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ABSTRACT
The Internet Engineering Task Force develops and promotes Inter-
net standards like TCP/IP. The chair of the Task Force is chosen by
an election which starts with a set of voters being selected at ran-
dom from the electorate of volunteers. Selecting decision makers
by lottery like this has a long and venerable history, having been
used in Athenian democracy over two millennia ago, as well as for
over 500 years from the 13th Century to elect the Doge of Venice.
In this paper, we consider using such lotteries in multi-agent de-
cision making. We study a family of voting rules called lot-based
voting rules. Such rules have two steps: in the first step, k votes are
selected by a lottery, then in the second round (the runoff), a voting
rule is applied to select the winner based on these k votes. We study
some normative properties of such lot-based rules. We also inves-
tigate the computational complexity of computing the winner with
weighted and unweighted votes, and of computing manipulations.
We show that for most lot-based voting rules winner determination
and manipulation are computationally hard. Our results suggest that
this general technique (using lotteries to selecting some voters ran-
domly) may help to prevent strategic behavior of the voters from a
computational point of view.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sciences–
Economics; I.2.11 [ Distributed Artificial Intelligence]: Multi-
agent Systems

General Terms
Algorithms, Economics, Theory

Keywords
social choice, voting, manipulation

1. INTRODUCTION
A central question in computational social choice is whether com-

putational complexity can protect elections from manipulation. For
certain voting rules it is NP-hard to compute a beneficial manipula-
tion. Modifications like hybridizing together voting rules have also
been proposed to make manipulations NP-hard to compute [8, 12].
Of course, NP-hardness results about the complexity of computing
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manipulations needs to be treated with caution since NP-hardness is
only a worst-case notion and “hard” instances may be rare. See [13,
15] for some recent surveys. Of course, if it is already computation-
ally hard for a manipulator to compute the winner, then intuitively
it is likely to be computationally hard also to find a beneficial ma-
nipulation. Indeed, there are voting rules like Kemeny’s, Dodgson’s
and Slater’s where just computing the winner is NP-hard [4, 1, 2,
9].

In this paper, we show that a simple form of non-determinism
also offers a potential escape from manipulation. We study a sim-
ple “tweak” to a voting rule that uses a lottery to select a subset
of the voters before applying the original voting rule. This tweak
is inspired by the election procedure for the Chair of the Internet
Engineering Task Force (IETF). The IETF develops and promotes
Internet standards like TCP/IP. Every two years, ten people are ran-
domly selected from among the 100 or so eligible volunteers to be
the voting members of the nominations committee. This committee
then nominates the new Chair using some (unspecified) voting rule.

Similar elections have been used in several other settings. For
instance, a complex election procedure involving multiple lotteries
was used to select the Doge of Venice for over 500 years. Lotter-
ies were also used in the election of the Archbishop of Novgorod,
one of the oldest offices in the Russian Orthodox Church. More re-
cently, a lottery was used in 2004 to select a Citizens’ Assembly on
Electoral Reform which then voted on changing British Columbia’s
provincial voting system. In 2006, Ontario ran a similar lottery
to decide on its provincial voting system. Several Spanish savings
banks use a lottery amongst their account holder to select an assem-
bly that then elects representatives for the account holders. Finally,
elections involving lotteries have also been proposed as a means to
reform both the British House of Lords, and the US House of Rep-
resentatives.

It has been suggested that lotteries are more democratic than elec-
tions since they are inherently egalitarian and arguably less corrupt-
ible [11]. On the other hand, lotteries are not without their issues.
For instance, the electorate needs to be confident in the randomness
of the selection process. To this end, the IETF has defined a robust,
general, public method for making random selections (RFC 3797 -
Publicly Verifiable Nominations Committee Random Selection).

Our contributions. We study a family of voting rules, called
lot-based rules, motivated by the election procedure used to select
the Chair of the IETF. Lot-based rules are composed of two steps:
in the first step, k votes are selected by a lottery, then in the sec-
ond step (the runoff), a voting rule (called the runoff rule) is applied
to select the winner based on these k votes. We study some nor-
mative properties of lot-based rules. We investigate the computa-
tional complexity of computing the winner of lot-based rules with
weighted and unweighted votes, respectively, and of computing a
manipulation. We show that for most lot-based voting rules win-



ner determination and manipulation are computationally hard. Our
results suggest that this general technique (using lotteries to select-
ing some voters randomly) prevents strategic behavior of the voters
from a computational point of view.

Related work. Lot-based rules are a type of randomized voting
rule. Gibbard [17] proved that when there are at least 3 candidates,
if a randomized voting rule satisfies Pareto optimality and a proba-
bilistic version of strategy-proofness, then it must be a probability
mixture of dictatorships (called random dictatorships). We note
that any random dictatorship is a lot-based rule, where k = 1, and
the runoff rule selects the top-ranked candidate as the winner when
there is a single vote.

Conitzer and Sandholm [8] and Elkind and Lipmaa [12] studied
another type of hybrid voting systems where manipulations are hard
to compute. Their systems have two steps: in the first step, a (pos-
sibly randomized) voting rule is used to rule out some candidates,
and in the second step another voting rule (not necessarily the same
as the one used in the first step) is used to select the winner from
the remaining candidates. We note that in the first step of their sys-
tems, some candidates are eliminated, while in the first step of our
lot-based rules, some voters are eliminated. In that sense, lot-based
rules can also be seen as a universal tweak that adds a pre-round
that randomly eliminates some voters, to make voting rules hard to
manipulate. It would therefore be interesting to consider even more
complex voting systems which do both.

Technically, the winner determination problem studied in this pa-
per is also closely related to the problem of constructive control by
adding/deleting votes (CCAV/CCDV) [5]. In the winner determina-
tion problem studied in this paper, we are given a lot-based rule, a
profile P , a candidate c, and a number 0 ≤ p ≤ 1. We are asked
to decide whether the probability for c to win is larger than p. In
CCAV we are also given a set of new votes P ′, and we are asked
whether c can be made win by adding no more than T votes in P ′.
In CCDV we are asked whether c can be made win by deleting no
more than T votes in P . Suppose for some voting rule, it is NP-hard
to compute CCDV where exactly T votes are deleted. Then, winner
determination for the corresponding lot-based rule is also NP-hard,
where |P | − T votes are randomly selected in the runoff, and we
are asked whether the probability for c to win is strictly larger than
0. On the other hand, an algorithm for the counting variant of CCAV
(that computes how many ways c can be made win by adding ex-
actly T votes in P ′) can be used to compute the probability for c to
win in P ′ for the corresponding lot-based rule, where T votes are
randomly selected in the runoff.

Finally, we note that for lot-based rules, it is easy for the chair to
compute the winner provided computing the winner for the runoff
rule is easy. This is different from a voting rule like Kemeny’s
where computing the winner of a given profile is hard. Whilst com-
puting the winner for lot-based rules is computationally easy, it is
nevertheless computationally hard to manipulate such rules. In or-
der for a manipulator to compute the benefits of a false vote, she
needs to compute the probability for a given candidate to win, which
we will show to be computationally intractable.

2. PRELIMINARIES
Let C = {c1, . . . , cm} be the set of candidates (or alternatives).

A linear order � on C is a transitive, antisymmetric, and total re-
lation on C. The set of all linear orders on C is denoted by L(C).
An n-voter profile P on C consists of n linear orders on C. That
is, P = (V1, . . . , Vn), where for every j ≤ n, Vj ∈ L(C). The
set of all n-profiles is denoted by Fn. We let m denote the num-
ber of candidates. A (deterministic) voting rule r is a function
that maps any profile on C to a unique winning candidate, that is,

r : F1 ∪ F2 ∪ . . . → C. A randomized voting rule is a func-
tion that maps any profile on C to a distribution over C, that is,
r : F1 ∪F2 ∪ . . .→ Ω(C), where Ω(C) denotes the set of all prob-
ability distributions over C. For any randomized scoring rule r, any
profile P , and any alternative c, (r(P ))(c) is the probability for c
to win.

For any profile P and any pair of candidates {c, d}, let DP (c, d)
denote the number of times that c � d in P minus the number of
times that d � c in P . The weighted majority graph (WMG) is
a directed graph whose vertices are the candidates, and there is an
edge between every pair of vertices, where the weight on c → d
is DP (c, d). We note that in the WMG of any profile, all weights
on the edges have the same parity (and whether this is odd or even
depends on the number of votes), and DP (c, d) = −DP (d, c).

The following are some common voting rules. If not mentioned
specifically, ties are broken in the fixed order c1 � c2 � · · · � cm.
• Positional scoring rules: Given a scoring vector of m integers,

~sm = (~sm(1), . . . , ~sm(m)), for any vote V ∈ L(C) and any c ∈ C,
we let ~sm(V, c) = ~sm(j), where j is the rank of c in V . For any
profile P = (V1, . . . , Vn), we let ~sm(P, c) =

∑n
j=1 ~sm(Vj , c).

The rule selects c ∈ C so that ~sm(P, c) is maximized. We assume
scores are decreasing. Examples of positional scoring rules are plu-
rality, for which the scoring vector is (1, 0, . . . , 0), majority which
is the special case of plurality in which m = 2, and Borda, for
which the scoring vector is (m− 1,m− 2, . . . , 0).
• STV: This rule requires up to m − 1 rounds. In each round,

the candidate with the least number of voters ranking them first is
eliminated until one of the remaining candidates has a majority.
• Approval: Each voter submits a set of candidates (that is, the

candidates that are “approved” by the voter). The winner is the
candidate approved by the largest number of voters. Every voter
can approve any number of candidates.
• Voting trees: A voting tree is a binary tree withm leaves, where

each leaf is labelled with a candidate. Each internal node is labelled
with the child candidate that wins a pairwise election. The candi-
date labelling the root of the tree (i.e. wins all its rounds) is the
winner. The rule that uses a balanced voting tree is the Cup rule.
• Copeland: We compare every pair of candidates. Each candi-

date gets 1 point every time it is preferred by more than half the
voters. The candidate with the highest total score wins.
•Maximin: A candidate’s score in a pairwise election is the num-

ber of voters that prefer it over the opponent. A candidate’s overall
score is the lowest score it gets in any pairwise election. The candi-
date with the highest overall score wins.
• Ranked pairs: We consider every pair of candidates in turn,

starting with the pair not yet considered in which there is the great-
est majority of voters who prefer the first candidate to the second.
We construct a ranking which fixes the first candidate above the sec-
ond unless, by transitivity, this contradicts a previous decision. The
candidate at the top of this ranking wins.

In this paper, when we define a linear order, we sometimes do
not explicitly specify the rankings among a set of candidates. In
such cases, the candidates are ranked according to ascending or-
der of their subscripts. For example, let m = 4, [c2 � Others]
represents the linear order [c2 � c1 � c3 � c4]. For any set
of candidates C, Rev(C) represents the linear order where candi-
dates in C are ranked according to the descending order of their
subscripts. For example, [c2 � Rev(Others)] represents the linear
order [c2 � c4 � c3 � c1].

3. LOT-BASED VOTING RULES
We define lot-based voting rules as follows.

DEFINITION 1. Let X denote a voting rule (deterministic or



randomized). We define a randomized voting rule LotThenX as
follows. Let k be a fixed number that is no more than the number
of voters. The winner is selected in two steps: in the first step, k
voters are selected uniformly at random, then, in the second step,
the winner is chosen by applying the voting rule X to the votes of
the k voters selected in the first step.

For instance, LotThenApproval is an instance of this rule in which
the set of voters is first reduced by a lottery, and then a winner is
chosen by approval voting. All lot-based rules are parameterized by
k, which is the number of randomly selected runoff voters. We em-
phasize that in the first step of lot-based rules, some voters are elim-
inated, while in the first step of voting systems studied by Conitzer
and Sandholm [8] and Elkind and Lipmaa [12], some candidates
are eliminated.

We first consider the axiomatic properties possessed by lot-based
voting rules. As the rules are non-deterministic, we need proba-
bilistic versions of the usual axiomatic properties.1

DEFINITION 2. A randomized voting rule r satisfies
• anonymity, if for any profile P = (V1, . . . , Vn), any permuta-

tion π over {1, . . . , n}, and any candidate c, we have r(P )(c) =
r(Vπ(1), . . . , Vπ(n))(c), where r(P )(c) is the probability of c in the
distribution r(P );
• neutrality, if for any profile P , any permutation M over C, and

any candidates c, we have r(P )(c) = r(M(P ))(M(c));
• unanimity, if for any profile P where all voters rank c in their

top positions, we have r(P )(c) = 1;
• weak monotonicity, if for any candidate c and any pair of pro-

files P and P ′, where P ′ is obtained from P by raising c in some
votes without changing the orders of the other candidates, we have
r(P )(c) ≤ r(P ′)(c);
• strong monotonicity (a.k.a. Maskin monotonocity), if for any

candidate c and any pair of profiles P = (V1, . . . , Vn) and P ′ =
(V ′1 , . . . , V

′
n), such that for every j ≤ n and every d ∈ C, c �Vj

d⇒ c �V ′
j
d, we have r(P )(c) ≤ r(P ′)(c);

• Condorcet consistency, if whenever there exists a candidate
who beats all the other candidates in their pairwise elections, this
candidate wins the election with probability 1.

When the voting rule is deterministic (i.e. the unique winner wins
with probability 1), all these properties reduce to their counterparts
for deterministic rules. The next two theorems show that LotThenX
preserves some (but not all) of the axiomatic properties of X .

THEOREM 1. If the voting rule X satisfies anonymity/ neutral-
ity/ (strong or weak) monotonicity/ unanimity, then for every k,
LotThenX also satisfies anonymity/ neutrality/ (strong or weak)
monotonicity/ unanimity.

The proofs are quite straightforward, and are omitted due to space
constraints. However, there are other properties that can be lost like,
for instance, Condorcet consistency.

THEOREM 2. LotThenX may not be Condorcet consistent even
when X is.

Proof: Suppose n = 2k + 1, k + 1 voters vote in one way and the
remaining k voters vote in the reverse order. The lottery may se-
lect only the votes of the minority, which means that the Condorcet
winner loses. 2

We note that when n = k, LotThenX becomes exactlyX . There-
fore, if X does not satisfy some axiomatic property, neither does
LotThenX .
1Definitions of the axiomatic properties for approval are omitted
due to the space constraints.

THEOREM 3. If LotThenX satisfies an axiomatic property for
every k, then X also satisfies the same axiomatic property.

4. COMPUTING THE WINNER
In the remainder of this paper, we focus on the case where k < n,

that is, when lot-based voting rules are non-deterministic. Hence,
even if we know all the votes, we can only give a probability in gen-
eral that a certain candidate wins. The EVALUATION problem we
study is defined similar to the evaluation problem defined in [10].

DEFINITION 3. In an EVALUATION problem, we are given a
lot-based rule r, a profile P , a number p in [0, 1], and a candidate
c. We are asked to compute whether (r(P ))(c) > p.

We note that in EVALUATION, the number of runoff voters k is a part
of the input. In this section, we show that lot-based voting rules may
provide some resistance to strategic behavior by making it compu-
tationally hard even to evaluate who may have won. In particular,
we show that there exist deterministic voting rules for which com-
puting the winner is in P, but EVALUATION of the corresponding
lot-based voting rule is NP-hard. As is common in computational
social choice, we consider both weighted voted with a small number
of candidates, and unweighted votes with an unbounded number of
candidates. Of course, even if EVALUATION is hard, the manipula-
tor may still be able to compute an optimal strategy in polynomial
time. This issue will be discussed in Section 5.

4.1 Weighted votes
With weighted votes, computing who wins the Cup or Approval

rule is polynomial. On the other hand, deciding if a candidate wins
LotThenCup or LotThenApproval with greater than some probabil-
ity is computationally intractable.

THEOREM 4. EVALUATION for LotThenCup is NP-hard when
votes are weighted and there are three or more candidates.

Proof: We give a reduction from a special SUBSET-SUM. In such a
SUBSET-SUM problem, we are given 2k′ integers S = {w1, . . . , w2k′}
and another integer W . We are asked whether there exists S ⊂ S
such that |S| = k′ and the integers in S sum up to W . We consider
the cup rule (balanced voting tree) where ties are broken in lexico-
graphical order. We only show the proof for three candidates; other
cases can be proved similarly. For any SUBSET-SUM instance, we
construct an EVALUATION for LotThenCup instance as follows.
Candidates: C = {a, b, c}. The cup rule has a play b and the
winner of this play c. Let k = k′ + 1.
Profile: For each i ≤ 2k′, we have a vote c � a � b of weight wi.
In addition, we have one vote b � a � c of weightW . We consider
the problem of evaluating whether candidate a can win with some
probability strictly greater than zero.

If the lottery does not pick b � a � c, then c wins for sure. If
the lottery picks the vote b � a � c, then there are three cases to
consider. In the first case, the sum of the weights of the other k′

votes is strictly less than W . Then, b beats a in the first round, so
a does not win. In the second case, the sum of the weights of the
other k′ votes is strictly more than W . Then, a beats b in the first
round, but then loses to c in the second round, so a does not win.
In the third case, the sum of weights of the other k′ votes is exactly
W . Then, a wins both rounds due to tie-breaking. Hence a wins
if and only if the sum of the weights of the remaining k′ votes is
exactly W . Thus the probability that a wins is greater than zero if
and only if there is a subset of k′ integers with sum W . 2



THEOREM 5. There is a polynomial-time Turing reduction from
SUBSET-SUM to EVALUATION for LotThenApproval with weighted
votes and two candidates.2

Proof sketch: Given any SUBSET-SUM instance {w1, . . . , w2k′}
and W , we construct the following two types of EVALUATION for
LotThenApproval instances: the profiles in both of them are the
same, but the tie-breaking mechanisms are different. For each i ≤
2k′, there is a voter with weight wi who approves candidate a. In
addition, there is voter with weight W who approves b. Let P de-
note the profile and k = k′+ 1. For any p ∈ [0, 1], we letA(p) (re-
spectively, B(p)) denote the EVALUATION instance where ties are
broken in favor of a (respectively, b), and we are asked whether the
probability that a (respectively, b) wins for P is strictly larger than
p. Then, we use binary search to search for an integer i such that

i ∈ [0,
(
2k′+1
k′

)
−
(

2k′

k′+1

)
] and the answers to bothA

(
1− i+1

(2k
′+1

k′+1 )

)
and B

(
i

(2k
′+1

k′+1 )

)
are “yes”. If such an i can be found, then the

SUBSET-SUM instance is a “yes” instance; otherwise it is a “no”
instance. 2

It follows that, with weighted votes and two candidates, if EVAL-
UATION for LotThenApproval is in P then P=NP.

4.2 Unweighted votes
When the number of candidates is bounded above by a constant,

computing the probability for a candidate to win for LotThenX is in
P for any anonymous voting ruleX . Algorithm 1 uses dynamic pro-
gramming, and exploits the fact that when the number of candidates
is bounded above by a constant, the number of different profiles of
n votes for anonymous voting rules is polynomial in n (no more
than nm!). For anonymous rules, it suffices to characterize a pro-
file by an m! dimensional vector (called a voting situation), where
each dimension corresponds to a linear order V , and the component
represents how many copies of V in the profile. For each natural
number t, we let Dt ⊆ Nm!

≥0 denote the set of all vectors whose
components sum up to t.

Algorithm 1: Evaluation
Input: LotThenX, a profile P ∈ Dn, a candidate c.
Output: The probability p(P ) for c to win.

1 for each Pt ∈ Dt do

2 Let p(P − Pt) =

{
1 if P − Pt ≥ ~0 and X(Pt) = c
0 otherwise

,

where (P − Pt) is a vector in Nm!
≥0 ;

3 end
4 for l = t− 1 to 0 do
5 for each Pl ∈ Dl do

6 Let p(P − Pl) =
∑
~e∈D1

1

m!
· p(P − Pl − ~e);

7 end
8 end
9 return p(P );

Even though Algorithm 1 runs in polynomial time, its complexity
is still very high in the worst case. For example, when m = 5,
Algorithm 1 runs in time Θ(n120). We next show that when the
number of candidates is unbounded, EVALUATION for LotThenX
is hard to compute for many common voting rules including Borda,
Copeland, Maximin and Ranked Pairs.
2The proof can be easily extended to any LotThenX where X is
the same as the majority rule when there are only two candidates.

THEOREM 6. With unweighted votes and an unbounded num-
ber of candidates, EVALUATION for LotThenBorda is NP-hard.

Proof: We prove the NP-hardness by a reduction from the EXACT
3-COVER (X3C) problem [16]. In an X3C instance, we are given
a set V = {v1, . . . , v3q} of 3q elements and S = {S1, . . . , St}
such that for every i ≤ t, Si ⊆ V and |Si| = 3. We are asked
whether there exists a subset J ⊆ {1, . . . , t} such that |J | = q and⋃
j∈J Sj = V .
For any X3C instance V = {v1, . . . , v3q} and S = {S1, . . . , St},

we construct an EVALUATION instance for LotThenBorda as fol-
lows.
Candidates: C = {c} ∪ V ∪D, where D = {d1, . . . , d3q2}. Let
k = q.
Profile: For each j ≤ t, we let Vj = [(S \ Sj) � c � D � Sj ].
The profile is P = (V1, . . . , Vt). We are asked to compute whether
the probability for c to win is larger than zero (p = 0).

Suppose the EVALUATION instance has a solution. Then, there
exists a sub-profile P ′ of P such that |P ′| = q and Borda(P ′) =
c. Let P ′ = (Vi1 , . . . , Viq ). We claim that J = {i1, . . . , iq}
constitutes a solution to the X3C instance. Suppose there exists
a candidate v ∈ V that is not covered by any Sj where j ∈ J .
Then, v is ranked above c in each vote in P ′, which contradicts the
assumption that c is the Borda winner.

Conversely, let J = {i1, . . . , iq} be a solution to the X3C in-
stance. Let P ′ = (Vi1 , . . . , Viq ). It follows that for each v ∈
V , the Borda score of c minus the Borda score of v is at least
3q2 − (3q − 3) × q > 0. For each d ∈ D, c is ranked above d
in each vote in P ′. Therefore, c is the Borda winner, which means
that the EVALUATION instance is an “yes” instance. 2

THEOREM 7. With unweighted votes and an unbounded num-
ber of candidates, computing the probability for a given candidate
to win under LotThenBorda is #P-complete.

Proof: We prove the theorem by a reduction from the #PERFECT-
MATCHING problem. Given three sets X = {x1, . . . , xt}, Y =
{y1, . . . , yt}, and E ⊆ X × Y , a perfect matching is a set J ⊆ E
such that |J | = t, and all elements in X and Y are covered by J .
In a #PERFECT-MATCHING instance, we are asked to compute the
number of perfect matchings. Given any #PERFECT-MATCHING in-
stanceX , Y , andE, we construct the following instance of comput-
ing the winning probability of a given candidate for LotThenBorda.
Candidates: C = {c, b} ∪X ∪ Y ∪A, where A = {a1, . . . , a2t}.
Let k = 2t. Suppose ties are broken in the following order: X �
Y � c � Others. We are asked to compute the probability that c
wins.
Profile: For each edge (xi, yj) ∈ E, we first define a vote Wi,j =
[X � ai � c � Y � b � Others], where elements within Y ,
X , Ai and Bj are ranked in ascending order of their subscripts.
Then, we obtain Vi,j from Wi,j by exchanging the positions of the
following two pairs of candidates: (1) xi and ai; (2) yj and b. Let
PV = {Vi,j : ∀(xi, yj) ∈ E}.

For each j ≤ t, we define a vote Uj = [Rev(Y ) � c � at+j �
Rev(X) � Others], where Rev(X) is the linear order where the
candidates in X are ranked in descending order of their subscripts.
Let PU = {U1, . . . , Ut}. Let the profile be P = PV ∪ PU .

Let P ′ be a sub-profile of P such that |P ′| = k = 2t. We
first claim that if Borda(P ′) = c, then PU ⊆ P ′. For the sake
of contradiction, suppose PV ∩ P ′ = {Vi1,j1 , . . . , Vil,jl}, where
l > t. Because |X| = t, there exists i ≤ t such that i is included
in the multiset {i1, . . . , il} at least two times. For any candidate
c′, let s(P, c′) denote the Borda score of c′ in P . It follows that
s(P, xi) > s(P, c), which contradicts the assumption that c is the
Borda winner.



Next, we prove that for any P ′ = PU ∪{Vi1,j1 , . . . , Vit,jt} such
that Borda(P ′) = c, J = {(xi1 , yj1), . . . , (xit , yjt)} is a perfect
matching. Suppose J is not a perfect matching. If x ∈ X (respec-
tively, y ∈ Y ) is not covered by J , then we have s(P, x) = s(P, c)
(respectively, s(P, y) = s(P, c)), which means that c is not the
Borda winner due to tie-breaking. This contradicts the assumption.
We note that different P ′ correspond to different perfect matchings.
Similarly, any perfect matching corresponds to a different profile
P ′ such that |P ′| = 2t and Borda(P ′) = c. We note that the prob-
ability that c wins is the number of such P ′ divided by

(
t+|E|

2t

)
.

Therefore, computing the probability for c to win is #P-hard. It is
easy to check that computing the probability for c to win is in #P.
2

It has been shown that computing constructive control by delet-
ing votes is NP-complete [14]. Therefore, we have the following
corollary.

COROLLARY 1. With unweighted votes and an unbounded num-
ber of candidates, EVALUATION for LotThenCopeland and for Lot-
ThenMaximin is NP-hard.

THEOREM 8. With unweighted votes and an unbounded num-
ber of candidates, EVALUATION for LotThenRankedPairs is NP-
hard.

Proof: We prove the NP-hardness by a reduction from a special
X3C problem V = {v1, . . . , v3q} and S = {S1, . . . , St}, where
t ≥ 3q and t is even. (If t < 3q then we add 3q − t copies of S1 to
S, and if t is odd then we add 1 copy of S1 to S.) For any element
vi, we let ∆(vi) denote the number of times ci is covered by Sj .
For any X3X instance where t ≥ 3q and t is even, we construct the
following EVALUATION instance.

Candidates: V ∪{c, d, e}. Ties are broken in the order d � e �
c � V . Let k = |P | − q.

Profile: Let P denote a profile composed of the votes shown in
Table 1. We are asked to compute whether the probability for c to
win is larger than zero (p = 0).

# Votes
P1: for each j ≤ t d � e � Sj � c � (V \ Sj)

P2: t/2− q + 1
c � d � e � V

Rev(V) � c � e � d

P3: q − 1
c � d � e � V

Rev(V) � e � c � d

P4: for each i ≤ 3q,
t/2−∆(vi)

d � vi � c � e � Others
Rev(Others) � vi � e � c � d

P5: for each i ≤ 3q,
t/2−∆(vi)

d � c � e � vi � Others
Rev(Others) � e � vi � c � d

Table 1: The profile P for LotThenRankedPairs.
In the profile, P1 is used to encode the X3C instance; P2 and P3

are used to reduce the weights on the edge d → c and e → c in
the weighted majority graph; P4 is used to reduce the weights on
the edges vi → c, and P5 is used to balance the weight loss on
e → vi introduced in P4. We make the following observation on
the weighted majority graph of P .
• There is an edge d → e with weight t, an edge e → c with

weight 2q − 2. The edge between c and d has zero weight.
• For any i ≤ 3q, there is an edge d→ vi with weight t, an edge

e → vi with weight t, and all edges between c and vi have zero
weight.

Suppose we remove q votes from P , then because t ≥ 3q, we
have that d → e, d → vi and e → vi are fixed in the final order.
We note that {d, e} � c only in votes in P1 . Therefore, if q votes

can be eliminated to make c win for ranked pairs, then in all of
them, we must have {d, e} � c, otherwise d → e and e → c will
be fixed before c→ d is considered. It follows that the q eliminated
votes must come from P1. Moreover, in order for c to win, the
weight on each edge from V to c should be no more than q − 2,
otherwise a path from d via some candidates in V will be fixed
before c→ d is considered. This means that the eliminated q votes
in P1 correspond to an exact cover of {v1, . . . , v3q}. Therefore,
EVALUATION for LotThenRankedPairs is NP-hard. 2

For LotThenPlurality, we have the following corollary, which fol-
lows from a polynomial-time dynamic programming algorithm that
solves the counting variant of CCAV in [22].

COROLLARY 2. With unweighted votes and an unbounded num-
ber of candidates, computing the probability for a given candidate
to win under LotThenPlurality can be solved in polynomial time.

5. MANIPULATION
Suppose there are a group of manipulators who know the vote of

the non-manipulators. We consider the computational complexity
for the manipulators to compute (perhaps non-truthful) votes so that
a preferred candidates wins the election. We limit our attention to
unweighted votes. We consider two types of manipulation problem
defined as follows.

DEFINITION 4. In a fixed manipulation problem, given the votes
of the non-manipulators, a favoured candidate and a probability p,
we ask if the manipulator(s) can cast fixed vote(s) so that the candi-
date wins with probability greater than p. In an improving manip-
ulation problem, we are not given any p but are given the truthful
vote of the manipulator(s) and we ask if the manipulator(s) can cast
fixed vote(s) so that the probability of the given candidate winning
increases.

An interesting extension, which we leave for future work, is when
the manipulator(s) can decide how to vote after the lottery has taken
place. This will increase the opportunities for manipulation.

It is easy to see that the improving manipulation problem for Lot-
ThenPlurality can be computed in polynomial time: the optimal
strategy for the manipulator(s) is to vote for c. Therefore, it follows
from Corollary 2 that fixed manipulation for LotThenPlurality is in
P. By Algorithm 1, when the number of candidates and the number
of manipulators are bounded above and the voting rule X is anony-
mous, both the fixed and the improving manipulation problems are
in P.

COROLLARY 3. When the number of candidates and the num-
ber of manipulators are bounded and votes are unweighted, fixed
or improving manipulation of LotThenX is in P for any anonymous
rule X .

When the number of candidates is not bounded, adding a lot-
tery can increase the complexity of computing a manipulation. For
example, when there is only one manipulator, computing a manipu-
lation for Borda is in P, but it is NP-hard to compute both fixed and
improving manipulations of LotThenBorda.

THEOREM 9. When the number of candidates is unbounded and
votes are unweighted, fixed manipulation of LotThenBorda is NP-
hard for even a single manipulator.

Proof: We prove the NP-hardness by a reduction from X3C that is
similar to the reduction in the proof of Theorem 6. Given an X3C
instance V = {v1, . . . , v3q} and S = {S1, . . . , St}, we construct
the following manipulation instance for LotThenBorda as follows.



Candidates: C = {c} ∪ V ∪D, where D = {d1, . . . , d3q2}. Let
k = q.
Profile: For each j ≤ t, we let Vj = [(S \ Sj) � c � D � Sj ].
The profile is P = (V1, . . . , Vt). Let p =

(
t−1
q−1

)
/
(
t
q

)
.

We claim that in this instance the optimal strategy for the manip-
ulator is to vote for [c � D � S]. We note that if the manipulator
is not eliminated by the lottery, then c must win. This happens with
probability

(
t−1
q−1

)
/
(
t
q

)
. If the manipulator is eliminated by the lot-

tery, then following the same reasoning in the proof of Theorem 6,
the probability for c to wins is strictly larger than 0 if and only if the
X3C instance has a solution. This proves that fixed manipulation of
LotThenBorda is NP-hard. 2

THEOREM 10. When the number of candidates is unbounded
and votes are unweighted, improving manipulation of LotThenBorda
is NP-hard for even a single manipulator.

Proof: We prove the NP-hardness by a reduction from X3C. Given
an X3C instance V = {v1, . . . , v3q} and S = {S1, . . . , St}, we
construct the following manipulation instance for LotThenBorda as
follows. W.l.o.g. q is even (otherwise we add three new elements
{v3q+1, v3q+2, v3q+3} to V and {v3q+1, v3q+2, v3q+3} to S).
Candidates: C = {c}∪V∪D∪E, whereD = {d1, . . . , d3q2}, E =
{e1, . . . , e3q2}. Let k = 3q/2.
Profile: We will construct the profile in the way such that (1) if the
manipulator vote for [c � D � E � S] and is not eliminated by
the lottery, then the probability for c to win is non-zero if and only
if the X3C instance has a solution, and (2) if the manipulator vote
for [S � D � E � c] and is not eliminated by the lottery, then
c never wins. Therefore, even though [c � D � E � S] seems
better than [S � D � E � c], it is hard for the manipulator to
figure out whether the former is strictly better. More precisely, for
each j ≤ t, we let

Vj = [(S \ Sj) � D � c � E � Sj ]

and Uj = [(S \ Sj) � Rev(E) � c � Rev(D) � Sj ]

Let P1 = {V1, . . . , Vt} and P2 = {U1, . . . , Ut}. Let E′ =
{e1, . . . , e3q+20}. Let P3 consist of q/2− 1 copies of

[c � D � (E \ E′) � S � E′]

The profile is P = P1 ∪P2 ∪P3. We are asked whether the manip-
ulator can find a vote better than W = [S � D � E � c].

Suppose the X3C instance has a solution, w.l.o.g. denoted by
{S1, . . . , Sq}. We prove that if the manipulator votes for W ′ =
[c � D � E � S], then the probability for c to win is higher
than in the case where she votes for W . We note that if the lottery
eliminates the manipulator, the probability for c to win cancels out.
Therefore, we only need to focus on the lotteries where the manipu-
lator is selected. We note that if the manipulator votes for V , then c
cannot win. If the manipulator votes forW ′ and the lottery chooses
her and {V1, . . . , Vq/2, Uq/2+1, . . . , Uq} ∪ P3, then c is the Borda
winner, which means that there is an improving manipulation.

On the other hand, suppose that there is an improving manipu-
lation. We claim that if the lottery selects the manipulator and c is
the Borda winner, then (1) all votes in P3 must be selected, and (2)
the votes selected in P1 ∪ P2 constitute an exact cover. If (1) or
(2) is not satisfied, then in the profile after the lottery without the
manipulator’s vote, there exists a candidate in V whose Borda score
is higher than the Borda score of c by at least 2|D|+3q, which con-
tracts the assumption that c is the Borda winner when we also take
into account the manipulator’s vote. Therefore, the X3C instance
has a solution. 2

LotThenX often inherits any computational resistance to manip-
ulation that the voting rule X may have. For example, LotThen-
STV inherits the computational complexity of STV against manip-
ulation [3].

THEOREM 11. With unweighted votes and an unbounded num-
ber of candidates, for even a single manipulator, fixed and improv-
ing manipulation are NP-hard for LotThenSTV.

Proof: We prove the NP-hardness by a reduction from a special
unweighted coalitional manipulation problem for STV with one
manipulator (UCM1) where c is ranked in the top position in at
least one vote in PNM . This problem is NP-complete [3]. For any
UCM1 instance (STV, PNM , c) where c is ranked in the top posi-
tion in at least one vote in PNM (|PNM | = n − 1), we construct
the following manipulation problem. Let C′ denote the set of can-
didates in the UCM1 instance.

Candidates: C′ ∪ {d}, where d is an auxiliary candidate.
Profile: Let P denote a profile of 2n − 1 votes as follows. The

first n−1 votes, denoted by P1, are obtained from PNM by putting
d right below c. The next n votes, denoted by P2, all rank d in
the first position (other candidates are ranked arbitrarily). Let k =
|P | − 1 and p = 0. For the improving manipulation problem, we
let W be an arbitrary vote where d is ranked in the top position.

We note that if none of votes in P2 is eliminated, then d is the
winner, because it is already ranked in the top position by more
than half the votes. Therefore, the only way c can win is if some
voter in P2 is eliminated in the first round.

Suppose the UCM1 instance has a solution, denoted by V . Then,
let V ′ denote the linear order over C′ ∪ {d} obtained from V by
ranking d in the bottom position. Let P ′ denote the profile where
a vote in P2 is eliminated by the lot. We note that d is ranked in
the top position n− 1 times in P ′. Therefore, d is never eliminated
in the first |C′| − 1 rounds. Moreover, for any j ≤ |C′| − 1, the
candidate that is eliminated in the jth round for P ′ is exactly the
same as the candidate that is eliminated in the jth round for PNM ∪
{V }. In the last round, c is ranked in the top position n times, which
means that STV(P ′) = c. Hence, the probability c wins is strictly
larger than 0, which is the probability c wins if the manipulator
votes for W .

On the other hand, suppose the manipulator can cast a vote V ′ to
make c win with a non-zero probability. As we have shown above,
c wins only when a voter in P2 is eliminated in the first round. Let
P ′ = (P−n, V

′). We note in STV for P ′, d must be eliminated in
the last round, because d is ranked in the top position at least n− 1
times. Moreover, we recall that c is ranked in the first position in at
least one vote in PNM , and d is ranked right below c in the corre-
sponding vote in P ′. Therefore, d beats all candidates in C′ \ {c}
in their pairwise elections, which means that in the last round the
only remaining candidates must be c and d. Let V be a linear order
obtained from V ′n′ by removing d. It follows that V is a solution to
the UCM1 instance.

Therefore, it is NP-hard to compute a fixed or improving manip-
ulation for LotThenSTV, even with a single manipulator. 2

Similarly LotThenRankedPairs inherits the computational com-
plexity of RankedPairs against manipulation [23].

THEOREM 12. With unweighted votes and an unbounded num-
ber of candidates, for even a single manipulator, fixed and improv-
ing manipulation are NP-hard for LotThenRankedPairs.

Proof: We prove the NP-hardness by a reduction from a special
UCM1 problem for ranked pairs, where n is odd (|PNM | = n−1),
and no weight in the majority graph is larger than n− 5 (if there is,
then we tweak the instance by adding two pairs of votes {[c � c1 �



· · · � cm−1], [cm−1 � cm−2 � · · · � c1 � c]}). This problem
is NP-complete [23]. For any such UCM1 instance (RP, PNM , c)
where n is odd, we construct the following manipulation problem.
Let C′ = {c, c1, . . . , cn−1} denote the set of candidates in the
UCM1 instance.

Candidates: C′∪{d, e}, where d and e are auxiliary candidates.
Profile: Let P denote a profile of 3n− 2 votes as follows.
• The first n− 1 votes are obtained from PNM by putting d � e

right below c.
• The remaining votes are defined in the following table.

# Votes
n d � e � Others � c

(n− 1)/2 d � c � e � Rev(Others)
(n− 1)/2 e � c � d � Rev(Others)

Let k = |P | − 1 and p = 0. For the improving manipulation
problem, let W = [d � e � Others � c].

Let P ′ denote the profile obtained from P by removing one vote
of [d � e � Others � c]. We make the following observation on
the weighted majority of P ′.
• The sub-graph for candidates in C′ is the same as the weighted

majority graph of the UCM1 instance.
• There is an edge from d to e with weight 2(n− 1).
• There are no edges between d and c, and e and c.
• The weights on the edges from d or e to C′ \ {c} is n− 1.
Therefore, in the final ranking, it is fixed that d � e � (C′ \{c}).

Suppose ties among edges are broken in the order where e → c
is fixed before c → d, whenever there is a tie (or alternatively,
we can first obtain a set of candidates who win with some ways to
break ties among edges, and then use the fixed tie-breaking d �
e � c � Others to select the winner). We note that if no vote for
[d � e � Others � c] is eliminated by the lottery, then the winner
must be d, because no matter what the manipulator votes for, in the
resulting majority graph either e→ c with weight 1 or d→ c with
weight 1, and in cases where there is an edge c → d, its weight
must be 1 (we recall that e → c will be fixed before considering
c → d, due to the tie-breaking mechanism). Therefore, the only
cases where c wins is when a vote of [d � e � Others � c] is
eliminated in the first round.

If the UCM1 instance has a solution, denoted by V , then we let
the manipulator vote for [c � e � d � V ]. This makes c win with
non-zero probability (n/(3n − 1)), which is strictly larger than 0
(the probability c wins when the manipulator votes for W ).

On the other hand, suppose the manipulator can cast a vote V ′

to make c win with non-zero probability. We have already argued
that in the cases where c wins, a vote for [d � e � Others � c]
must be eliminated in the first round. In such cases c is the winner
under ranked pairs if and only if (1) both d and e are ranked below
c in V ′, and (2) the vote obtained from V ′ by removing d and e is a
solution to the UCM1 instance.

Therefore, it is NP-hard to compute a fixed or improving manip-
ulation for LetThenRankedPairs, even with a single manipulator. 2

Finally, we prove that LotThenCopeland and LotThenMaximin
are both intractable to manipulate.

THEOREM 13. With unweighted votes and an unbounded num-
ber of candidates, for even a single manipulator, fixed and improv-
ing manipulation are NP-hard for LotThenCopeland and LotThen-
Maximin.

Proof sketch: The proof is similar to the proof of Theorem 8. For
both rules, we use a profile P illustrated in Table 2 to show the
reduction. In this proof, w.l.o.g. (t− q) is even.

# Votes
for each j ≤ t d � e � Sj � c � Others

(t− q)/2 c � d � e � V
Rev(V) � c � e � d

for each i ≤ 3q,
(t+ 2− q)/2−∆(vi)

d � vi � c � e � Others
Rev(Others) � vi � e � c � d

for each i ≤ 3q,
(t+ 2− q)/2−∆(vi)

d � c � e � vi � Others
Rev(Others) � e � vi � c � d

Table 2: The profile P for fixed or improving manipulation.

Let k = |P |+ 1− q. For the fixed manipulation problem, we let
p = 0. We note that the manipulator can make c win with positive
probability only if she ranks c in the top, and the votes eliminated
in P corresponds to an exact cover of V . For the improving ma-
nipulation problem, we let W = [d � e � V � c]. It follows
that if the manipulator’s vote is W , then c wins with 0 probabil-
ity. Therefore, there is an improving manipulation if and only if the
fixed manipulation problem (with p = 0) has a solution. 2

6. SAMPLING THE RUNOFF VOTERS
So far we have not discussed in details how to select the runoff

voters. Of course if we only need to select k voters uniformly at
random, then we can perform a naïve k-round sampling: in each
round, a voter is drawn uniformly at random from the remaining
voters, and is then removed from the list. However, it is more
difficult to generate k voters with some non-uniform distribution.
For example, different voters in a profile may have different vot-
ing power [20], and we may therefore want to generate the voters
in the runoff according to this voting power. More precisely, we
want to compute a probability distribution over all sets of k voters,
and each time we randomly draw a set (of k voters) according to
this distribution to meet some constraints. Let M denote the set
of all n × k 0-1 matrices, in each of which the sum of each row
is no more than 1 and the sum of each column is exactly 1. That
is, M = {(a(i,j)) : a(i,j) ∈ {0, 1}, ∀i ≤ n,

∑
j a(i,j) ≤ 1 and

∀j ≤ k,
∑
i a(i,j) = 1}. Each matrix inM represents a set of k

voters. Formally, we define the sampling problem as follows.

DEFINITION 5. In the LOTSAMPLING problem , we are given
a natural number n (the number of initial voters), a natural number
k (the number of runoff voters), and a vector of positive rational
numbers (p1, . . . , pn) such that for any j ≤ n, 0 ≤ pj ≤ 1 and∑
j≤n pj = k. We are asked to compute a sample of k voters such

that, and for every j ≤ n, the probability that vote j is chosen is
pj .

Using algorithms in [7]. we have the following corollary.

COROLLARY 4. LOTSAMPLING can be solved in polynomial
time.

7. CONCLUSIONS
Our main computational complexity results are summarized in

Table 3. The prevalence of computational intractable results in this
table suggests that lot-based voting is worth further attention. This
simple non-deterministic tweak to voting rules appears to provide
considerable (worst-case) resistance to manipulation. There are
many directions for future work in addition to the questions already
raised. For instance, we could consider the computational complex-
ity of EVALUATION for other lot-based voting rules. In particular,
we conjecture that EVALUATION for LotThenPlurality is NP-hard.
We also intend to look at the cost of computing manipulations of



Rule X LotThenX

EVALUATION
Fixed

Manipulation
Improving

Manipulation

Borda NP-hard
(Theorem 6)

NP-hard
(Theorem 9)

NP-hard
(Theorem 10)

STV ? NP-hard
(Theorem 11)

Ranked
pairs

NP-hard
(Theorem 8)

NP-hard
(Theorem 12)

Copeland NP-hard
(Corollary 1)

NP-hard
(Theorem 13)Maximin

Table 3: Summary of our complexity results.

lot-based voting rules in practice [24, 25, 27]. We could also con-
sider the control of lot-based voting by the chair. In addition to the
usual forms of control like addition of candidates or of voters, we
have another interesting type of control where the chair influences
the outcome of the lottery. Such control is closely related to con-
trol by deletion of voters. Other types of control include the chair
choosing the size of the lottery and the chair choosing the voting
rule used in the runoff after the lottery. Another interesting direc-
tion would be to consider the computation of possible and necessary
winners for lot-based voting rules [18, 26].
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