
Manipulation Under Voting Rule Uncertainty

Edith Elkind
School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

eelkind@ntu.edu.sg

Gábor Erdélyi
University of Siegen

Germany
erdelyi@wiwi.uni-siegen.de

ABSTRACT
An important research topic in the field of computational social
choice is the complexity of various forms of dishonest behavior,
such as manipulation, control, and bribery. While much of the
work on this topic assumes that the cheating party has full infor-
mation about the election, recently there have been a number of
attempts to gauge the complexity of non-truthful behavior under
uncertainty about the voters’ preferences. In this paper, we an-
alyze the complexity of (coalitional) manipulation for the setting
where there is uncertainty about the voting rule: the manipulator(s)
know that the election will be conducted using a voting rule from a
given list, and need to select their votes so as to succeed no matter
which voting rule will eventually be chosen. We identify a large
class of voting rules such that arbitrary combinations of rules from
this class are easy to manipulate; in particular, we show that this
is the case for single-voter manipulation and essentially all easy-
to-manipulate voting rules, and for coalitional manipulation and
k-approval. While a combination of a hard-to-manipulate rule with
an easy-to-manipulate one is usually hard to manipulate—we prove
this in the context of coalitional manipulation for several combina-
tions of prominent voting rules—we also provide counterexamples
showing that this is not always the case.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity;
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent Systems

General Terms
Economics, Theory

Keywords
Computational Social Choice, Manipulation, Uncertainty

1. INTRODUCTION
Voting is an established framework for making collective deci-

sions, and as such has applications in settings that range from po-
litical elections to faculty hiring decisions, selecting the winners
of singing competitions, and the design of multiagent systems. In
some of these settings, the number of candidates and/or voters can
be large, yet the decision needs to be made quickly. Whenever this

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

is the case, the algorithmic complexity of, on the one hand, winner
determination and, on the other hand, various forms of dishonest
behavior in elections, plays an important role in the selection of a
voting rule: we want the former to be as low as possible, while
keeping the latter as high as possible.

Traditionally, the complexity of voting rules is studied under the
full information assumption: for instance, in the single-voter ma-
nipulation problem, which is perhaps one of the most fundamental
problems in the complexity-theoretic analysis of voting rules, it is
assumed that the manipulator knows the set of candidates, the num-
ber and the true preferences of all honest voters, and, crucially, the
voting rule. However, it is widely recognized that this assumption
is not always realistic, and recently a number of papers tried to ana-
lyze the complexity of cheating in elections and/or determining the
likely election winners under various forms of uncertainty about
the election (see Section 1.1 for an overview).

In this paper, we study the complexity of manipulation (both by
a single voter and by a coalition of voters) in settings where there is
uncertainty about the voting rule itself. That is, we assume that the
manipulator(s) know that the voting rule belongs to a certain (finite
or infinite) family of rules bF , and they want to select their votes so
as to ensure that their preferred candidate wins, no matter which of
the rules in bF is chosen.

Admittedly, in political elections the voting rule to be used is typ-
ically known before the votes are cast, and the manipulator would
be well advised to fully understand the voting rule before modify-
ing her vote. However, in other applications of voting this is not
always the case. For instance, it is not unusual for a university de-
partment to ask graduate students to provide a ranking of faculty
candidates; however, the graduate students are not told how the
hiring committee makes its decision (anecdotally, a wide variety
of voting rules can be used for this purpose). Another example is
provided by conference reviewing: at some point in the decision-
making process, the program committee members may be asked to
rank the papers whose fate has not been decided yet; the PC chair
will then aggregate the rankings in a way that has not been an-
nounced to the PC members (and may, in fact, be unknown to the
PC chair when she initiates the process). In some of these settings,
the voters may believe that the voting rule will be chosen from a
specific family of rules: for instance, the voters may know that the
rule to be used is a scoring rule, or, more narrowly, a k-Approval
rule (with the value of k unknown), or a Condorcet-consistent rule
(see Section 2 for definitions); the situation where the voters know
the voting correspondence, but not the tie-breaking rule is also cap-
tured by this description. They may then want to select their votes
so that their favorite candidate wins the election no matter which of
the voting rules in this family is chosen.

We study the complexity of this problem for several families of

voting rules. We limit ourselves to the setting of voting manipu-
lation (either by a single voter or by a coalition of voters), though
one can ask the same question in the context of election control or
bribery (see, e.g., [13] for the definitions and a survey of recent re-
sults for these problems). We mostly focus on families that consist
of a small number (usually, two) prominent voting rules, such as
Plurality, k-Approval, Borda, Copeland, Maximin and STV. Our
goal is not to classify all such combinations or rules: rather, we try
to illustrate the general techniques that can be used for the analysis
of such settings.

One would expect a combination of easy-to-manipulate rules
to be easy to manipulate, and a combination of several hard-to-
manipulate rules or an easy-to-manipulate one with a hard-to-ma-
nipulate one to be hard to manipulate. Our results for classic voting
rules mostly confirm this intuition, with the exception of settings
where we combine a hard-to-manipulate rule with one that is very
indecisive. However, we show that these results are not univer-
sal: we provide an example of two hard-to-manipulate rules whose
combination is easy to manipulate, as well as an example of two
easy-to-manipulate rules whose combination is hard to manipulate.
While the rules used in these constructions are fairly artificial, they
nevertheless illustrate interesting aspects of our problem.

1.1 Related Work
Our works fits into the stream of research on winner determina-

tion and voting manipulation under uncertainty. In the context of
winner determination, perhaps the most prominent problem in this
category is the possible/necessary winner problem [16], where the
voting rule is public information, but, for each voter, only a par-
tial order over the candidates in known; the goal is to determine if
a candidate wins the election for some way (the possible winner)
or for every way (the necessary winner) of completing the voters’
preferences; a probabilistic variant of this problem has also been
considered [1]. Our problem is more similar in flavor to the nec-
essary winner problem, as the manipulator has to succeed for all
voting rules in the family.

Uncertainty about the voting rule has been recently investigated
by Baumeister et al. [5], who also consider the situation where the
voting rule will be chosen from a fixed set. In contrast to our work,
they assume that all voters’ preferences are known, and ask if there
is a voting rule that makes a certain candidate a winner with respect
to these preferences; thus, in their work the manipulating party is
the election authority rather than one of the voters.

Our problem is, in a sense, dual to the one considered by Conitzer
et al. [7]: in their model the voting rule is known, but the prefer-
ences of some of the honest voters are (partially) unknown; they ask
if the manipulator can cast a vote that improves the outcome (from
his perspective) for every realization of the honest voters’ prefer-
ences; thus, just like us, they assume an adversarial environment.

There has also been some work on settings where the effects
of the manipulator’s actions are uncertain. This is the case, for
instance, for the model of safe strategic voting [19], where one
voter announces a manipulative vote, and one or more voters with
the same true preferences may follow suit; the original manipula-
tor does not know how many followers he will have and needs to
choose the vote so as to improve the outcome for some number of
followers, while ensuring that the outcome does not get worse for
any number of followers. Another example is cloning [9], where
the cheating party clones one or more candidates; the voters are
assumed to rank the clones of a given candidate consecutively, but
the exact order of the clones in voters’ preferences is unknown.
Our work is most similar to the variant of this problem known as 1-
CLONING, where the cheating party has to succeed no matter how

the voters order the clones.
Finally, we remark that the idea of combining two or more voting

rules has been considered in early work on computational social
choice [10, 14]; however, in both of these papers, voting rules are
combined in a way that is very different from our work.

2. PRELIMINARIES
Given a finite set S, we denote by L(S) the space of all lin-

ear orders over S. An election is a triple E = (C, V,R), where
C = {c1, . . . , cm} is the set of candidates, V is the set of voters,
|V | = n, and R = (R1, . . . , Rn) is the preference profile, i.e., a
collection of linear orders over C. The order Ri is called the pref-
erence order, or vote, of voter i; we will also denote Ri by �i.
When a �i b for some a, b ∈ C, we say that voter i prefers a to b.
A candidate a is said to be the top-ranked candidate of voter i, or
receive a first-place vote from i, if a �i b for all b ∈ C \ {i}.

A voting correspondence F is a mapping that, given an elec-
tion E = (C, V,R) outputs a non-empty subset S ⊆ C; we write
S = F(E). The elements of the set S are called the winners of the
election E under F . If |F(E)| = 1 for any election E, the map-
ping F is called a voting rule; whenever this is the case, we abuse
notation and write F(R) = c instead of F(R) = {c}. We will
sometimes abuse terminology and refer to voting correspondences
as voting rules.

A voting correspondence F is said to be neutral if renaming the
candidates does not alter the set of winners: that is, for any election
E = (C, V,R) and any permutation π of the set C, the election
E′ obtained by replacing each candidate c in R by π(c) satisfies
F(E′) = {π(c) | c ∈ F(E)}. F is said to be monotone if
promoting a winning candidate does not make him lose the elec-
tion: if c ∈ F(E), then c ∈ F(E′), where E′ is obtained from
E by swapping c with the candidate ranked just above c in some
vote (this notion of monotonicity is sometimes referred to as weak
monotonicity).

Voting rules We will now describe the voting rules (correspon-
dences) considered in this paper. For all rules that assign scores to
candidates (i.e., scoring rules, Copeland, and Maximin), the win-
ners are the candidates with the highest scores.

Scoring rules Any vector α = (α1, . . . , αm) ∈ Rm such that
α1 ≥ · · · ≥ αm defines a scoring rule Fα over a set of candidates
of size m: a candidate receives αj points from each voter who
ranks him in the j-th position, and the score of a candidate is the
total number of points he receives from all voters. The vector α
is called a scoring vector. We assume without loss of generality
that the entries of α are nonnegative integers given in binary. As
we require voting rules to be defined for any number of candidates,
we will consider families of scoring rules: one for every possible
number of candidates. We denote such families by {Fαm}m=1,...,
where αm = (αm

1 , . . . , αm
m) is the scoring vector of length m.

Two well-known examples of such families are Borda, given by
αm = (m− 1, . . . , 1, 0) for all m > 1, and k-Approval, given by
αm

i = 1 if i ≤ k, αm
i = 0 if i > k. The 1-Approval rule is also

known as Plurality.

Condorcet We say that a candidate a wins a pairwise election
against b if more than half of the voters prefer a to b; if exactly half
of the voters prefer a to b, then a is said to tie his pairwise election
against b. A candidate is said to be a Condorcet winner if he wins
pairwise elections against all other candidates. The Condorcet rule
outputs the Condorcet winner if it exists; otherwise, it outputs the
set of all candidates (recall that a voting correspondence should
always output a non-empty set of winners).

Copeland Given a rational value α ∈ [0, 1], under the Copelandα

rule each candidate gets 1 point for each pairwise election he wins
and α points for each pairwise election he ties.
Maximin The Maximin score of a candidate c ∈ C is equal to
the number of votes he gets in his worst pairwise election, i.e.,
mind∈C\{c} |{i | c �i d}|.
STV Under the STV rule, the election proceeds in rounds. During
each round, the candidate with the lowest Plurality score is elim-
inated, and the candidates’ Plurality scores are recomputed. The
winner is the candidate that survives till the end. If several candi-
dates have the lowest Plurality score (we will refer to this situation
as an intermediate tie), we assume that the candidate to be elimi-
nated is chosen according to the lexicographic order over the can-
didates: if S is the set of candidates that have the lowest Plurality
score in some round, we eliminate the candidate cj such that j ≥ i
for all ci ∈ S. We remark that STV, as defined here, always has a
single winner; however, because of the lexicographic tie-breaking
rule it is not neutral.

3. PROBLEM STATEMENT
We assume that we are given a collection bF = {Fi}i∈I of voting

correspondences. The set bF can be finite of infinite; for instance,bF can be the set of all (families of) scoring rules, in which case it
is infinite. When bF is infinite, we assume that it admits a succinct
description; if bF is finite, it is assumed to be listed explicitly.

We consider the complexity of (coalitional) manipulation in elec-
tions when the manipulator does not know which of the voting rules
in bF will be selected. We state our definitions in the unique winner
model, i.e., we assume that the manipulator’s goal is to make its
preferred candidate the unique winner with respect to each of the
voting correspondences in bF ; however, most of our results remain
true in the co-winner model, where the manipulator would like to
ensure that its preferred candidate is one of the winners under each
of the voting correspondences in bF .

Name: bF -MANIPULATION BY SINGLE VOTER (SM)

Input: An election (C, V) with |C| = m, |V | = n− 1, a prefer-
ence profile R = (R1, . . . , Rn−1), and a candidate p ∈ C.

Question: Is there a vote L ∈ L(C) such that p is the unique
winner in (R, L) with respect to each of the voting corre-
spondences in bF?

Voters 1, . . . , n − 1 are referred to as the honest voters, and the
last voter (the one who submits vote L and wants p to win) is re-
ferred to as the manipulator.

Name: bF -COALITIONAL MANIPULATION (CM)

Input: An election (C, V) with |C| = m, |V | = h, a set M ,
|M | = s = n− h, a preference profile R = (R1, . . . , Rh),
and a candidate p ∈ C.

Question: Is there a profile L = (L1, . . . , Ls) ∈ Ls(C) such that
p is the unique winner in (R,L) with respect to each of the
voting correspondences in bF?

If bF is finite, we say that an algorithm A for bF -SM or bF -CM
is a polynomial-time algorithm if its running time is polynomial
in n, m, and | bF|; if bF is infinite, we require the running time of
A to be polynomial in n and m. We remark that bF -SM (respec-
tively, bF -CM) is in NP for any finite collection bF of polynomially
computable voting rules: it suffices to guess a manipulative vote L

(respectively, a list (L1, . . . , Ls) of manipulative votes) and verify
that it makes p the unique winner under every rule in bF . Thus, in
what follows, when proving that these problems are NP-complete
for some finite bF , we will only provide an NP-hardness proof.

Traditionally, the problems bF -SM and bF -CM are studied for
the case | bF| = 1. In what follows, whenever bF = {F}, we omit
the curly braces and write F -SM/CM instead of {F}-SM/CM to
conform with the standard notation.

4. MANIPULATION
We start by considering the SM problem. In their classic pa-

per [3], Bartholdi, Tovey and Trick show that this problem is poly-
nomial-time solvable for Copelandα (for every rational α ∈ [0, 1]),
Maximin, and all scoring rules (while Bartholdi et al. do not explic-
itly consider scoring rules other than Plurality and Borda, it is not
hard to see that their algorithm works for any scoring rule).

Remarkably, for all these rules the manipulative vote can be
found by essentially the same algorithm. This algorithm starts by
ranking p first; it is safe to do so, because all of these rules are
monotone. Note that at this point we can already compute p’s final
score; let us denote it by s(p). The algorithm then fills up posi-
tions 2, . . . , m in the vote one by one. When considering position
i, i ≥ 2, it tries to place each of the still unranked candidates into
this position. At this point, the identities of the candidates in po-
sitions 1, . . . , i − 1 are already known, so one can determine the
score of each candidate c if it were to be placed in position i (this is
true for Copeland, Maximin and all scoring rules, but need not be
true in general, even for monotone rules); let us denote this quan-
tity by si(c). If there exists a candidate c such that si(c) < s(p), it
is placed in position i; if there are several such candidates, one of
them is selected arbitrarily. If no such candidate can be found, the
algorithm reports that no manipulative vote exists.

Bartholdi et al. prove the correctness of this algorithm for all vot-
ing correspondences that (1) are monotone and (2) have the prop-
erty that the score of a candidate c can be determined if we know
which candidates are ranked above and below c in each vote, and
the winners are the candidates with the highest score. Copelandα,
α ∈ Q∩ [0, 1], Maximin, and all scoring rules satisfy both of these
conditions, and STV satisfies neither of them; indeed, STV-SM is
known to be NP-complete [2].

We will now show that the algorithm of Bartholdi et al. extends
to bF -SM for any finite set bF that consists of voting correspon-
dences that satisfy (1) and (2).

THEOREM 4.1. Let bF be a finite set of voting rules such that
every rule Fi ∈ bF satisfies conditions (1) and (2). Then bF -SM
can be solved in polynomial time.

PROOF. Let bF = {F1, . . . ,F`}. Our algorithm proceeds in
rounds: in round i, i = 1, . . . , m, we consider position i.

In the first round, we place p in the top position; let sj(p) denote
p’s score with respect to the rule Fj , j = 1, . . . , `, in the resulting
election.

Now, consider round i, i = 2, . . . , m. For each candidate c that
has not been ranked in round 1, . . . , i − 1, let sj

i (c) be his score
under rule Fj if he were to be ranked in position i at this point. If
there exists an unranked candidate c such that sj

i (c) < sj(p) for
all j = 1, . . . , `, we place c in position i; if there are several such
candidates, we choose one of them arbitrarily. If no such candi-
date exists, we report that the input instance of bF -SM cannot be
manipulated. If we manage to successfully rank all candidates, we
report that there exists a successful manipulative vote; in fact, our
algorithm constructs it.

Clearly, if our algorithm reports that a manipulative vote exists,
this is indeed the case. Conversely, suppose that our algorithm re-
ports that the given election cannot be manipulated. This means
that during some round i, we have sj

i (c) ≥ sj(p) for some voting
rule Fj ∈ bF and every candidate c that has not been ranked in
rounds 1, . . . , i−1. But then consider the execution of the original
algorithm of Bartholdi et al. [3] on the instance of Fj-SM given
by the same election. The algorithm of Bartholdi et al. could
have made exactly the same choices as our algorithm in rounds
1, . . . , j − 1. Therefore, it, too, would have reported that its input
instance is a “no”-instance. Since the algorithm of Bartholdi et al.
is known to be correct, this means that no manipulative vote could
have made p the unique winner with respect to Fj . Hence, our in-
stance of bF -SM is a “no”-instance as well, which means that our
algorithm is correct.

The proof of Theorem 4.1 is very simple. However, the result
itself plays a key role in our understanding of single-voter manip-
ulation under voting rule uncertainty. Indeed, to the best of our
knowledge, for all classic voting rules for which single-voter ma-
nipulation is known to be easy, a manipulative vote can be con-
structed using the algorithm of [3]. Therefore, we cannot hope to
put together two or more classic easy-to-manipulate rules so that
the manipulation problem with respect to the combination of these
rules is computationally hard.

One can nevertheless ask if such a combination of rules exists.
We will now show that the answer to this question is “yes”: we
present two easy-to-manipulate rules, which we will call STV1 and
STV2, such that STVi-SM is polynomial-time solvable for i =
1, 2 but {STV1, STV2}-SM is NP-hard. Admittedly, these rules
are not particularly natural; but then Theorem 4.1 shows that we
cannot hope to prove a result of this type for natural voting rules.

The main idea of the construction is that each of these rules can
be manipulated either by making p the STV winner or by using an
easy-to-compute “trapdoor”; however, the “trapdoors” for STV1

and STV2 are incompatible with each other, so, to manipulate both,
one needs to manipulate STV.

Formally, STV1 is defined as follows. For m ≤ 3, all candidates
are declared to be the winners. For m > 3, the rule is not neutral
in a very essential way: candidates cm−2, cm−1 and cm play a
special role. Specifically, if some voter ranks cm−3+j in position
m−3+j for j = 1, 2, 3, then the candidate ranked first by this voter
is declared to be the election winner; if there are several such voters,
the set of winners consists of these voters’ top choices. Otherwise,
the winner is the winner under the STV rule.

STV2 coincides with STV1 for m ≤ 3. For m > 3, if some
voter ranks cm−3+j in position cm+1−j for j = 1, 2, 3, then the
candidate ranked first by this voter is declared to be the election
winner (again, the election may have multiple winners if there are
several such voters), and otherwise the winner is the STV winner.

THEOREM 4.2. STV1-SM and STV2-SM are in P. However,
{STV1, STV2}-SM is NP-complete.

PROOF. Consider an instance of STV1. Suppose that some of
the honest voters rank cm−3+j in position m−3+j for j = 1, 2, 3,
and let S be the set of these voters’ top choices. If S 6= {p}, no
matter what the manipulator does, all candidates in S will be de-
clared the election winners, so the manipulator cannot make p the
unique winner. If S = {p}, or if none of the honest voters ranks
cm−3+j in position m− 3 + j for j = 1, 2, 3, the manipulator can
rank p first and place cm−3+j in position m−3+ j for j = 1, 2, 3;
this would make p the unique winner. In any case, the manipula-
tor’s problem is in P. A similar argument shown that STV2-SM is
in P.

To show that {STV1, STV2}-SM is NP-hard, we will provide
an NP-hardness reduction from STV-SM, which is known to be
NP-complete [2].

Given an instance of STV-SM with a set of candidates C =
{c1, . . . , cm′}, a set of voters V , |V | = n− 1, a preference profile
R = (R1, . . . , Rn−1) over C, and a preferred candidate p ∈ C,
we will modify it as follows. We let m = m′ + 3 and set C′ =
C ∪ {cm−2, cm−1, cm}. We ask each of the voters to rank each of
the candidates in C in the same position as before, and rank cm−1

in position m− 2, followed by cm−2 and cm; denote the resulting
preference profile by R′.

Observe that the manipulator can make p the unique winner of
this election under STV1 either by ranking cm−3+j in position m−
3 + j for j = 1, 2, 3, or by making p the unique STV winner.
Similarly, the manipulator can make p the unique winner of the
new election under STV2 either by ranking cm−3+j in position
m + 1− j for j = 1, 2, 3, or by making p the unique STV winner.

Now, suppose that the original instance of STV-SM is a “yes”-
instance, and let L ∈ L(C) be the manipulative vote that makes
p the STV winner in that election. Consider the vote L′ obtained
from L by ranking cm−1, cm−2, and cm after all candidates in
C (in this order). In (R′, L′), no voter ranks cm−2, cm−1, cm

according to either of the “trapdoors”, so both in STV1 and in
STV2 the STV rule is applied. Further, in (R′, L′) candidates
cm−2, cm−1, cm receive no first-place votes, so under STV they
are eliminated before any candidates in C. STV then proceeds in
the same way as on (R, L), thus making p the winner.

Conversely, suppose that there exists a vote L′ ∈ L(C′) such
that p is the unique winner in (R′, L′) with respect to both STV1

and STV2. Since L cannot rank cm in positions m − 2 and m
simultaneously, it follows that p is the STV winner in (R′, L′).
Now, consider the execution of STV1 on (R′, L′). If L′ does not
rank any of the candidates in C′ \ C in the top position, after the
first three steps the execution of STV1 on (R′, L′) coincides with
the execution of STV on (R, L), where L is obtained from L′ by
removing cm−2, cm−1 and cm. Thus, in this case L is a successful
manipulative vote that witnesses that the original instance of STV-
SM is a “yes”-instance.

Now, suppose that L′ ranks a candidate from C′\C first; assume
without loss of generality that the top candidate in L is cm. Then
simply removing cm−2, cm−1 and cm from L′ would not neces-
sarily work: if the top candidate in the resulting vote receives no
first-place votes in R, this candidate would have been eliminated
in the very beginning in (R′, L′), but may survive much longer in
the modified election. Thus, we need a slightly different strategy.
Let C0 be the set of candidates that receive no first-place votes in
R. We construct L from L′ by removing cm−2, cm−1 and cm and
moving candidates in C0 to the bottom of the vote (without chang-
ing the relative ordering of all other candidates). Then on (R′, L′)
STV starts by eliminating cm−1, cm−2 and the candidates in C0.
At this point, each candidate has at least one first-place vote; hence,
because of our intermediate tie-breaking rule, cm is the first candi-
date to be eliminated, and we are left with an election E′′ over
C \C0. On the other hand, in (R, L) the set of candidates with no
first-place votes coincides with C0, so after the first |C0| elimina-
tion rounds we obtain an election over C \ C0 that coincides with
E′′. Hence, p is the unique STV winner in (R, L), and hence our
original instance of STV-SM is a “yes”-instance.

We remark that Theorem 4.2 holds for coalitional manipulation as
well: for the easiness result, note that the manipulators may use
trapdoors to manipulate STV1 or STV2, and the hardness result
generalizes trivially.

The next question that we would like to explore is whether a

combination of an easy-to-manipulate rule with a hard-to-manipu-
late one is hard to manipulate. We will now illustrate that this is the
case for two classic voting rules, namely, STV and Borda.

THEOREM 4.3. {Borda, STV}-SM is NP-complete.

PROOF. We will provide a reduction from STV-SM. Consider
an instance of STV-SM given by an election (C, V) with C =
{c1, . . . , cm}, |V | = n−1, a preference profileR = (R1, . . . , Rn−1),
and a candidate p ∈ C; assume without loss of generality that
n ≥ 3. Suppose that p is not ranked first by any of the voters in
V . Then if the manipulator does not rank p first, p get eliminated
before any candidate that has a positive Plurality score in (C, V)
and therefore does not win the election. Hence, the manipulator has
to rank p first. Observe also that the rest of the manipulator’s vote
does not matter in this case: it can only impact the candidate elim-
ination process after p is eliminated, at which point p has already
lost the election. Thus, if no voter in V ranks p first, the manipula-
tor’s problem is in P: the manipulator should rank p first and check
if this achieves the desired result. We can therefore assume without
loss of generality that in our input instance of STV-SM candidate
p receives at least one first-place vote.

Thus, assume that p is the top candidate of voter 1. Let D =
{cim+j | i = 1, . . . , n, j = 1, . . . , m}, and set C′ = C ∪ D.
Modify all votes in R by inserting the candidates in D right below
p in each vote, in an arbitrary order; let R′ be the resulting profile.

Let s(c) denote the Borda score of a candidate c ∈ C in (C, V,R),
and let s′(c) denote his score in (C′, V,R′). We have s(c) ≤
(n − 1)(m − 1) for all c ∈ C. Moreover, we have s′(p) =
s(p)+mn(n−1), as p gets mn extra points from each vote. On the
other hand, every other candidate in C gets at most mn(n− 2) ex-
tra points from voters 2, . . . , n−1 and no extra points from voter 1.
Thus, for any c ∈ C \ {p} we have

s′(c) ≤ s(c)+mn(n−2) ≤ mn(n−1)−m−n+1 < s′(p)−m.

Also, the Borda score of any d ∈ D in (C′, V,R′) is less than
s′(p). Thus, if the manipulator ranks the candidates in C in top m
positions, p is the unique Borda winner of the resulting election.

On the other hand, no matter how the manipulator votes, under
STV all candidates in D will be eliminated before all candidates in
C that have a non-zero Plurality score: indeed, the Plurality score
of each d ∈ D is at most 1, and the intermediate tie-breaking rule
favors candidates in C over those in D.

We are now ready to show that our reduction is correct. Let L
be a successful manipulative vote for the original instance, and let
C0 be the set of all candidates in C with no first-place votes in
(R, L). Note that the candidates in C0 are eliminated in the first
|C0| rounds of STV. Now, consider the vote L′ obtained from L
by ranking the candidates in D in positions m + 1, . . . , m(n + 1).
In the election (R′, L′) candidate p has the highest Borda score.
Moreover, under STV we will first eliminate all candidates in C0∪
D. At this point, we obtain the same election as after |C0| rounds
of STV on (R, L)—and hence the same winner. Thus, L′ is a
successful manipulative vote in the new election.

Conversely, suppose that L′ ∈ L(C∪D) is such that in (R′, L′)
candidate p is both the unique Borda winner and the (unique) STV
winner. Let C′

0 be the set of candidates in C that have no first-
place votes in (R′, L′). When we execute STV on (R′, L′), we
eliminate all candidates in D ∪ C′

0 prior to eliminating any of the
candidates in C \C′

0. Let L be the vote in L(C) obtained by delet-
ing all candidates in D from L′ and moving all candidates in C′

0 to
the bottom |C′

0| positions (without changing the relative ordering
of the candidates in C \ C′

0). Then C′
0 is exactly the set of can-

didates in C who have no first-place votes in (R, L). Therefore,

when we execute STV on (R, L), we eliminate all candidates in
C′

0 prior to eliminating any candidates in C \C′
0. Thus, the profile

obtained after running STV for |D|+ |C′
0| steps on (R′, L′) coin-

cides with the profile obtained after running STV for |C′
0| steps on

(R, L). Thus, L is a successful manipulative vote for the original
election.

Another interesting (and arguably natural) combination of vot-
ing rules is {Plurality, STV}. Here, we were unable to provide
a black-box reduction showing that the combination of these rules
is hard to manipulate. However, a careful inspection of Bartholdi
and Orlin’s proof [2] establishes that {Plurality, STV}-SM is in-
deed NP-hard: by tweaking the instance of STV constructed in
that proof we can ensure that the manipulator’s preferred candidate
is the unique Plurality winner.

However, there are also examples where the combination of a
hard-to-manipulate rule and an easy-to-manipulate one is easy to
manipulate. Consider, for instance, the following rule: if some
candidate receives strictly more than bn/2c first-place votes, he is
the unique election winner; otherwise, all candidates are winners.
We will refer to this rule as the Majority rule. Majority is not par-
ticularly decisive, but apart from that it is a reasonable voting rule.
Clearly, it is easy to manipulate: the manipulator simply needs to
check if ranking p first does the job. Moreover, the combination of
Majority and STV is easy to manipulate, too.

THEOREM 4.4. {Majority, STV}-SM is in P.

PROOF. Consider an election E = (C, V,R). If in this election
p is ranked first by at most bn/2c − 1 voters, the manipulator can-
not make p the Majority winner, so this is a “no”-instance of our
problem. On the other hand, if p is ranked first by at least bn/2c
voters, the manipulator can rank p first, making him both the unique
Majority winner and the unique STV winner.

The reason why the combination of Majority and STV is easy to
manipulate is that Majority is always guaranteed to elect the STV
winner: if some candidate has more than bn/2c votes, he will ob-
viously win under STV, and in all other cases Majority elects all
candidates. Using this observation, we can now generalize Theo-
rem 4.4. We will say that a voting correspondence F1 is a refine-
ment of a voting correspondence F2 if for any election E we have
F1(E) ⊆ F2(E), and there exists an election for which this con-
tainment is strict. Now, it is easy to see that STV is a refinement of
Majority. Also, some of the voting rules defined in Section 2 are
refinements of each other: namely, both Copeland and Maximin
are refinements of Condorcet. Yet another example is provided by
the so-called second-order Copeland rule, proved to be NP-hard to
manipulate in [3]: this rule is obtained by combining the Copeland
rule with a rather sophisticated tie-breaking rule, and is therefore
a refinement of Copeland. Now, it is easy to see that the proof of
Theorem 4.4 implies a more general fact.

COROLLARY 4.5. If a voting correspondence F1 is a refine-
ment of a voting correspondence F2 and F2-SM is in P, then so is
{F1,F2}-SM.

We remark that Corollary 4.5 crucially relies on the fact that we
consider the unique-winner version of SM, and the requirement
that a voting correspondence should produce a non-empty set of
winners for every election. Also, the converse of Corollary 4.5 is
not true, as illustrated by Copeland and second-order Copeland.
Another important observation is that Corollary 4.5 applies equally
well to the coalitional manipulation problem; we will make use of
this fact in Section 5.

Now, suppose we have two hard-to manipulate rules. Clearly,
it can be the case that their combination is also hard to manipu-
late: for example we can take two copies of STV (if we insist that
these two rules should be distinct, we can modify one of the copies
to produce a different winner on a single profile; this does not af-
fect the complexity of our problem). To conclude this section, we
provide an example of two voting rules F1 and F2 such that both
F1-SM and F2-SM are NP-complete, but {F1,F2}-SM is in P;
thus, counterintuitively, even a combination of hard-to-manipulate
rules can be “easy” to manipulate (it will become clear in a minute
why we used quotes in the previous sentence).

Our first voting rule is STV. Our second rule, which we will
denote by STV′, is obtained from STV by the following modifi-
cation: if ci is the STV winner in E, then we output ci+1 as the
unique winner (where cm+1 := c1). Now, clearly, manipulating
STV′ is just as hard as manipulating STV: we simply have to solve
the STV manipulation problem for a different candidate. However,
for any election E, STV and STV′ have different winners, so there
is no way the manipulator can make p win under both of them.
Thus, the manipulator’s problem is “easy”, in the sense that it sim-
ply cannot achieve its goal, so every instance of {STV, STV′}-SM
is a “no”-instance. We summarize these observations as follows.

THEOREM 4.6. STV′-SM is NP-complete. On the other hand,
{STV, STV′}-SM is in P.

We remark that Theorem 4.6 extends trivially to coalitional manip-
ulation.

5. COALITIONAL MANIPULATION
The coalitional manipulation problem is known to be NP-hard

for many prominent voting rules, such as Borda [6, 8] and some
other scoring rules [20], Copelandα for α ∈ (Q∩[0, 1])\{0.5} [11,
12] and Maximin [21]; it goes without saying that the hardness re-
sult for STV-SM [2] implies that STV-CM is NP-hard as well.
Therefore, we cannot hope for a general easiness result along the
lines of Theorem 4.1. Nevertheless, we can identify some interest-
ing combinations of voting rules for which CM is in P.

We start by observing that Condorcet-CM is in P. Indeed, the
manipulators can simply rank p first in all of their votes and check
if that makes p the Condorcet winner; note that the answer to this
question does not depend on how the manipulators rank the other
candidates. Now, by extending Corollary 4.5 to the coalitional ma-
nipulation problem, and using the fact both Maximin and Copeland
are refinements of the Condorcet rule, we obtain the following
corollaries.

COROLLARY 5.1. {Condorcet, Maximin}-CM is in P.

COROLLARY 5.2. {Condorcet, Copelandα}-CM is in P for any
α ∈ Q ∩ [0, 1].

Of course, the coalitional manipulation problem is also easy for
the Majority rule, and it can be easily checked that each of the rules
defined in Section 2 is a refinement of the Majority rule. Thus,
we could obtain a similar easiness result for the combination of
Majority and any other rule. We chose to state Corollaries 5.1 and
5.2 for the Condorcet rule, as the latter is more decisive and has
been considered in prior work on computational social choice, al-
beit in the context of control [4].

We will now move on to another family of voting rules whose
combinations can be shown to be easy to manipulate. A recent pa-
per by Lin [18] shows that the coalitional manipulation problem
is easy for k-Approval for any value of k. We will now prove a

stronger statement: coalitional manipulation is easy even for com-
binations of k-Approval rules (for different values of k).

THEOREM 5.3. For any finite set K = {k1, . . . , k`} ⊆ N, the
problem {k1-Approval, . . . , k`-Approval}-CM is in P.

PROOF. Consider an election E with C = {c1, . . . , cm}, |V | =
h, |M | = s, and R = (R1, . . . , Rh). We can assume without loss
of generality that p = cm.

Since k-Approval is monotone for any value of k, it is optimal
for the manipulators to rank p first in all s votes. For each k ∈ K,
let sk(p) be p’s k-Approval score in the resulting election. Now,
the manipulators’ goal is to rank every other candidate c ∈ C \{p}
so that for each k ∈ K the k-Approval score of c is strictly less
than sk(p). We can assume without loss of generality that for each
k ∈ K and each c ∈ C \ {p} the k-Approval score of c in R is
strictly less than sk(p): otherwise, we clearly have a “no”-instance
of our problem. Now, for each r = 2, . . . , m and each cj , j =
1, . . . m − 1, let x(r, j) be the maximum number of times that cj

can be ranked in position r or higher in the manipulators’ votes so
that its k-Approval score is less than sk(p) for every k ∈ K. These
values are easy to compute from the candidates’ k-Approval scores
in R, k ∈ K; our assumption on the initial scores ensures that they
are non-negative.

We will now construct a flow network so that the maximum
flow in this network corresponds to a successful set of manipu-
lative votes, if one exists. Our network has a source S, a sink
T , a node cj for each j = 1, . . . , m − 1, and a node pr for
r = 2, . . . , m; intuitively, node pr corresponds to position r in
the manipulators’ votes. There is an edge of capacity s from S to
each cj , j = 1, . . . , m − 1, and an edge of capacity s from each
pr , r = 2, . . . , m, to T . Essentially, the edge from S to cj en-
sures that cj is ranked by each manipulator, and the edge from pr

to T ensures that each of the manipulators fills position r in his
vote. It remains to explain how to connect the candidates with the
positions.

For each cj ∈ C \ {p} we build a caterpillar graph that con-
nects cj to pm, . . . , p2. More formally, for each candidate cj ,
j = 1, . . . , m − 1, we introduce nodes zj,m, . . . , zj,2 and edges
(cj , zj,m), (zj,r, zj,r−1) for r = m, . . . , 3, and (zj,r, pr) for r =
m, . . . , 2. The capacity of (cj , zj,m) and (zj,r, pr), r = m, . . . , 2,
is +∞, and the capacity of (zj,r, zj,r−1), r = m, . . . , 3, is given
by x(r − 1, j). This completes the description of our network (see
Figure 1).

x(4, 1)

p2

S

p5p4p3

c2 c3 c4c1

T

x(2, 1)

x(3, 1)

Figure 1: Network in the proof of Theorem 5.3, m = 5

We claim that this network admits a flow of size s(m − 1) if
and only if there exists an assignment of candidates to the posi-
tions in the manipulators’ votes such that the k-Approval score of
each c ∈ C \ {p} is less than sk(p) for every k ∈ K. Indeed,

suppose that such a flow exists. Since all capacities are integer,
we can assume that this flow is integer. It saturates all edges leav-
ing S, so there are s units of flow leaving each cj , j = 2, . . . , m.
This flow has to reach p2, . . . , pm traveling through the caterpillar
graph associated with cj . Thus, we can associate the flow on the
edge (zj,r, pr) with the number of times that cj is ranked in po-
sition pr . The capacity constraints on edges guarantee that these
numbers correspond to a valid set of manipulators’ votes. More-
over, for each r = m, . . . , 2, the total flow from cj to pr, . . . , p2

is at most x(r, j), which ensures that cj is ranked in positions
pr, . . . , p2 at most x(r, j) times. Hence, for each k ∈ K and each
j = 1, . . . , m − 1, the k-Approval score of cj is less than that of
p, and therefore p is the unique winner under each of the rules in
our collection. Conversely, a vote that makes p the unique election
winner with respect to each k-Approval, k ∈ K, can be converted
into a valid flow; if x manipulators rank cj in position r, we send
x units of flow on (zj,r, pr).

Theorem 5.3 has an interesting implication. Let bFα be the family
of all scoring rules. Observe that bFα includes the Borda rule, for
which coalitional manipulation is hard. Nevertheless, it turns out
that bFα-CM is solvable in polynomial time.

THEOREM 5.4. bFα-CM is in P.

PROOF. We will use the following folklore observation [17]: a
candidate c is the unique winner of an election E = (C, V,R)
with respect to each |C|-candidate scoring rule if and only if c is
the unique k-Approval winner of E for k = 1, . . . , |C| − 1. Thus,
to solve bFα-CM on an instance with m candidates, it suffices to
apply the algorithm described in the proof of Theorem 5.3 with
K = {1, . . . , m − 1}. Clearly, the running time of this algorithm
is polynomial in n and m.

We will now provide several examples of combinations of rules
for which coalitional manipulation is hard. We will focus on clas-
sic voting rules, and investigate combinations of the most promi-
nent easy-to-manipulate rule, namely, Plurality, with Borda and
Copeland, which are both hard for coalitional manipulation.

THEOREM 5.5. {Plurality, Borda}-CM is NP-complete.

PROOF. Similarly to the proofs in Section 4, we will start with
an instance of Borda-CM; this problem is known to be NP-hard
even for two manipulators and three input votes [8]. Consider an
instance of Borda-CM with C = {c1, . . . , cm}, |V | = 3, R =
(R1, R2, R3) and |M | = 2; assume without loss of generality that
m ≥ 8. Since both Borda and Plurality are neutral, we can assume
without loss of generality that p = cm.

For each i = 1, . . . , m− 1, let Xi be an arbitrary vote in L(C)
that ranks p first and ci last, and let X ′

i be the vote obtained by
reversing Xi (i.e., if in Xi candidate c is ranked above candidate
d, then in X ′

i candidate d is ranked above c, for any c, d ∈ C).
We modify the input election by adding votes Xi and X ′

i for all
i = 1, . . . , m − 1; denote the resulting election by R′. Note that
this increases p’s Plurality score by m− 1, but the Plurality score
of any other candidate only increases by 1. On the other hand, the
Borda score of each candidate increases by exactly (m− 1)2.

Suppose we have started with a “yes”-instance of Borda-CM,
and let L1, L2 be the manipulators’ votes such that p is the unique
Borda winner of (R, L1, L2). Clearly, p is also the unique Borda
winner of (R′, L1, L2). Moreover, the Plurality score of p in
(R′, L1, L2) is at least m − 1 ≥ 7, while the Plurality score of
any other candidate is at most |V |+ |M |+ 1 = 6, so p is also the

unique Plurality winner in (R′, L1, L2) (the careful reader will
notice that we can relax the requirement that m ≥ 8 by observ-
ing that Borda is monotone). Conversely, suppose that our instance
of {Plurality, Borda}-CM is a “yes”-instance. Then there exist
some votes L′

1, L
′
2 ∈ L(C) that make p the unique Borda winner

of (R′, L′
1, L

′
2). But then p is also the unique Borda winner of

(R, L1, L2).

It is interesting to compare Theorem 5.4 and Theorem 5.5: the for-
mer implies that the combination of Borda with all k-Approval
rules is easy to manipulate, whereas the latter shows that the com-
bination of 1-Approval (i.e., Plurality) and Borda is hard to ma-
nipulate; we remark that the proof of Theorem 5.5 extends easily
to the combination of Borda with k-Approval for any constant k.

A construction similar to the one used in the proof of Theo-
rem 5.5 shows that {Plurality, Copelandα}-CM is NP-complete
for α ∈ (Q ∩ [0, 1]) \ {0.5} (this is the range of values of α for
which Copelandα-CM in known to be NP-complete). The only
difference is that for Copeland we cannot assume that the number
of voters is a small constant (we will, however, assume that there
are exactly two manipulators, as this is known to be sufficient for
the NP-hardness of this problem [11, 12]). Therefore, instead of
adding one pair (Xi, X

′
i) for each i = 1, . . . , m−1, we add h such

pairs, where h is the number of honest voters. This modification
has no impact on Copeland scores: if c beats d in the original pro-
file, this remains to be the case when the new votes are added; the
converse is also true. However, the Plurality score of p increases
by h(m − 1), whereas the Plurality score of any other candidate
increases by h, and, as a result, does not exceed 2h + 2 (even tak-
ing the manipulators’ votes into account). Assuming without loss
of generality that m ≥ 4 and h ≥ 3, we obtain that p is the unique
Plurality winner of the modified election, irrespective of how the
manipulator votes. The rest of the argument proceeds as in the
proof of Theorem 5.5. We obtain the following corollary.

COROLLARY 5.6. {Plurality, Copelandα}-CM is NP-complete
for α ∈ (Q ∩ [0, 1]) \ {0.5}.

Perhaps unsurprisingly, the combination of Borda and Copeland
is hard to manipulate as well.

THEOREM 5.7. {Borda, Copelandα}-CM is NP-complete for
α ∈ (Q ∩ [0, 1]) \ {0.5}.

PROOF. We employ a variant of the construction used in the
proof of Corollary 5.6: we start with an instance of Copelandα-
CM with C = {c1, . . . , cm}, |V | = h, |M | = 2, and R =
(R1, . . . , Rh) and modify it to obtain an instance of our problem in
which p is the Borda winner no matter how the manipulator votes.

We assume without loss of generality that h > 2. Let C′ =
C ∪ {d}, and modify R by ranking d in the last position in each
preference order; denote the resulting profile by R′. In R′, d loses
all pairwise elections, no matter how the manipulator votes; more-
over, the final Copelandα scores of all candidates do not depend on
how the manipulators rank d.

Now, let X be some vote in L(C ∪ {d}) that ranks p first and
d second, let X ′ be obtained by reversing X , and let X ′′ be ob-
tained from X ′ by swapping p and d. Add 2mh pairs of the form
(X, X ′′) to R′; denote the resulting profile by R′′. Clearly, the
addition of these new votes cannot possibly change the outcome of
any pairwise election other than the one between p and d; more-
over, p won his pairwise election against d even before these new
votes were added, so this remains to be the case. We conclude that
the Copelandα score of any candidate c ∈ C in R′′ exceeds his
Copelandα score in R by exactly 1.

SM CM
easy + easy = easy all “nice” rules k-Approval

easy + easy = hard {STV1, STV2} {STV1, STV2}
easy + hard = hard {Borda, STV}, {Plurality, STV} {Plurality, Borda}, {Plurality, Copeland}
easy + hard = easy {Majority, STV} {Condorcet, Copeland}, {Condorcet, Maximin}, scoring rules
hard + hard = easy {STV, STV′} {STV, STV′}
hard + hard = hard {STV, STV} {Borda, Copeland}

Table 1: Summary of results

On the other hand, the new votes increase the Borda score of ev-
ery candidate other than p and d by 2m2h (relative toR′), whereas
the Borda score of p goes up by 2m2h + 2mh and Borda score of
d goes up by 2m2h − 2mh. Since the Borda scores of all candi-
dates inR′ do not exceed mh, p is the unique Borda winner inR′′

irrespective of how the manipulator votes. The rest of the proof is
similar to that of Theorem 5.5 and Corollary 5.6.

We remark that the proofs of Theorems 4.3, 5.7 and 5.5 and
Corollary 5.6 are based on the same idea: we can modify an elec-
tion so that the (relative) scores of all candidates with respect to
one rule remain essentially unchanged while making a certain can-
didate a winner with respect to another voting rule. This suggests
that these rules exhibit certain independence; this is somewhat rem-
iniscent of Klamler’s work on closeness of voting rules (see Klam-
ler [15] and references therein). Formalizing this notion of inde-
pendence is an interesting direction for future work.

6. CONCLUSIONS AND FUTURE WORK
We have investigated the problem of (coalitional) manipulation

under uncertainty about the voting rules. Our results are summa-
rized in Table 1. While we have not established the complexity of
our problem for all possible combinations of voting rules, our re-
sults identify a number of approaches for dealing with problems of
this type and the features of voting rules that make their combina-
tions easy or hard to manipulate.

An obvious direction for future work is extending our approach
to other forms of cheating in elections, such as control and bribery.
Also, an interesting variant of our problem in the context of single-
winner manipulation can be obtained by adopting the paradigm of
safe strategic voting [19]. That is, instead of assuming that the ma-
nipulator wants to get a certain candidate elected, we take the more
traditional approach, where the manipulator, too, has a preference
order and would like to improve the election outcome with respect
to this order; we can then ask whether the manipulator can vote so
that the outcome improves for at least one voting rule in the given
family and does not get worse with respect to the other rules.
Acknowledgments This research was supported by National Re-
search Foundation (Singapore) under grant 2009-08. We would
like to thank the anonymous AAMAS referees for their very useful
feedback.

7. REFERENCES
[1] Y. Bachrach, N. Betzler, and P. Faliszewski. Probabilistic

possible winner determination. In AAAI’10, pages 697–702,
2010.

[2] J. Bartholdi and J. Orlin. Single transferable vote resists
strategic voting. Social Choice and Welfare, 8(4):341–354,
1991.

[3] J. Bartholdi, C. Tovey, and M. Trick. The computational
difficulty of manipulating an election. Social Choice and
Welfare, 6(3):227–241, 1989.

[4] J. Bartholdi, C. Tovey, and M. Trick. How hard is it to
control an election? Mathematical and Computer Modeling,
16(8/9):27–40, 1992.

[5] D. Baumeister, M. Roos, and J. Rothe. Computational
complexity of two variants of the possible winner problem.
In AAMAS’11, pages 853–860, 2011.

[6] N. Betzler, R. Niedermeier, and G. J. Woeginger.
Unweighted coalitional manipulation under the Borda rule is
NP-hard. In IJCAI’11, pages 55–60, 2011.

[7] V. Conitzer, T. Walsh, and L. Xia. Dominating manipulations
in voting with partial information. In AAAI’11, pages
638–643, 2011.

[8] J. Davies, G. Katsirelos, N. Narodytska, and T. Walsh.
Complexity of and algorithms for Borda manipulation. In
AAAI’11, pages 657–662, 2011.

[9] E. Elkind, P. Faliszewski, and A. Slinko. Cloning in
elections. In AAAI’10, pages 768–773, 2010.

[10] E. Elkind and H. Lipmaa. Hybrid voting protocols and
hardness of manipulation. In ISAAC’05, pages 206–215,
2005.

[11] P. Faliszewski, E. Hemaspaandra, and H. Schnoor. Copeland
voting: Ties matter. In AAMAS’08, pages 983–990, 2008.

[12] P. Faliszewski, E. Hemaspaandra, and H. Schnoor.
Manipulation of Copeland elections. In AAMAS’10, pages
367–374, 2010.

[13] P. Faliszewski and A. D. Procaccia. AI’s war on
manipulation: Are we winning? AI Magazine, 31(4):53–64,
2010.

[14] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Hybrid
elections broaden complexity-theoretic resistance to control.
Mathematical Logic Quarterly, 55(4):397–424, 2009.

[15] C. Klamler. On the closeness aspect of three voting rules:
Borda—Copeland—Maximin. Group Decision and
Negotiation, 14:233–240, 2005.

[16] K. Konczak and J. Lang. Voting procedures with incomplete
preferences. In MPREF’05, pages 124–129, 2005.

[17] J. Lang, 2010. Private communication.
[18] A. Lin. The complexity of manipulating k-approval

elections. In ICAART’11, pages 212–218, 2011.
[19] A. Slinko and S. White. Non-dictatorial social choice rules

are safely manipulable. In COMSOC’08, pages 403–413,
2008.

[20] L. Xia, V. Conitzer, and A. Procaccia. A scheduling approach
to coalitional manipulation. In ACM EC’10, pages 275–284,
2010.

[21] L. Xia, M. Zuckerman, A. Procaccia, V. Conitzer, and
J. Rosenschein. Complexity of unweighted manipulation
under some common voting rules. In IJCAI’09, pages
348–353, 2009.

