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ABSTRACT
We investigate agent supervision, a form of customization, which
constrains the actions of an agent so as to enforce certain desired
behavioral specifications. This is done in a setting based on the
Situation Calculus and a variant of the ConGolog programming lan-
guage which allows for nondeterminism, but requires the remainder
of a program after the execution of an action to be determined by
the resulting situation. Such programs can be fully characterized
by the set of action sequences that they generate. Hence operations
like intersection and difference become natural. The main results
of the paper are a characterization of the maximally permissive su-
pervisor that minimally constrains the agent so as to enforce the
desired behavioral constraints when some agent actions are uncon-
trollable, and a sound and complete technique to execute the agent
as constrained by such a supervisor.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation For-
malisms and Methods

General Terms
Languages, Theory, Verification

Keywords
Agent Reasoning::Knowledge representation, Agent theories,
Models and Architectures::Logic-based approaches and methods,
Agent Reasoning::Reasoning (single and multi-agent)

1. INTRODUCTION
There has been much work on process customization, where a

generic process for performing a task or achieving a goal is cus-
tomized to satisfy a client’s constraints or preferences [9, 11, 16].
Process customization gained special momentum in the context of
web service composition [17]. For example in [12], a generic pro-
cess provides a wide range of alternative ways to perform a task.
During customization, alternatives that violate the constraints are
eliminated. Some parameters in the remaining alternatives may be
restricted or instantiated so as to ensure that any execution of the
customized process will satisfy the client’s constraints. A related
approach to service composition synthesizes an orchestrator that
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Figure 1: Supervised execution loop.

controls the execution of a set of available services to ensure that
they realize a desired service [15, 1].

In this paper, we develop a framework for a similar type of pro-
cess refinement that we call supervised execution (see Figure 1).
We assume that we have a nondeterministic process that specifies
the possible behaviors of an agent, and a second process that spec-
ifies the possible behaviors that a supervisor wants to allow (or al-
ternatively, of the behaviors that it wants to rule out). For example,
we could have an agent process representing a child and its possi-
ble behaviors, and a second process representing a babysitter that
specifies the behaviors by the child that can be allowed. If the su-
pervisor can control all the actions of the supervised agent, then it
is straightforward to specify the behaviors that may result as a kind
of synchronized concurrent execution of the agent and supervisor
processes. A more interesting case arises when some agent actions
are uncontrollable. For example, it may be impossible to prevent
the child from getting muddy once he/she is allowed outside. In
such circumstances, the supervisor may have to block some agent
actions, not because they are undesirable in themselves (e.g., going
outside), but because if they are allowed, the supervisor cannot pre-
vent the agent from possibly performing some undesirable actions
later on (e.g., getting muddy).

We follow previous work [12, 9] in assuming that processes are
specified in a high level agent programming language defined in
the Situation Calculus [14].1 In fact, we define and use a restricted
version of the ConGolog agent programming language [3] that we
call Situation-Determined ConGolog (SDConGolog). In this ver-
sion, following [4] all transitions involve performing an action (i.e.,
there are no transitions that merely perform a test). Moreover, non-
determinism is restricted so that the remaining program is a func-
tion of the action performed, i.e., given a program δ in a situation

1Clearly, there are applications where a declarative formalism is
preferable, e.g., linear temporal logic (LTL), regular expressions
over actions, or some type of business rules. However, there has
been previous work on compiling such declarative specification
languages into ConGolog, for instance [9], which handles an ex-
tended version of LTL interpreted over a finite horizon.



s, executing an action a (allowed by the program and the situation)
results in a unique successor situation s′ = do(a, s) and a unique
remaining program δ′ = next(δ, s, a), where next is a function
(formally defined later in this paper) that takes as arguments only
δ, s, and a. This means that a run of such a program starting in
a given situation can be taken to be simply a sequence of actions,
as all the intermediate programs one goes through during the ex-
ecution are functionally determined by the starting program and
situation and the actions performed. Thus we can see a program in
a situation as specifying a language formed by all the sequences of
actions that are runs of the program in the situation. This allows us
to define language theoretic notions such as union of languages, in-
tersection, and difference/complementation in terms of operations
on the corresponding programs, which has applications in many
areas (e.g., programming by demonstration and programming by
instruction [8], and plan recognition [6, 10]). We note that in [4],
it is (implicitly) shown that any ConGolog program can be made
situation-determined by recording nondeterministic choices as ad-
ditional actions. Working with situation-determined programs also
facilitates the formalization of supervision/customization. In par-
ticular it allows us to build on on the well-known Wonham and Ra-
madge framework for supervisory control of discrete event systems
[13, 19, 2, 18].

Based on such a framework, we provide a general characteriza-
tion of the maximally permissive supervisor that minimally con-
strains the actions of the agent specified in SDConGolog so as to
enforce the desired behavioral specifications, showing its existence
and uniqueness; secondly, we define a special program construct
for supervised execution that takes the agent program and super-
visor program, and executes them to obtain only runs allowed by
the maximally permissive supervisor, showing its soundness and
completeness.

The rest of the paper proceeds as follows. In the next section, we
briefly review the Situation Calculus and the ConGolog agent pro-
gramming language. In Section 3, we define SDConGolog, discuss
its properties, and introduce some useful programming constructs
and terminology. Then in Section 4, we develop our account of
agent supervision, and define the maximally permissive supervisor
and supervised execution. Finally in Section 5, we conclude the
paper also discussing implementation.

2. PRELIMINARIES
The situation calculus is a logical language specifically designed

for representing and reasoning about dynamically changing worlds
[14]. All changes to the world are the result of actions, which are
terms in the logic. We denote action variables by lower case letters
a, action types by capital letters A, and action terms by α, possi-
bly with subscripts. A possible world history is represented by a
term called a situation. The constant S0 is used to denote the initial
situation where no actions have yet been performed. Sequences of
actions are built using the function symbol do, such that do(a, s)
denotes the successor situation resulting from performing action a
in situation s. Predicates and functions whose value varies from
situation to situation are called fluents, and are denoted by symbols
taking a situation term as their last argument (e.g.,Holding(x, s)).
Within the language, one can formulate action theories that de-
scribe how the world changes as the result of actions [14].

To represent and reason about complex actions or processes
obtained by suitably executing atomic actions, various so-called
high-level programming languages have been defined. Here
we concentrate on (a fragment of) ConGolog that includes the
following constructs:

α atomic action
ϕ? test for a condition
δ1; δ2 sequence
if ϕ then δ1 else δ2 conditional
while ϕ do δ while loop
δ1|δ2 nondeterministic branch
πx.δ nondeterministic choice of argument
δ∗ nondeterministic iteration
δ1‖δ2 concurrency

In the above, α is an action term, possibly with parameters, and ϕ
is situation-suppressed formula, that is, a formula in the language
with all situation arguments in fluents suppressed. As usual, we
denote by ϕ[s] the situation calculus formula obtained from ϕ by
restoring the situation argument s into all fluents in ϕ. Program
δ1|δ2 allows for the nondeterministic choice between programs δ1
and δ2, while πx.δ executes program δ for some nondeterministic
choice of a legal binding for variable x (observe that such a choice
is, in general, unbounded). δ∗ performs δ zero or more times. Pro-
gram δ1‖δ2 expresses the concurrent execution (interpreted as in-
terleaving) of programs δ1 and δ2.

Formally, the semantics of ConGolog is specified in terms of
single-step transitions, using the following two predicates [3]: (i)
Trans(δ, s, δ′, s′), which holds if one step of program δ in situ-
ation s may lead to situation s′ with δ′ remaining to be executed;
and (ii) Final(δ, s), which holds if program δ may legally termi-
nate in situation s. The definitions of Trans and Final we use
are as in [4]; these are in fact the usual ones [3], except that the test
construct ϕ? does not yield any transition, but is final when satis-
fied. Thus, it is a synchronous version of the original test construct
(it does not allow interleaving). As a consequence, in the version
of ConGolog that we use, every transition involves the execution of
an action (tests do not make transitions), i.e.,

Σ ∪ C |= Trans(δ, s, δ′, s′) ⊃ ∃a.s′ = do(a, s).

Here and in the remainder, we use Σ to denote the foundational ax-
ioms of the situation calculus from [14] and C to denote the axioms
defining the ConGolog programming language.

3. SD-PROGRAMS
We focus on a restricted class of ConGolog programs to describe

processes, namely “situation-determined programs”; we call this
class SDConGolog. A program δ is situation-determined in a situ-
ation s if for every sequence of transitions, the remaining program
is determined by the resulting situation, i.e.,

SituationDetermined(δ, s)
.
= ∀s′, δ′, δ′′.

Trans∗(δ, s, δ′, s′) ∧ Trans∗(δ, s, δ′′, s′) ⊃ δ′ = δ′′,

where Trans∗ denotes the reflexive transitive closure of Trans.
Thus, a (possibly partial) execution of a situation-determined pro-
gram is uniquely determined by the sequence of actions it has pro-
duced. This is a key point. In general, the possible executions of
a ConGolog program are characterized by sequences of configura-
tions formed by the remaining program and the current situation.
In contrast, the execution of a SDConGolog program in a situation
can be characterized in terms of a set of sequences (or language)
of actions. Such sequences correspond to situations reached from
the situation where the program started.

For example, assuming for simplicity that all actions are exe-
cutable in every situation, the ConGolog program (a; b) | (a; c) is
not situation-determined in situation S0 as it can make a transition
to a configuration (b, do(a, S0)), where the situation is do(a, S0)
and the remaining program is b, and it can also make a transition to
a configuration (c, do(a, S0)), where the situation is also do(a, S0)



and the remaining program is instead c. It is impossible to deter-
mine what the remaining program is given only a situation, e.g.
do(a, S0), reached along an execution. In contrast, the program
a; (b | c) is situation-determined in situation S0. There is a unique
remaining program (b | c) in situation do(a, S0) (and similarly for
the other reachable situations).

When we restrict our attention to situation-determined programs,
we can use a simpler semantic specification for the language;
instead of Trans we can use a next (partial) function, where
next(δ, a, s) returns the program that remains after δ does a tran-
sition involving action a in situation s (if δ is situation determined,
such a remaining program must be unique). We will axiomatize the
next function so that it satisfies the following properties:

next(δ, a, s) = δ′ ∧ δ′ 6= ⊥ ⊃ Trans(δ, s, δ′, do(a, s)) (N1)

∃!δ′.Trans(δ, s, δ′, do(a, s)) ⊃
∀δ′.(Trans(δ, s, δ′, do(a, s)) ⊃ next(δ, a, s) = δ′) (N2)

¬∃!δ′.Trans(δ, s, δ′, do(a, s)) ⊃ next(δ, a, s) = ⊥ (N3)

Here ∃!x.φ(x) means that there exists a unique x such that φ(x);
this is defined in the usual way. ⊥ is a special value that stands for
“undefined”. The function next(δ, a, s) is only defined when there
is a unique remaining program after program δ does a transition
involving the action a; if there is such a unique remaining program,
then next(δ, a, s) denotes it.

We define the function next inductively on the structure of pro-
grams using the following axioms.

Atomic action:

next(α, a, s) =

{
nil if Poss(a, s) and α = a

⊥ otherwise

Sequence: next(δ1; δ2, a, s) =
next(δ1, a, s); δ2 if next(δ1, a, s) 6= ⊥ and

(¬Final(δ1, s) or next(δ2, a, s) = ⊥)

next(δ2, a, s) if Final(δ1, s) and next(δ1, a, s) = ⊥
⊥ otherwise

Conditional:

next(if ϕ then δ1 else δ2, a, s) =

{
next(δ1, a, s) if ϕ[s]

next(δ2, a, s) if ¬ϕ[s]

Loop:

next(while ϕ do δ, a, s) =


next(δ, a, s); while ϕ do δ

if ϕ[s] and next(δ, a, s) 6= ⊥
⊥ otherwise

Nondeterministic branch:

next(δ1|δ2, a, s) =


next(δ1, a, s) if next(δ2, a, s) = ⊥ or

next(δ2, a, s) = next(δ1, a, s)

next(δ2, a, s) if next(δ1, a, s) = ⊥
⊥ otherwise

Nondeterministic choice of argument:2

next(πx.δ, a, s) =

{
next(δxd , a, s) if ∃!d.next(δxd , a, s) 6= ⊥
⊥ otherwise

2Notice that d in δxd depends on a and s. In particular d may be
instantiated by the action a in s. Read on for an example.

Nondeterministic iteration:

next(δ∗, a, s) =

{
next(δ, a, s); δ∗ if next(δ, a, s) 6= ⊥
⊥ otherwise

Interleaving concurrency: next(δ1‖δ2, a, s) =

next(δ1, a, s)‖δ2
if next(δ1, a, s) 6= ⊥ and next(δ2, a, s) = ⊥

δ1‖next(δ2, a, s)
if next(δ2, a, s) 6= ⊥ and next(δ1, a, s) = ⊥

⊥ otherwise

Test, empty program, undefined:
next(ϕ?, a, s) = ⊥ next(nil, a, s) = ⊥ next(⊥, a, s) = ⊥

The undefined program is never Final: Final(⊥, s) ≡ false.
Let Cn be the set of ConGolog axioms extended with the above

axioms specifying next and Final(⊥, s). It is easy to show that:

PROPOSITION 1. N1, N2, and N3 are entailed by Σ ∪ Cn.

Note in particular that as per N3, if the remaining program is not
uniquely determined, then next(δ, a, s) is undefined. Notice that
for situation-determined programs this will never happen, and if
next(δ, a, s) returns ⊥ it is because δ cannot make any transition
using a in s:

COROLLARY 2.

Σ ∪ Cn |= ∀δ, s.SituationDetermined(δ, s) ⊃
∀a [(next(δ, a, s) = ⊥) ≡ (¬∃δ′.Trans(δ, s, δ′, do(a, s)))].

Let’s look at an example. Imagine an agent specified by δB1

below that can repeatedly pick an available object and repeatedly
use it and then discard it, with the proviso that if during use the
object breaks, the agent must repair it:

δB1 = [π x.Available(x)?;
[use(x); (nil | [break(x); repair(x)])]∗;
discard(x)]∗

We assume that there is a countably infinite number of available
unbroken objects initially, that objects remain available until they
are discarded, that available objects can be used if they are unbro-
ken, and that objects are unbroken unless they break and are not
repaired (this is straightforwardly axiomatized in the situation cal-
culus). Notice that this program is situation-determined, though
very nondeterministic.

Language theoretic operations on programs. We extend the
SDConGolog language so as to close it with respect to lan-
guage theoretic operations, such as union, intersection and differ-
ence/complementation of sets of sequences of actions. We can al-
ready see the nondeterministic branch construct as a union operator,
and intersection and difference can be defined as follows.
Intersection/synchronous concurrency:

next(δ1 & δ2, a, s) =


next(δ1, a, s) & next(δ2, a, s)

if both are different from ⊥
⊥ otherwise

Difference: next(δ1 − δ2, a, s) =
next(δ1, a, s)− next(δ2, a, s) if both are different from ⊥
next(δ1, a, s) if next(δ2, a, s) = ⊥
⊥ if next(δ1, a, s) = ⊥

For these new constructs, Final is defined as follows:

Final(δ1 & δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s)

Final(δ1 − δ2, s) ≡ Final(δ1, s) ∧ ¬Final(δ2, s)



We can express the complement of a program δ using difference as
follows: (πa.a)∗ − δ.

It is easy to check that Proposition 1 and Corollary 2 also hold
for programs involving these new constructs.3

As we will see later, synchronous concurrency can be used to
constrain/customize a process. Difference can be used to prohibit
certain process behaviors: δ1 − δ2 is the process where δ1 is ex-
ecuted but δ2 is not. To illustrate, consider an agent specified by
program δS1 that repeatedly picks an available object and does any-
thing to it provided it is broken at most once before it is discarded:

δS1 = [π x.Available(x)?;
[π a.(a−(break(x) | discard(x)))]∗;
(nil | (break(x)); [π a.(a−(break(x) | discard(x)))]∗);
discard(x)]∗

Sequences of actions generated by programs. We now character-
ize situation determined programs in terms of sequences of actions
(runs) that may be performed from a given starting situation. This
allows us to associate to such programs a language formed by such
sequences of actions. Notice that in most cases not only the lan-
guage will be infinite, but even the alphabet on which the language
is defined will be infinite, since it is formed by all actions obtained
by substituting values for parameters in the action types.

We start by extending the function next to deal with sequences
of actions. We assume sequences of actions to be inductively de-
fined on their length as follows: (i) ε is the sequence of action of
length 0; (ii) given a sequence of actions ~a of length n, and an ac-
tion a the sequence a~a is a sequence of actions of length n + 1.
(Notice that we are considering only finite sequences of actions in
this way.)4 When convenient, we will use the notation ~a~b to denote
the sequence of actions formed by concatenating the two subse-
quences ~a and ~b. As a special case we use also ~aa where a is an
action.

The extension of the function next to sequences of actions is a
function next∗(δ,~a, s) that takes a program δ, a sequence of ac-
tions ~a, and a situation s, and returns the remaining program δ′

after executing δ in s producing the sequence of actions ~a, defined
by induction on the length of the sequence of actions as follows:

next∗(δ, ε, s) = δ
next∗(δ, a~a, s) = next∗(next(δ, a, s),~a, do(a, s))

where ε denotes the empty sequence. Note that if along ~a the pro-
gram becomes ⊥ then next∗ returns ⊥ as well.

Runs. We define the setRR(δ, s) of (partial) runs of a program δ
in a situation s as the sequences of actions that can be produced by
executing δ from s:5

RR(δ, s) = {~a | next∗(δ,~a, s) 6= ⊥}

Note that if ~a ∈ RR(δ, s), then all prefixes of ~a are in RR(δ, s)
as well.
3We may extend the definition of Trans to the new constructs ◦ ∈
{&,−} as follows Trans(δ1 ◦ δ2, s, δ′, s′) ≡ ∃a.s = do(a, s) ∧
δ′ = next(δ1 ◦ δ2, a, s) 6= ⊥.
4Notice that such sequences of actions have to be axiomatized in
second-order logic in a standard way, similarly to situations. Also
as an alternative, sequences of actions could also be characterized
directly in terms of “difference” between situations. For sake of
brevity, we leave out the formalization of sequences of actions here,
and just assume that such sequences have been fully characterized.
5Here and in what follows, we use set notation for readability; if
we wanted to be very formal, we could introduceRR as a defined
predicate, and similarly for CR, etc.

Complete runs. Notice that not all runs inRR reach eventually a
final configuration. We are interested in distinguishing those runs
that do. Hence we define the set of complete runs and that of their
prefixes, called the good runs. We define the set CR(δ, s) of com-
plete runs of a program δ in a situation s as the sequences of actions
that can be produced by executing δ from s until a Final configura-
tion is reached:

CR(δ, s) = {~a | Final(next∗(δ,~a, s), do(~a, s))}

As an alternative characterization, we observe that for every se-
quence of actions ~a, we have ~a ∈ CR(δ, s) iff Do(δ, s, do(~a, s))
using the usual terminology of [14, 3].

Good runs. We define the set GR(δ, s) of good runs of a program
δ in a situation s as the sequences of actions that can be produced
by executing δ from s which can be extended until a Final configu-
ration is reached:

GR(δ, s) = {~a | ∃~b.Final(next∗(δ,~a~b, s), do(~a~b, s))}

In other words ~a ∈ GR(δ, s) if ~a is a prefix of a sequence of action
~a′ = ~a~b such that ~a′ ∈ CR(δ, s).

RR(δ, s), CR(δ, s), and GR(δ, s) can be considered as three
languages (of sequences of actions) generated by the program δ in
s. This allows us to apply language theoretic notions to situation-
determined programs, and we exploit this possibility for studying
supervision.

Before turning to that, let’s make a few observations. First, it
is easy to see that CR(δ, s) ⊆ GR(δ, s) ⊆ RR(δ, s), i.e., com-
plete runs are good runs, and good runs are indeed runs. Moreover,
CR(δ, s) = CR(δ′, s) implies GR(δ, s) = GR(δ′, s), i.e., if two
programs in a situation have the same complete runs, then they
also have the same good runs; however they may still differ in their
sets of non-good runs, since CR(δ, s) = CR(δ′, s) does not imply
RR(δ, s) = RR(δ′, s). We say that a program δ in s is non-
blocking iff RR(δ, s) = GR(δ, s), i.e., if all runs of the program
δ in s can be extended to runs that reach a Final configuration.

Search construct. Interestingly in the literature on Situation Cal-
culus based programs, a special construct Σ(δ) was introduced to
ensure that the only actions produced by a program δ are those that
eventually lead to a final state. This is the so called “search con-
struct” [5].

We can add such a construct to SDConGolog, and use it to gen-
erate only good runs. The search construct Σ is characterized in
terms of next as follows:

next(Σ(δ), a, s) =


Σ(next(δ, a, s)) if there exists ~a s.t.

Final(next∗(δ, a~a, s))

⊥ otherwise

Final(Σ(δ), s) ≡ Final(δ, s).

Intuitively, next(Σ(δ), a, s) does lookahead to ensure that action a
is in a good run of δ in s, otherwise it returns ⊥.

Notice that: (i) RR(Σ(δ), s) = GR(Σ(δ), s), i.e., un-
der the search construct all programs are non-blocking; (ii)
RR(Σ(δ), s) = GR(δ, s), i.e., Σ(δ) produces exactly the good
runs of δ; (iii) CR(Σ(δ), s) = CR(δ, s), i.e., Σ(δ) and δ produce
exactly the same set of complete runs. Thus Σ(δ) trims the behav-
ior of δ by eliminating all those runs that do not lead to a Final
configuration.

Note also that if a program is non-blocking in s, then
RR(Σ(δ), s) = RR(δ, s), in which case there is no point in



using the search construct. Finally, we have that: CR(δ, s) =
CR(δ′, s) impliesRR(Σ(δ), s) = RR(Σ(δ′), s), i.e., if two pro-
grams have the same complete runs, then under the search construct
they have exactly the same runs.

4. SUPERVISION
Let us assume that we have two agents: an agentB with behavior

represented by the program δB and a supervisor S with behavior
represented by δS . While both are represented by programs, the
roles of the two agents are quite distinct. The first is an agent B
that acts freely within its space of deliberation represented by δB .
The second, S, is supervisingB so that asB acts, it remains within
the behavior permitted by S. This role makes the program δS act
as a specification of allowed behaviors for agent B.6

The behavior of B under the supervision of S is constrained so
that at any point B can execute an action in its original behavior,
only if such an action is also permitted in S’s behavior. Using the
synchronous concurrency operator, this can be expressed simply as:

δB & δS .

Note that unless δB & δS happens to be non-blocking, it may get
stuck in dead end configurations. To avoid this, we need to ap-
ply the search construct, getting Σ(δB & δS). In general, the use
of the search construct to avoid blocking, is always needed in the
development below.

We can use the example programs presented earlier to illustrate.
The execution of δB1 under the supervision of δS1 is simply δB1 &
δS1 (assuming all actions are controllable). It is straightforward to
show that the resulting behavior is to repeatedly pick an available
object and use it as long as one likes, breaking it at most once,
and repairing it whenever it breaks, before discarding it. It can be
shown that the set of partial/complete runs of δB1 & δS1 is exactly
that of:

[π x.Available(x)?;
use(x)∗;
[nil | (break(x); repair(x);use(x)∗)];
discard(x)]∗

Uncontrollable actions. In the above, we implicitly assumed that
all actions of agentB could be controlled by the supervisor S. This
is often too strong an assumption, e.g., once we let a child out in
a garden after rain, there is nothing we can do to prevent her/him
from getting muddy. We now want to deal with such cases.

To do this, we follow the general approach of the well-known
Wonham and Ramadge (W&R) framework for supervisory control
of discrete event systems [13, 19, 2, 18], suitably extended to deal
with rich languages such as those generated by SDConGolog pro-
grams.

We start by distinguishing between actions that are controllable
by the supervisor and actions that are uncontrollable. The super-
visor can block the execution of the controllable actions, but can-
not prevent the supervised agent from executing the uncontrollable
ones.

To characterize the uncontrollable actions in the situation cal-
culus, we use a special fluent Au(au, s), which we call an action
filter, that expresses that action au is uncontrollable in situation s.

6Note that, because of these different roles, one may want to as-
sume that all configurations generated by (δS , s) are Final, so
that we leave B unconstrained on when it may terminate. This
amounts to requiring the following property to hold: CR(δS , s) =
GR(δS , s) = RR(δS , s). While reasonable, for the technical de-
velopment below, we do not need to rely on this assumption.

Notice that, unlike in the W&R framework, we allow controllabil-
ity to be context dependent by allowing an arbitrary specification
of the fluent Au(au, s) in the situation calculus.

While we would like the supervisor S to constrain agent B so
that δB & δS is executed, in reality, since S cannot prevent un-
controllable actions, S can only constrain B on the controllable
actions. When this is sufficient, we say that the supervison spec-
ification δS is “controllable”. Technically, following again W&R,
this can be captured by saying that the supervision specification δS
is controllable wrt δB in situation s iff:

∀~aau.~a ∈ GR(δS , s) and Au(au, do(~a, s)) implies
if ~aau ∈ GR(δB , s) then ~aau ∈ GR(δS , s).

What this says is that if we postfix a good run ~a for S with an
uncontrollable action au that is good for B (and so ~a must be
good for B as well), then this uncontrollable action au must also
be good for S. By the way, notice that ~aau ∈ GR(δB , s) and
~aau ∈ GR(δS , s) together imply that ~aau ∈ GR(δB & δS , s).

What about if such a property does not hold? We can take two
orthogonal approaches: (i) simply relax δS so that it places no con-
straints on the uncontrollable actions; (ii) require that δS be indeed
enforced, but also disallow those runs that prevent δS from being
controllable. We look at both approaches below.

Relaxed supervision. To define relaxed supervision we first need
to introduce two operations on programs: projection and, based on
it, relaxation. The projection operation takes a program and an
action filter Au, and projects all the actions that satisfy the action
filter (e.g., are uncontrollable), out of the execution. To do this,
projection substitutes each occurrence of an atomic action term αi
by a conditional statement that replaces it with the trivial test true?
when Au(αi) holds in the current situation, that is:

pj (δ,Au) = δαi

if Au(αi) then true? else αi

for every occurrence of an action term αi in δ.

(Recall that such a test does not perform any transition in our vari-
ant of ConGolog.)

The relaxation operation on δ wrt Au(a, s) is as follows:

rl(δ,Au) = pj (δ,Au)‖(πa.Au(a)?; a)∗.

In other words, we project out the actions in Au from δ and run
the resulting program concurrently with one that picks (uncon-
trollable) actions filtered by Au and executes them. The result-
ing program no longer constrains the occurrence of actions from
Au in any way. In fact, notice that the remaining program of
(πa.Au(a)?; a)∗ after the execution of an (uncontrollable) filtered
action is (πa.Au(a)?; a)∗ itself, and that such a program is always
Final.

Now we are ready to define relaxed supervision. Let us consider
a supervisor S with supervision specitfication δS for agent B with
behavior δB . Let the action filter Au(au, s) specify the uncontrol-
lable actions. Then the relaxed supervision of δS (for Au(au, s))
in s is the relaxation of δS so as that it allows every uncontrollable
action, namely: rl(δS , Au). So we can characterize the behavior
of B under the relaxed supervision of S as:

δB & rl(δS , Au).

The following properties are immediate consequences of the def-
initions:

PROPOSITION 3. The relaxed supervision rl(δS , Au) is con-
trollable wrt δB in situation s.

PROPOSITION 4. CR(δB & δS , s) ⊆ CR(δB &
rl(δS , Au), s).



PROPOSITION 5. If CR(δB & rl(δS , Au), s) ⊆ CR(δB &
δS , s), then δS is controllable wrt δB in situation s.

Notice that, the first one is what we wanted. But the second one
says that rl(δS , Au) may indeed by more permissive than δS : some
complete runs that are disallowed in δS may be permitted by its
relaxation rl(δS , Au). This is often not acceptable. Proposition 5
says that when the converse of Proposition 4 holds, we have that the
original supervision δS is indeed controllable wrt δB in situation s.
Notice however that even if δS is controllable wrt δB in situation s,
it may still be the case that CR(δB & rl(δS , Au), s) ⊂ CR(δB &
δS , s).

Maximally permissive supervisor. Next we study a more interest-
ing, more conservative approach: we require the supervision speci-
fication δS to be fulfilled, and for getting controllability we further
restrict the specification if needed. This is the classical approach
adopted in the W&R framework, and indeed, we are able to show
that the key result of the W&R framework is preserved in our gener-
alized setting: there is, in principle, a unique maximally permissive
way of restricting the supervision specification so that it still ful-
fills δS while being controllable. We call the resulting supervisor
the maximally permissive supervisor.

To phrase this result in our setting, however, we need to augment
our programming language with a new construct set(E) that takes
an arbitrary set of sequences of actions E and makes it a program.
For such a construct next and Final are defined as follows:

next(set(E), a, s) =

 set(E′) with E′ = {~a | a~a ∈ E}
if E′ 6= ∅

⊥ if E′ = ∅
Final(set(E), s) ≡ (ε ∈ E)

Thus set(E) can be executed to produce any of the sequences of
actions in E.

Notice that for every program δ and situation s, we can define
Eδ = CR(δ, s) such that CR(set(Eδ), s) = CR(δ, s). The con-
verse does not hold in general, i.e., there are programs set(E)
such that for all programs δ, not involving the set(·) construct,
CR(set(Eδ), s) 6= CR(δ, s). That is, the syntactic restrictions in
SDConGolog may not allow us to represent some possible sets of
sequences of actions.7

With the set(E) construct at hand, following [19], we may de-
fine the maximally permissive supervisor mps(δB , δS , s) of the
agent behavior δB which fulfills the supervision specification δS
in situation s, as:

mps(δB , δS , s) = set(
⋃
E∈E E) where

E = {E | E ⊆ CR(δB & δS , s)
and set(E) is controllable wrt δB in s}

Intuitively mps denotes the maximal set of runs that are effec-
tively allowable by a supervisor that fulfills the specification δS ,
and which can be left to the arbitrary decisions of the agent behav-
ing as δB on the uncontrollable actions. A quite interesting result
is that, even in the general setting we are presenting, such a max-
imally permissive supervisor always exists and is unique. Indeed,
we can show:

THEOREM 6. For the maximally permissive supervisor
mps(δB , δS , s) the following properties hold:
7Obviously there are certain sets that can be expressed directly in
SDConGolog , e.g., when E is finite. However notice that in the
general case the object domain may be infinite, and set(E) may
not be representable as a finitary SDConGolog program.

1. mps(δB , δS , s) always exists and is unique;

2. mps(δB , δS , s) is controllable wrt δB in s;

3. For every possible controllable supervision specification δ̂S
for δB in s such that CR(δB & δ̂S , s) ⊆ CR(δB &

δS , s), we have that CR(δB & δ̂S , s) ⊆ CR(δB &
mps(δB , δS , s), s).

PROOF. We prove the three claims separately.

Claim 1. It follows directly from the fact set(∅) satisfies the con-
ditions to be included in mps(δB , δS , s).

Claim 2. It suffices to show that ∀~aau.~a ∈ GR(δB &
mps(δB , δS , s), s) and Au(au, do(~a, s)) we have that if ~aau ∈
GR(δB , s) then ~aau ∈ GR(mps(δB , δS , s), s). Indeed, if
~a ∈ GR(δB & mps(δB , δS , s), s) then there is an control-
lable supervision specification set(E) such that ~a ∈ GR(δB &
set(E), δS , s), s). set(E) being controllable wrt δB in s, if
~aau ∈ GR(δB , s) then ~aau ∈ GR(set(E), s), but then ~aau ∈
GR(mps(δB , δS , s), s).

Claim 3. It follows immediately from the definition of
mps(δB , δS , s), by noticing that CR(δB & δ̂S , s) = CR(δB &
set(Eδ̂S ), s), and observing that mps(δB , δS , s) is essentially the
union of such controllable set(Eδ̂S ).

Returning to our running example, if we assume that the break
action is uncontrollable (and the others are controllable), the su-
pervisor S1 can only ensure that its constraints are satisfied if it
forces B1 to discard an object as soon as it is broken and re-
paired. This is what we get as maximally permissive supervisor
mps(δB1, δS1, S0), whose set of runs can be shown to be exactly
that of:

[π x.Available(x)?;
use(x)∗;
[nil | (break(x); repair(x))];
discard(x)]∗

By the way, notice that (δB1 & rl(δS1, Au)) instead is completely
ineffective since it has exactly the runs of δB1.

Unfortunately, in general, mps(δB , δS , s) requires the use of the
program construct set(E) which is mostly of theoretical interest.
For this reason the above characterization remains essentially math-
ematical. So next, we develop a new construct for execution of
programs under maximally permissive supervision, giving up on
precomputing the maximally permissive supervision specification
a priori and instead directly computing it online while the agent is
operating.

Maximally permissive supervised execution. To capture the no-
tion of maximally permissive execution of agent B with behavior
δB under the supervision of S with behavior δS in situation s, we
introduce a special version of the synchronous concurrency con-
struct that takes into account the fact the some actions are uncon-
trollable. Without loss of generality, we assume that δB and δS
both start with a common controllable action (if not, it is trivial to
add a dummy action in front of both so as to fullfil the require-
ment). Then, we characterize the construct through next and Final
as follows:



next(δB &Au δS , a, s) =

next(δB , a, s) &Au next(δS , a, s) if
next(δB , a, s) 6= ⊥ and next(δS , a, s) 6= ⊥ and
if ¬Au(a, s), then

for all ~au such that Au( ~au, do(a, s))
if next∗(Σ(δB), a ~au, s) 6= ⊥,
then next∗(Σ(δS), a ~au, s) 6= ⊥

⊥ otherwise

where Au( ~au, s), meaning that action sequence ~au is uncontrol-
lable in situation s, is inductively defined on the length of ~au
as the smallest predicate such that: (i) Au(ε, s) ≡ true; (ii)
Au(au ~au, s) ≡ Au(au, s) ∧ Au( ~au, do(au, s)). Thus, the max-
imally permissive supervised execution of δB for the specification
δS is allowed to perform action a in situation s if a is allowed by
both δB and δS and moreover, if a is controllable, then for every
sequence of uncontrollable actions ~au, if ~au may be performed by
δB right after a on one of its complete runs, then it must also be
allowed by δS (on one of its complete runs). Essentially, an action
a by the agent must be forbidden if it can be followed by some
sequence of uncontrollable actions that violates the specification.

Final for the new construct is as follows:

Final(δB &Au δS , s) ≡ Final(δB , s) ∧ Final(δS , s).

This new construct captures exactly the maximally permissive su-
pervisor; indeed the theorem below shows the correctness of maxi-
mally permissive supervised execution:

THEOREM 7.

CR(δB &Au δS , s) = CR(δB & mps(δB , δS , s), s).

PROOF. We start by showing: CR(δB &Au δS , s) ⊆
CR(δB & mps(δB , δS , s), s). It suffices to show that δB &Au δS
is controllable for δB in s. Indeed, if this is the case, by considering
that δB & mps(δB , δS , s) is the largest controllable supervisor for
δB in s, and that RR(δB & (δB &Au δS), s) = RR(δB &Au

δS , s), we get the thesis.
So we have to show that: ∀~aau.~a ∈ GR(δB &Au δS , s) and
Au(au, do(~a, s)) we have that if ~aau ∈ GR(δB , s) then ~aau ∈
GR(δB &Au δS , s).
Since, wlog we assume that δB and δS started with a com-
mon controllable action, we can write ~a = ~a′ac ~au, where
¬Au(ac, do(~a′, s)) and Au( ~au, do(~a′ac, s)) holds. Let δ′B =

next∗(δB , ~a′, s), δ′S = next∗(δS , ~a′, s), and s′ = do(~a′, s).
By the fact that ~a′ac ~au ∈ GR(δB &Au δS , s) we know that
next(δ′B &Au δ′S , do(ac, s

′)) 6= ⊥. But then, by de definition
of next , we have that for all ~bu such that Au( ~bu, s

′) if ~bu ∈
GR(δ′B , do(ac, s

′)) then ~bu ∈ GR(δ′S , do(ac, s
′)). In particular

this holds for ~bu = ~auau. Hence we have that if ~aau ∈ GR(δB , s)
then ~aau ∈ GR(δS , s).

Next we prove: CR(δB & mps(δB , δS , s), s) ⊆ CR(δB &Au

δS , s). Suppose not. Then there exist a complete run ~a such that
~a ∈ CR(δB & mps(δB , δS , s), s) but ~a 6∈ CR(δB &Au δS , s).
As an aside, notice that ~a ∈ CR(δ, s) then ~a ∈ GR(δ, s) and for
all prefixes ~a′ such that ~a′~b = ~a we have ~a′ ∈ GR(δ, s).

Hence, let ~a′ = ~a′′a such that ~a′ ∈ GR(δB &Au δS , s) but
~a′′a 6∈ GR(δB &Au δS , s), and let δ′′B = next∗(δ′′B , ~a′′, s),
δ′′S = next∗(δS , ~a′′, s), and s′ = do( ~a′′, s).

Since ~a′′a 6∈ GR(δB &Au δS , s), it must be the case that
next(δ′′B &Au δ′′S , a, s

′′) = ⊥. But then, considering that both

A2

U1A3

A1 A2

U1A3

A2

U1A3

A1

A4

(a) (b) (c)

Figure 2: Diagrams of agent behavior specifications δB1 in (a),
δB2 in (b), and δB3 in (c).

next(δ′′B , a, s
′′) 6= ⊥ and next(δ′′S , a, s

′′) 6= ⊥, it must be the
case that ¬Au(a, s′′) and exists ~bu such that Au( ~bu, do(a, s

′′)),
and a ~bu ∈ GR(δ′′B , s

′′) but a ~bu 6∈ GR(δ′′S , s
′′).

Notice that ~bu 6= ε, since we have that a ∈ GR(δ′′S , s
′′). So ~bu =

~cubu ~du with a ~cu ∈ GR(δ′′S , s
′′) but a ~cubu 6∈ GR(δ′′S , s

′′).

Now ~a′ ∈ GR(δB & mps(δB , δS , s), s) and since
Au( ~cubu, do(~a′, s)), we have that ~a′ ~cubu ∈ GR(δB &
mps(δB , δS , s), s). Since, mps(δB , δS , s) is controllable for δB
in s, we have that, if ~a′ ~c′ubu ∈ GR(δB , s) then ~a′ ~cubu ∈
GR(mps(δB , δS , s), s). This, by definition of mps(δB , δS , s), im-
plies ~a′ ~cubu ∈ GR(δB & δS , s), and hence, in turn, ~a′ ~cubu ∈
GR(δS , s). Hence, we can conclude that a ~c′ubu ∈ GR(δ′′S , s

′′),
getting a contradiction.

Examples. Let us illustrate what is involved in obtaining a max-
imally permissive supervisor in the presence of uncontrollable ac-
tions. Suppose that we are in situation S1 with an agent that has the
following behavior (see Figure 2a):

δB1 = A1 | (A2; (A3 | U1)),

where action U1 is uncontrollable (i.e. Au(a, s) ≡ a = U1); we
also assume that all actions are always executable. Suppose as well
that we have the following supervision specification:

δS = (πa.(a 6= A1 ∧ a 6= A3 ∧ a 6= U1)?; a)∗; (A1 | A3),

i.e., eventuallyA1 orA3 should be performed, andU1 should never
occur. If we let the agent perform action A2, we get to situation
do(A2, S1) with the remaining agent behavior (A3 | U1) and de-
sired behavior δS , where we clearly can no longer effectively con-
trol the agent to ensure that it continues to behave as desired. Thus
in situation S1, we have to force the agent to perform A1. We can
in fact do this since A1 and A2 are controllable. The maximally
permissive controllable supervisormps(δB1, δS , S1) for this agent
in S1 is simply set({A1}) (since CR(δ, s) = {A1, (A2;A3)} and
set({(A2;A3)}) is not controllable wrt δB1 in S1).

If instead the agent’s behavior in S1 had been (see Figure 2b):

δB2 = A2; (A3 | U1),

there would have been no way to ensure that the agent behaved
as desired other than ruling out all actions, because even if we
can control the agent in S1, we are not be able to ensure that it
continues to behave as desired once it gets to do(A2, S1). Indeed
mps(δB2, δS , S1) = set(∅).

The point of the example is that the supervisor must look
ahead and always steer the agent away from paths where
it cannot be prevented from eventually doing undesirable ac-
tions. Our definitions of mps and &Au ensure this. In-
deed, for our example, we have that next((δB1 &Au



δS), A2, S1) = ⊥ since next∗(Σ(δB1), [A2, U1], S1) 6= ⊥ and
next∗(Σ(δS), [A2, U1], S1) = ⊥. Thus

next((δB1 &Au δS), a, S1) 6= ⊥ ≡ a = A1.

Moreover, next((δB1 &Au δS), A1, S1) = (nil &Au nil) and
Final((nil &Au nil), do(A1, S1)). Thus the only way execute
(δB1 &Au δS) in S1 is to perform A1, after which one terminates
successfully. For agent behavior δB2 on the other hand, we have

∀a.next((δB1 &Au δS), a, S1) = ⊥,

i.e., all we can do is block.
Note also that in general, one must do lookahead search over

the program to find complete executions using &Au . Consider the
following variant of the above example (see Figure 2c):

δB3 = A1 | (A2;A4; (A3 | U1)).

In this case, next((δB3 &Au δS), A2, S1) = ((A4; (A3 |
U1) &Au δS); the resulting program is not final in do(A2, S1),
yet next(((A4; (A3 | U1) &Au δS), a, do(A2, S1)) = ⊥ for all
a. However if we do looakead search, we get that

next(Σ(δB3 &Au δS), a, S1) 6= ⊥ ≡ a = A1,

as well as next(Σ(δB3 &Au δS), A1, S1) = Σ(nil &Au nil) and
Final(Σ(nil &Au nil), do(A1, S1)).

5. CONCLUSION
We have investigated agent supervision in Situation-Determined

ConGolog, or SDConGolog, programs. Our account of maximally
permissive supervisor builds on the well-established Wonham and
Ramadge framework for supervisory control of discrete event sys-
tems. However, virtually all work on this framework deals with
finite state automata [2, 18], while we handle infinite state systems
in the context of the rich agent setting provided by the situation
calculus and ConGolog. We used ConGolog as a representative of
an unbounded-states process specification language, and it should
be possible to adapt our account of supervision to other related
languages. We considered a form of supervision that focuses on
complete runs, i.e., runs that lead to Final configurations. We can
ensure that an agent finds such executions by having it do looka-
head/search. Also of interest is the case in which agents act boldly
without necessarily performing search to get to Final configura-
tions. In this case, we need to consider all partial runs, not just
good ones. Note that this would actually yield the same result if we
engineered the agent behavior such that all of its runs are good runs,
i.e. if RR(δB , s) = GR(δB , s), i.e., all configurations are final.
In fact, one could define a closure construct cl(δ) that would make
all configurations of δ final. Using this, one can apply our specifi-
cation of the maximally permissive supervisor to this case as well
if we replace δB & δS by cl(δB & δS) in the definition. Observe
also, that under the assumption that RR(δB , s) = GR(δB , s), in
next(δB &Au δS , a, s) we no longer need to do the search Σ(δB)
and Σ(δS) and can directly use δB and δS .

We conclude by mentioning that if the object domain is finite,
then ConGolog programs assume only a finite number of possible
configurations. In this case, we can take advantage of the finite
state machinery developed for discrete event systems on the basis
of [19] (generalizing it to deal with situation-dependent sets of con-
trollable actions), and the recent work on translating ConGolog into
finite state machines and back [7], to obtain a program that actually
characterizes the maximally permissive supervisor. In this way, we
can completely avoid doing search during execution. We leave an
exploration of this notable case for future work.
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