X. Given this, the cumulative regret
RHeist(T ) of Heist after T time steps is at most:

∑

X 6=XE

urange8 lnT

d (X)
+

(

1 +
π2

3

)

∑

X 6=XE

d (X) (10)

Based on this result, we can show thatHeist provides asymp-
totically optimal regret bounds, by comparing against best
achievable regret:

Theorem 4 (Main result 3). For any algorithm, there
exists a constant C ≥ 0, and a particular instance of the
MAB–DCOP problem, such that the regret of that algorithm
within that particular problem is at least C lnT .

Thus, the regret bound of Heist (Equation 10) only differs
from the best possible with a constant factor. The proofs of
the theorems can be found in the Appendix.

5. EMPIRICAL EVALUATION
In the previous section, we proved that the regret achieved
by Heist is guaranteed to be a constant factor away from
the optimal. However, further empirical analysis is needed
to gauge Heist’s practical performance, in terms of solution
quality as well as communication and computation overhead.
Moreover, such analysis can focus on the algorithm’s perfor-
mance when the GDL phase of the algorithm is not run until
convergence, one of the conditions for optimality in Theo-
rem 3. Instead, the number of iterations c of the GDL phase
can be a parameter for tuning the trade off between solu-
tion quality and overhead (i.e. computation and communica-
tion). Note that it is not the objective of these experiments
to study the properties of MAB–DCOPs and Heist across
all possible probability distributions, and instantiations of
the utility function U . Due to space constraints, we would
not be able to do justice to the requirements of different ap-
plication domains, and the specific configurations of Heist.
This is left for future work.

Therefore, in this section, we benchmark several versions
of Heist against existing approaches, taken from the state
of the art in the MAB and DCOP literature. Specifically,
we compare Heist against the following algorithms:

HEIST-c a version of Heist where the GDL message pass-
ing phase is run for c iterations. When taking joint ac-
tions is cheap compared to communication, or when ac-
tion is required before the GDL message passing phase
is able to converge, c can be set to a value smaller than
the diameter of the factor graph. In this case, optimal-
ity is no longer guaranteed, but it can lead to a good
trade off between communication and solution quality.

ε-first an algorithm that samples from the utility functions
(exploration) for the first εT time steps, and picks the
one that is believed to be optimal (exploitation) for
the remaining (1 − ε)T time steps. At the start of
the exploitation phase, this algorithm runs a standard
DCOP algorithm (max-sum) once to find the joint as-
signment that maximises the sum of the sample means

of the local utilities. Using a DCOP algorithm in this
way is equivalent to using E-DPOP [9] on a problem
where each local assignment xj for j ∈ [1, m] is mod-
elled by a single random variable. Thus, ε-first can
be considered as E-DPOP applied to a MAB–DCOP.
To perform well, ε needs to be tuned for each prob-
lem instance [3, 16]. After initial tests, we found that
ε = 0.02 leads to good performance for the problems
described below.

Monolithic UCB the (centralised) UCB algorithm that
considers a MAB–DCOP as a single “monolithic”MAB
with

∏n

i=1 |Di| arms.
Max-Sum a standard DCOP algorithm, applied to a DCOP

in which the objective is to compute X+(t) at every
t ∈ [1, T ], such that:

X+(t) = argmax
X

m
∑

j=1

[

µ̂(xj , t) +

√

(urange)22 ln t

n(xj , t)

]

(11)
By solving this DCOP, the sum of UCBs on local util-
ities is maximised, instead of the UCB on the sum of
utilities (Equation 9). Since the latter is clearly not
linear, Equations 9 and 11 are not equivalent (except
for m = 1). As a result, this decomposition leads to
loss of optimality in the sense of Theorem 4. Léauté et
al. observed a similar result for their (incomplete) algo-
rithm when using a linear decomposition to maximise
non-linear objective functions [10].

The ε-first and max-sum algorithms are included to demon-
strate that standard DCOP algorithms are unsuitable for
solving MAB–DCOPs, while the Monolithic UCB algorithm
is included to demonstrate the need for exploiting the fac-
torisability of a MAB–DCOP.

We randomly generated MAB–DCOP instances that can
be encoded as acyclic factor graphs, with n = 15 and m =
14, and |Di| = 3. Each utility function Uj(xj) is governed
by a set of normal distributions, one for each assignment to
xj . In more detail, Uj(xj) ∼ N (µ(xj), σ

2(xj)), where µ(xj)
and σ2(xj) are uniformly drawn from intervals [0, µmax] and
[0, 1] respectively. Parameter µmax is used to control the rel-
ative importance that needs to be given to exploration and
exploitation. When µmax is decreased, the received utili-
ties become more noisy and the balance should be shifted
towards exploration. Conversely, when µmax is increased,
the optimal joint action becomes more easily identifiable,
and agents start exploitation quite early on. For our experi-
ments, we chose µmax = 1 and µmax = 10. These values were
chosen during initial calibration to yield two sets of difficult
problems, which simultaneously demonstrate the difference
in required emphasis between exploration and exploitation.

The results are shown in Figures 2 and 3 for µmax = 1 and
µmax = 10 respectively. Each algorithm was run 64 times
on both problem classes to obtain statistically significant re-
sults. Error bars indicate the standard error of the mean.
Monolithic UCB is omitted from all figures, because its re-
gret converged approximately a factor of 315 slower than
Heist. This was expectated, as it regards the problem as a
MAB with 315 arms, instead of 14 MABs with 9 arms each.

Now, Figures 2(a) and 3(a) show the average regret for
the remaining algorithms, while Figures 2(b) and 3(b) show
the number of average suboptimal assignments. As can be
observed from these figures, Heist and Heist-4 outperform
all others in terms of regret (up to 1.5 orders of magni-
tude for µmax = 10). We found that for c ≥ 8, the per-
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(b) Suboptimal joint assignments
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(c) Message size

Figure 2: Empirical results for µmax = 1
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(c) Message size

Figure 3: Empirical results for µmax = 10

formance of Heist (which was run for 30 iterations to en-
sure convergence) and Heist-c coincide, indicating that the
algorithm performs well even when conditions of Theorem
2 are not met. Max-sum—and indeed any algorithm that
solves Equation 11—is clearly suboptimal, as its regret does
not converge to zero, and it consistently produces subopti-
mal assignments. The fact the regret of max-sum increases
is counter intuitive. However, additional experimentation
showed that for smaller problem instances, the difference
between Heist and max-sum is much smaller, and their per-
formance often coincides for problems with m < 5, while for
m = 50, the difference in regret at T = 10000 was found to
be more than 3 orders of magnitude. This leads us to be-
lieve that for larger problems, the non-linearity of Equation
9 is more pronounced, increasing the difference between the
regret associated with assignments X+(t) and X∗(t). The
regret of the second DCOP based technique, ε-first, does
converge to zero, but at a much slower pace than Heist.
Based on these results, we can conclude that both DCOP
techniques are unsuitable for solving MAB–DCOPs.

Focusing on communication overhead, Figures 2(c) and
3(c) show the cumulative message size expressed as the num-
ber of floating point values exchanged between the agents.
Compared to ε-first (which needs a negligible number of mes-
sages to coordinate once) and max-sum (which exchanges
scalars, instead of sets of tuples), Heist requires more com-
munication. However, a good balance can be struck be-
tween solution quality and communication by reducing c to
4. Moreover, note that Heist requires each agent to ex-
change only 600 values per iteration of the MAB–DCOP,
a value that is well within the capabilities of bandwidth
constrained embedded agents. Finally, the computation re-
quired by Heist to solve problem instances with n = 50 and
T = 20000 never exceeded 4 hours on a standard desktop
PC, which is less than 200ms per agent per iteration. Again,
this is well within the reach of embedded agents.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we developed Heist, a novel algorithm for
coordination under stochasticity and the absence of a pri-
ori knowledge about the utility functions that govern the
agents’ interactions. Heist solves MAB–DCOPs, an exten-
sion to the canonical DCOP framework, in which the local
utility functions are transformed into MABs. By so doing,
a MAB–DCOP becomes a sequential problem, instead of
a single-shot optimisation problem, in which agents’ need
to trade off exploration and exploitation in a decentralised
fashion. We formalised this trade off as a problem of max-
imising the UCB on the global utility, which we showed is
a non-linear objective function. While previous algorithms
have been shown to be incomplete, i.e. are not guaranteed to
maximise such functions, Heist is provably optimal. This
is achieved by applying the GDL message passing algorithm
on the GDL–UCB semi-ring, which is specifically designed
to preserve the optimal joint variable assignment. We prove
that the regret of Heist is asymptotically optimal, i.e. it
only differs from the optimal achievable regret by a con-
stant factor. In addition, empirical results demonstrate that
Heist outperforms state of the art DCOP and MAB algo-
rithms by up to 1.5 orders of magnitude.

For future work, we intend to further reduce the commu-
nication overhead of Heist. In the empirical results, we al-
ready applied a technique for achieving this (Heist-c), but
this technique no longer carries the guarantee of optimal-
ity. Instead, we can let Heist automatically calibrate the
amount communication to suit the level of dynamism in the
environment, while maintaining optimality.
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[9] T. Léauté and B. Faltings. E[DPOP]: Distributed
constraint optimization under stochastic uncertainty using
collaborative sampling. IJCAI–09 DCR Workshop, pages
87–101, 2009.
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Appendix – Proofs

Proof sketch of Theorem 2. We first show that op-
erator max≻ filters out tuples that cannot maximise the
global UCB. In particular, if there is at least one incom-
ing message, then (µ̂2, b

2
2) is dominated by (µ̂1, b

2
1) if and

only if for any incoming tuple (µ̂3, b
2
3), µ̂1+ µ̂3+

√
b1 + b3 >

µ̂2 + µ̂3 +
√
b2 + b3 holds. This implies that µ̂1 − µ̂2 >√

b2 + b3 −
√
b1 + b3. By definition, b3 = urange

√

2 ln t
n3(t)

at

time t, where n3(t) is the number of samples included in
µ̂3. Note that 1 ≤ n3(t) ≤ t, and can take any arbi-
trary value within this interval. That is, u2

range
2 ln t

t
≤ b23 ≤

u2
range2 ln t. This implies that if at least one among the sec-

ond or the third clause in the definition does not hold, then
tuple (µ̂2, b

2
2) cannot be discarded (i.e. it is not dominated

by tuple (µ̂1, b
2
1). In addition, if there are no incoming mes-

sages, then breaking the first clause indicates that (µ̂2, b
2
2)

cannot be discarded either. That is, (µ̂2, b
2
2) is dominated

by (µ̂1, b
2
1) iff all the clauses hold.

The proof of the claim that the GDL message passing
phase yields Zi(xi), the maximum marginal UCB for each
assignment, follows a similar argument to that of Theorem
3.1 in [1], and thus, is omitted for brevity. ✷

Proof sketch of Theorem 3. At each time t, after GDL
message passing has converged, the joint assignment with
the maximum UCB is chosen (see Theorem 2). Suppose
that each time t, Heist chooses joint assignment X∗(t) =
〈x∗

1(t), . . . , x
∗
n(t)〉. In what follows, we estimate the expected

number times X∗(t) 6= XE is chosen, in order to estimate
the regret of Heist. In particular, let NT (X) denote the
number of times Heist chooses suboptimal joint assignment
X 6= XE before T . By estimating NT (X), we can estimate
the number of times Heist chooses a suboptimal joint as-
signment, and thus, derive a bound on its regret. That is,

RHeist(T ) ≤
∑

X∈
∏

Di

NT (X)d(X) (12)

We provide an upper bound for E [NT (X)] as follows. Note
that E [NT (X)] can be estimated by the following sum:

E [NT (X)] ≤ k +

T
∑

t=1

P
(

X
∗(t) = X,X 6= X

E
, Nt−1 (X) ≥ k

)

(13)

The latter term can be further upper bounded by:

T
∑

t=1

P
(

µ̂(X(t), t) + b(X(t), t) ≥ µ̂(XE
, t) + b(XE

, t), Nt−1 (X) ≥ k
)

(14)

where b(X, t) =
√

2 ln(t)
∑m

j=1

(urange)2

n(xj ,t)
. Intuitively, the

probability that Heist chooses X∗(t) 6= XE can be bounded
by the probability that µ̂(X(t), t) + b(X(t), t) ≥ µ̂(XE, t) +
b(XE, t). This can be further bounded by:

T
∑

t=1

t
∑

sj=k

t
∑

s=k

P
(

µ̂(X(sj), sj) + b (X (sj) , sj) ≥ µ̂(XE
, s) + b(XE

, s)
)

(15)

Now, it is true that if µ̂(X(sj), sj) + b (X (sj) , sj) ≥ µ̂(XE, s) +

b(XE, s) holds then at least one of the following must hold:

1. µ̂
(

XE, s
)

+ b
(

XE, s
)

≤ µ
(

XE, s
)

.

2. µ (X(sj), sj) ≤ µ̂ (X(sj), sj) + b (X(sj), sj).

3. µ
(

XE, s
)

− µ (X(sj), sj) ≤ 2b(X(sj), sj).

This can be shown by using similar argument to that of
Theorem 1 in [3], and thus, is omitted for brevity. By using
McDiarmid’s inequality, we can show that both (1) and (2)

hold with probability t−4, and if k ≥ ⌈urange8 lnT

d(X)
⌉, then (3)

does not hold. This implies that:

E [NT (x)] ≤ k +

T
∑

t=1

t
∑

s=1

t
∑

sj=1

2t−4
≤ k +

π2

3
(16)

for any k ≥ ⌈urange8 lnT

dx
⌉. The last inequality is obtained

from the Riemann Zeta Function for value of 2. Finally,
substituting this into Equation 12 concludes the proof. ✷

Proof sketch of Theorem 4. We can reduce all stan-
dard MAB problems to a MAB–DCOP with m = 1. Ac-
cording to [8], the best possible regret that an algorithm
can achieve on standard MABs is C lnT . Therefore, if there
is an algorithm for MAB–DCOPs that provides better re-
gret than C lnT , then it also provides better regret bounds
for standard MABs. ✷


