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ABSTRACT
Policy iteration algorithms for partially observable Markov
decision processes (POMDP) offer the benefits of quick con-
vergence and the ability to operate directly on the solution,
which usually takes the form of a finite state controller. How-
ever, the controller tends to grow quickly in size across iter-
ations due to which its evaluation and improvement become
costly. Bounded policy iteration provides a way of keeping
the controller size fixed while improving it monotonically un-
til convergence, although it is susceptible to getting trapped
in local optima. Despite these limitations, policy iteration
algorithms are viable alternatives to value iteration.

In this paper, we generalize the bounded policy iteration
technique to problems involving multiple agents. Specifi-
cally, we show how we may perform policy iteration in set-
tings formalized by the interactive POMDP framework. Al-
though policy iteration has been extended to decentralized
POMDPs, the context there is strictly cooperative. Its gen-
eralization here makes it useful in non-cooperative settings
as well. As interactive POMDPs involve modeling others, we
ascribe nested controllers to predict others’ actions, with the
benefit that the controllers compactly represent the model
space. We evaluate our approach on multiple problem do-
mains, and demonstrate its properties and scalability.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems; I.2.8 [Problem Solving, Control Methods, and
Search]: Dynamic Programming

General Terms
Theory, Performance

Keywords
policy iteration, decision making, multiagent settings

1. INTRODUCTION
Decision making in sequential and partially observable,

single-agent settings is typically formalized by partially ob-
servable Markov decision processes (POMDP) [11, 19]. In
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the multiagent context, the decision making is exponentially
harder, and depending on the type and perspective of the
interaction, is formalized by one of multiple frameworks. In
cooperative settings requiring solutions for all agents, decen-
tralized POMDPs [2] sufficiently model the joint decision-
making problem. Additionally, interactive POMDPs [7] for-
malize the decision-making problem of an individual agent
in a multiagent setting, which need not be cooperative. Both
these frameworks generalize POMDPs in different ways and
have relied on extending approximation techniques for POM
DPs to their own formalizations for tractability.

One such technique involves searching the solution space
directly. Initially proposed in the context of POMDPs [9],
the technique represents the solution, called the policy, as a
finite state controller and iteratively improves it until con-
vergence. The benefit is that the controller typically con-
verges before its value converges across all states and it is
useful for an infinite horizon. However, nodes in the con-
troller grow quickly making it computationally difficult to
evaluate the controller and continually improve it. Bounded
policy iteration (BPI) avoids this growth by keeping the size
of the controller fixed as it seeks to monotonically improve
the controller’s value by replacing a node and its edges with
another one [15]. Expectedly, this scales POMDP solutions
to larger problems, but the controllers often converge to a
local optima. Nevertheless, the benefits of this approach are
substantial enough that it has been extended to decentral-
ized POMDPs [3] leading to improved scalability.

In this paper, we introduce a generalization of BPI to the
context of finitely-nested interactive POMDPs (I-POMDP)
thereby improving on previous approximation techniques on
two important fronts: we may solve larger problem domains
and generate solutions of much better quality. In contrast to
decentralized POMDPs, I-POMDPs do not assume common
knowledge of initial beliefs of agents or common rewards,
due to which others’ beliefs, capabilities and preferences are
modeled. They allow for others modeling other agents, and
terminate the nesting at some finite level. Recent applica-
tions of I-POMDPs testify to its significance and growing
appeal. They are being used to explore strategies for coun-
tering money laundering by terrorists [12, 13] and enhanced
to include trust levels for facilitating defense simulations [17,
18]. They have been used to produce winning strategies for
playing the lemonade stand game [21] and even modified to
include empirical models for simulating human behavioral
data pertaining to strategic thought and action [6].

Being a generalization of POMDPs, solutions of I-POMDPs
are also affected by the curses of dimensionality and history



that affect POMDPs [14]. The dimensionality hurdle is fur-
ther aggravated because an agent maintains belief not only
over the physical state but also over the models of the other
agents, which grow over time as the agents act and observe.
Previous approximations for finitely-nested I-POMDPs in-
clude interactive particle filtering [4] and interactive point-
based value iteration [5]. Particle filtering seeks to mitigate
the adverse effect of the curse of dimensionality by form-
ing a sampled, recursive representation of the agent’s nested
belief, which is then propagated over time. However, its effi-
ciency is still impacted by the number of models because this
increases the need for more samples, and it is better suited
for solving I-POMDPs with a given prior belief. Interactive
point-based value iteration generalizes point-based value it-
eration [14] to multiagent settings, and reduces the effect of
the curse of history. While this approach significantly scales
I-POMDPs to longer horizons, we must include all reachable
models of the other agent in the state space, which grows
exponentially over time, thereby making it susceptible to the
dimensionality hurdle. We may also group together models
that are behaviorally equivalent resulting in a partition of
the model space of the other agent into a finite number of
equivalence classes [16]. This approach, analogously to us-
ing finite state controllers, allows a compact representation
of the model space but computing the exact equivalence re-
quires solving the models.

In generalizing BPI, the interactive state space of the sub-
ject agent is reformulated to include the physical states and
the set of nodes in a controller without loss of generality. For
multiple other agents with differing capabilities and prefer-
ences, we include multiple controllers, one for each other
agent. Each iteration involves evaluating and possibly im-
proving the nested controller of the other agent followed by
improvement of the subject agent’s controller. In order to
account for the dynamically changing state space, we in-
terleave the evaluation and improvement of controllers at
different levels. This approach differs from BPI’s implemen-
tation in decentralized POMDPs where controllers for each
agent are improved independently, but a correlation device
is introduced for coordination among them. Such a shared
source of randomness may not be feasible in non-cooperative
settings. Importantly, we observe that convergence of the
subject agent’s controller is often dependent on the lower-
level controllers converging first.

As we mentioned previously, the benefit is that the space
of possible models may be compactly represented using the
set of nodes in a controller. On the other hand, the presence
of controller(s) embedded in the state space makes evalu-
ation and improvement for the subject agent much more
expensive than in the context of POMDPs or decentralized
POMDPs. We call our approach interactive BPI and experi-
mentally evaluate its properties using benchmark problems.
In particular, we show that the converged controller for the
subject agent generates solutions of good quality in propor-
tionately less time compared to results reported by the pre-
vious best I-POMDP approximation. Ultimately, this allows
the application of I-POMDPs to scale to more realistic do-
mains with reduced trade off, as we demonstrate by applying
the technique to larger problem domains.

2. BACKGROUND
We briefly review the framework of finitely-nested I-POMDPs

and outline previous policy iteration in the context of POMDPs.

2.1 Interactive POMDP
A finitely-nested I-POMDP [7] for an agent i with strategy

level, l, interacting with another agent j is defined using the
tuple:

I-POMDPi,l = 〈ISi,l, A, Ti, Ωi, Oi, Ri, OCi〉

where:

• ISi,l denotes the set of interactive states defined as,
ISi,l = S ×Mj,l−1, where Mj,l−1 = {Θj,l−1 ∪ SMj},
for l ≥ 1, and ISi,0 = S, where S is the set of physi-
cal states. Θj,l−1 is the set of computable, intentional

models ascribed to agent j: θj,l−1 = 〈bj,l−1, θ̂j,l−1〉,
where bj,l−1 is agent j’s level l − 1 belief, bj,l−1 ∈

△(ISj,l−1), and θ̂j,l−1 = 〈A, Tj , Ωj , Oj , Rj , OCj〉, is
j’s frame. Here, j is assumed to be Bayes-rational.
For simplicity, we assume that the frame of agent j

is known and remains fixed; it need not be the same as
that of agent i. SMj is the set of subintentional models
of j. For the sake of simplicity, in this paper we focus
on ascribing intentional models only.

• A = Ai ×Aj is the set of joint actions of all agents.

The remaining parameters – transition function, Ti,
observations, Ωi, observation function, Oi, preference
function, Ri, and the optimality criterion, OCi – have
their usual meaning as in POMDPs [11]. Note that
the optimality criterion here is the discounted infinite
horizon sum.

An agent’s belief over its interactive states is a sufficient
statistic, fully summarizing the agent’s observation history.
Beliefs are updated after the agent’s action and observa-
tion using Bayes rule. Two differences complicate the belief
update in multiagent settings. First, since the state of the
physical environment depends on the actions performed by
both agents the prediction of how it changes has to be made
based on the probabilities of various actions of the other
agent. Probabilities of other’s actions are obtained by solv-
ing its models. Second, changes in the models of other agents
have to be included in the update. The changes reflect the
other’s observations and, if they are modeled intentionally,
the update of other agent’s beliefs. In this case, the agent has
to update its beliefs about the other agent based on what it
anticipates the other agent observes and how it updates.

Given the extended belief update, solution to an I-POMDP
is a policy, analogous to that in a POMDP. Using the Bell-
man equation, each belief state in an I-POMDP has a value
which is the maximum payoff the agent can expect starting
from that belief state and over the future. Gmytrasiewicz
and Doshi [7] provide additional details on I-POMDPs and
how they compare with other multiagent frameworks.

2.2 Policy Iteration
Policy iteration provides an alternative to iterating over

the value function, by searching directly over the policy
space. While the traditional representation of a policy is as
a function from beliefs to actions and iterating over these
functions is indeed possible [20], a more convenient repre-
sentation for the purpose of policy iteration is as a finite
state controller. At any point in the iteration, the controller
represents the infinite horizon policy of the agent.



We may define a simple controller for an agent i, as:

πi = 〈Ni, Ei,Li, Ti〉

where Ni is the set of nodes in the controller, Ei is the set
of edge labels which are observations, Ωi, in a POMDP, Li

is the mapping from each node to an action, Li : Ni → Ai,
and Ti is the edge transition (successor) function, Ti : Ni ×
Ai × Ωi → Ni. For convenience, we group together Ei, Li

and Ti in f̂i.
Policy iteration algorithms improve the value of the con-

troller by interleaving steps of evaluating the policy with
improving it by backing up the linear vectors that make up
the value function. We may view each node in the controller
as representing the action and value associated with a vec-
tor. As the value function is improved, new vectors may be
introduced causing additional nodes in the controller, while
some nodes may be dropped if their corresponding vectors
are dominated at all states by some other vector [9].

ε

ε

Figure 1: Value vector (solid line in bold), represent-
ing a node in the improved controller, is a convex
combination of the two dashed backed-up vectors in
bold and point-wise dominates a vector that consti-
tutes the value function of the previous controller by
ǫ. The dashed vectors constitute the optimal, backed
up value function.

Controllers often grow exponentially in size during im-
provement making evaluation and further improvement in-
tractable. Poupart and Boutilier [15] show that the con-
troller size may be minimized and, in fact kept bounded, in
two ways: First, we may replace a node whose correspond-
ing vector is dominated by a convex combination of updated
vectors. A convex-combination vector passing through the
point of intersection of the combined vectors and parallel to
the dominated vector is selected, as we illustrate in Fig. 1.
This replaces multiple vectors with a single one and allows
us to prune nodes, which previously would not have been
removed. This leads to a controller whose transitions due
to observations, Ti, may be stochastic. Second, note that if
the controller hasn’t converged, a backup is guaranteed to
improve it. Thus, we may replace some node with another
that represents a convex combination of backed up vectors,
and whose value is better. This causes the action mapping,
Li, to be stochastic as well. Of course, the technique is sus-
ceptible to local optima.

3. GENERALIZED POLICY ITERATION
We generalize the bounded policy iteration technique to

the context of I-POMDPs nested to a finite level, l. Notice
that a finite state controller partitions the intentional model
space, Θj,l−1, among its nodes. This is because for a belief
in any model in Θj,l−1, a node exists in the controller that
will provide the (boundedly) optimal action(s). Therefore,
the interactive state space, ISi,l = S ×Θj,l−1, becomes:

ISi,l = S ×Fj,l−1

where fj,l−1 ∈ Fj,l−1 is, fj,l−1 = 〈nj,l−1, f̂j,l−1, θ̂j,l−1〉. Here,
nj,l−1 is a node in the set of nodes in the controller, nj,l−1 ∈

Nj,l−1; f̂j,l−1 is as defined previously in Section 2.2 for a con-

troller; and θ̂j,l−1 is j’s frame and is fixed. Notice that the
controller represents an initial solution for the entire inten-
tional model space. If there are K other agents with differ-
ing capabilities and preferences, the interactive state space
becomes, ISi,l = S ×K

k=1 Fk,l−1, where Fk,l−1 represents a
different controller for each k. This is because the agents
differ in their frames and consequently, how their controllers
evolve.

Because the set of nodes in Fj,l−1 is finite, an important
benefit of the above representation is that the infinite model
space is represented using a finite node space, thereby mak-
ing the interactive state space finite as well (assuming that
the physical state space is finite). The large model space is
often a hurdle for previous approximation techniques that
operate on it, such as the interactive point-based value iter-
ation [5]. This motivated arbitrary limitations on the mod-
els and on how they evolve, which are no longer necessary.
Other, parameterized representations of the model space are
also under investigation [8].

Let Fi,l be an initial, level l controller for the subject agent
i. Next, we move to evaluating and improving agent i’s con-
troller iteratively. Because the controller of the other agent
is embedded in i’s state space, these steps utilize updated
controllers at the lower levels as well thereby generalizing
the iterations to multiagent settings.

3.1 Policy Evaluation
As we mentioned previously, each node, ni,l, in the con-

troller is associated with a vector of values, V (·, ni,l), that
gives the expected (converged) value, at each interactive
state, of following the controller beginning from that node.
In the context of I-POMDPs, this is a |S×Nj,l−1|-dimensional
vector for each node. A step of policy evaluation involves
computing this vector for each node in the controller. We
may do this by solving the following system of linear equa-
tions:

V (s, nj,l−1, ni,l) =
P

ai∈Ai

Pr(ai|ni,l)
P

aj∈Aj

Pr(aj |nj,l−1)

×

8

<

:

Ri(s, ai, aj) + γ
P

oi

P

s′

P

n′

j,l−1

Ti(s, ai, aj , s
′) Oi(s

′, ai, aj ,

oi)×
P

oj

Oj(s
′, ai, aj , oj) Pr(n′

j,l−1|nj,l−1, aj , oj)

×
P

n′

i,l

Pr(n′
i.l|ni,l, ai, oi) V (s′, n′

j,l−1, n
′
i,l)

9

=

;

∀s, nj,l−1, ni,l

(1)



In Eq. 1, we compute the expectation over i’s actions be-
cause multiple actions are possible from a single node of
the stochastic controller. Given the multiagent setting, ac-
tions of both agents appear in the transition, observation
and reward functions in the equation. The terms Pr(ai|ni,l),
Pr(n′

i.l|ni,l, ai, oi) and Pr(aj |nj,l−1), Pr(n′
j.l−1|nj,l−1, aj , oj)

are obtained from f̂i,l and f̂j,l−1, respectively, and Oj is
obtained from j’s frame; all of which are present in fj,l−1.
Equation 1 is defined for each physical state, s, j’s controller
node, nj,l−1, and i’s controller node, ni,l. Notice that the up-
date of the other agent’s belief is represented using a transi-
tion from one node to another by the term, Pr(n′

j.l−1|nj,l−1,

aj , oj).
Solution of the system results in a vector of values for each

node in agent i’s controller. In the next step, we improve the
controller by introducing new nodes with updated value vec-
tors that may uniformly dominate, possibly in combination,
those of an existing node and prune the dominated node.

3.2 Policy Improvement
The controller is improved by evaluating whether a node,

ni,l, in i’s controller may be replaced with another whose
value, possibly a convex combination of the updated vectors,
is better at all interactive states. Instead of first updating the
value vectors using the backup operation and then checking
for pointwise dominance, Poupart and Boutilier [15] pro-
posed to integrate the two in a single linear program. Our
linear program differs from that for a POMDP in involv-
ing additional terms related to j’s controller. We show this
linear program below:

max ǫ

s.t. V (s, nj,l−1, ni,l) + ǫ ≤
P

ai

cai

P

aj

Pr(aj |nj,l−1)

×

8

<

:

Ri(s, ai, aj) + γ
P

oi

P

s′

P

n′

j,l−1

Ti(s, ai, aj , s
′)

× Oi(s
′, ai, aj , oi)

P

oj

Oj(s
′, ai, aj , oj)

×Pr(n′
j,l−1|nj,l−1, aj , oj)

P

n
oi
i,l

cai,n
oi
i,l

V (s′, n′
j,l−1, n

oi

i,l)

9

=

;

∀ s, nj,l−1;

P

ai

cai
= 1;

P

n
oi
i,l

cai,n
oi
i,l

= cai
∀ai, oi, n

oi

i,l;

cai,n
oi
i,l
≥ 0 ∀ai, oi, n

oi

i,l; cai
≥ 0 ∀ai

(2)
The value function terms in Eq. 2 are obtained from the

previous policy evaluation step. We run this linear program
for each of i’s nodes until a positive ǫ is obtained for a node.
ǫ > 0 signals that node, ni,l, may be pruned because a con-
vex combination of the backed up value vectors dominate
it at least by ǫ at all physical states and nodes of j’s con-
troller. Because a single ǫ value is sought for all s, nj,l−1,
the dominating value vector will be parallel to the pruned
one. The solution of the program allows us to construct a
new node (say, n′

i,l) with stochastic actions of agent i as,
Pr(ai|n

′
i,l) = cai

, and the transition probability to a node
(noi

i,l) on performing action ai and receiving observation oi

as, Pr(noi

i,l|n
′
i,l, ai, oi) = cai,n

oi
i,l

.

We iterate over the evaluation and improvement steps un-
til a positive ǫ is not obtained for any node in i’s current
controller and the value vectors from Eq. 1 have fixated for
every node. Because of the strategy of obtaining a value
vector that is parallel to the pruned one, the iterations may
converge on a peculiar local optima in which all the value
vectors are tangential to the intersections of the exact value
function at that step, due to which no further improvement
using Eq. 2 is possible. Poupart and Boutilier [15] mention
a simple approach of potentially dislodging from the local
optima, which is applicable in the context of I-POMDPs as
well. Specifically, we pick a belief reachable from the tangen-
tial belief and add a node to the controller that corresponds
to the value vector associated with the reachable belief. This
allows the value of the node representing the tangential vec-
tor to improve.

3.3 Nested Controllers
Given that the other agent’s controller is embedded in

agent i’s interactive state space, a naive but efficient ap-
proach would be to iteratively improve i’s controller while
holding j’s controller in the state space fixed. However, the
corresponding solution will likely be poor as better qual-
ity controllers may be available to predict the other agent’s
actions. This is particularly relevant because I-POMDPs
model the other agent as being rational. Subsequently, a
more sophisticated approach is to interleave improvements
of the other agent’s controller with improvements of agent
i’s controller. However, not only is this approach computa-
tionally more intensive, but agent i’s interactive state space
may change dynamically at every iteration.

Fortunately, the previously detailed approach of BPI keeps
the number of nodes fixed as it seeks to improve the con-
troller. Consequently, the size of agent i’s interactive state
space – and that of j if the level of nesting is greater than
1 leading to embedded controllers in j’s interactive state
space – remains fixed. Although nodes may be added to
j’s controller initially or to escape local optima, we per-
form these iterations before beginning the improvement of
the higher-level, agent i’s, controller. After this point, the
subject agent’s interactive state space remains fixed in size,
although the individual states may change across iterations
due to updates in the stochastic distributions, f̂j,l−1.

Finally, at level 0 the I-POMDP collapses into a POMDP.
Consequently, we may utilize the traditional BPI [15] for
POMDPs in order to evaluate and improve the level 0 agent’s
controller.

4. ALGORITHM
Algorithm 1 outlines the procedure, labeled Interactive BPI

(I-BPI), for performing BPI in the context of finitely nested
I-POMDPs. It begins by creating a trivial controller having
a single node with a randomly selected action, at each level
for agent i or j as appropriate. The interactive state space
is then reformulated to include the nodes from the other
agent’s controller (lines 1-2) as we mentioned previously. In
order to apply BPI on a controller of reasonable size, we per-
form a single full backup at each level to obtain controllers
of size |Ai| or |Aj |, as appropriate (line 3). If there are more
agents with differing frames, then a controller is initialized
for each other agent. Subsequent steps are performed for
each of these controllers.

Algorithm 2, Evaluate&Improve, then recursively performs
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Figure 2: Recursive invocations lead to evaluation and improvement beginning at the bottom and up the
nesting levels. Controllers were initialized with a single node and a full backup takes place in the previous
iteration (shown dashed and greyed out). Current iteration involves evaluation and bounded improvement
of the nested controller bottom up as the recursion unwinds. We demonstrate this process in the context of
an example: the well-known multiagent tiger problem. The node labels represent actions of the agents: listen
(L), open the left door (OL), and open the right door (OR).

Algorithm 1 Interactive BPI for I-POMDPs

Interactive BPI (I-POMDP: θi,l) returns solution,
π∗

i,l

1: Recursively initialize controllers, πi(j),l, for both agents,
such that |Ni(j),l| = 1, down to level 0

2: Reformulate, ISi(j),l = S ×Fj(i),l at each l in θi,l

3: Beginning with level, l = 0, perform a single-step full
backup at each level, l, resulting in |Ni(j),l| ≤ |Ai(j)|
nodes in a controller, πi(j),l

4: repeat
5: repeat
6: πi,l ← Evaluate&Improve (πi,l)
7: until no more improvement is possible
8: Push controllers at each level from local optima
9: until no more escapes are possible

10: return converged (nested) controller, π∗
i,l

a single step of evaluation of the nested controller and its
bounded improvement (lines 1-2). For the lowest-level con-
troller, the evaluation and improvement proceeds as outlined
by Poupart and Boutilier [15] in the context of POMDPs.
At levels 1 and above, we evaluate the controller using Eq. 1
and improve it while keeping the number of nodes fixed using
Eq. 2.

The presence of a nested controller leads to novel chal-
lenges. Observe that I-BPI interleaves the evaluation and
improvement of the controllers at the different levels. The
alternate technique would be to evaluate and improve the

Algorithm 2 Evaluation and bounded improvement of the
nested controllers
Evaluate&Improve (nested controller: πi(j),l) returns con-
troller, π′

i(j),l

1: if l ≥ 1 then
2: πj(i),l−1 ← Evaluate&Improve (πj(i),l−1)
3: if l=0 then
4: Evaluate controller, πi(j),0 = 〈Ni(j), Ei(j), Li(j), Ti(j)〉
5: Improve controller, if possible, analogously to a

POMDP [15]
6: else
7: Evaluate controller, πi(j),l = 〈Ni(j),l, Ei(j),l, Li(j),l,

Ti(j),l〉, using Eq. 1
8: Improve controller, if possible, while keeping |Ni(j),l|

fixed using Eq. 2
9: return improved controller, π′

i(j),l

controller of the lower level until convergence. The former
approach better facilitates anytime behavior in comparison
to the latter in which the higher-level controller may not
be improved for many iterations until the lower-level con-
troller has converged. Of course, the higher-level controllers
in the two approaches may not converge to the same local
optima. Furthermore, notice that the bounded improvement
of j’s or i’s lower-level controller while keeping the number
of nodes fixed still alters the interactive state space because
f̂j,l−1 or f̂i,l−2 changes. Consequently, ISi,l or ISj,l−1 may
dynamically change at each iteration. Therefore, an alter-



nate technique of evaluating the controllers at all levels first
followed by recursively improving them is not feasible be-
cause the previous value evaluation of a level l controller is
invalidated when lower-level controllers improve.

We illustrate a step within I-BPI on a level l I-POMDP
in Fig. 2. On convergence, Algorithm 1 attempts to push
the nested controller past any local optima, by escaping it
for the lower-level controllers first (line 8). When this is no
longer possible, the converged nested controller is returned
as the solution of the level l I-POMDP.

Computational Savings In general, the space of mod-
els ascribed to the other agent is continuous because each
candidate model includes a possible belief as well. I-BPI re-
formulates the interactive state space by mapping the space
of models to a finite set of nodes in the other agent’s con-
troller, without loss of generality. However, if we limit the
model space and let |Θ| be a bound on the number of models
acribed to one other agent. Then, the interactive state space
for K other agents contains (K|Θ|)l models at all levels of
the nesting. Mapping |Θ| to |N | nodes of a controller, whose
size remains fixed, we obtain a set of size (K|N |)l. This space
is significantly smaller because usually, |N | ≪ |Θ|, leading
to much mitigated impacts of the curses of both dimension-
ality and history. We empirically demonstrate the effect of
these savings next.

5. EXPERIMENTS
We implemented Algorithms 1 and 2 for I-BPI shown in the

previous section, and evaluated its properties on two bench-
mark problem domains: a non-cooperative version of the
multiagent tiger problem and a cooperative version of the
multiagent machine maintainence (MM) problem, each of
which has two agents, i and j. Doshi and Gmytrasiewicz [4]
provide details on these problem domains. While these prob-
lems have small dimensions, they have been used as bench-
marks for previous I-POMDP approximation techniques, such
as the interactive particle filter [4] and interactive point-
based value iteration (I-PBVI) [5], which employ value it-
eration. In addition to these toy problems, we evaluate I-
BPI’s performance and demonstrate scalability using two
larger problem domains: autonomous unmanned aerial ve-
hicle (AUAV) reconnaissance problem on a 5 × 5 grid and
the money laundering problem [13], both of which are non-
cooperative.

The AUAV problem involves reconnaissance in a 5×5 grid
in which an AUAV is tasked with capturing a fugitive who
seeks to escape to a safe house (fixed at a predetermined grid
location). We model the AUAV as a level 1 I-POMDP. The
physical state of the fugitive at any given time is its relative
position to the safe house and that of the UAV is its rela-
tive position w.r.t. the fugitive. This formulation leads to a
physical state space of 81 states for the AUAV and 25 for
the fugitive. Each agent may take one of 5 actions of moving
in one of the four cardinal directions or listening to get ob-
servation about the target’s location. We assumed that the
actions taken by both agents on the grid are deterministic.
The 4 observations for each agent allow it to sense the car-
dinal direction of its target relative to its own location. We
assume that the observations are noisy.

The money laundering problem, introduced by Ng et al.
[13], is a game between law enforcement (blue team) and the
money launderers (red team) who aim to move their assets

from a ‘dirty’ pot to a ‘clean’ one through a series of finan-
cial transactions while evading capture by the blue team.
The blue team can place sensors at various locations such
as bank accounts, trusts and real estate to detect the pres-
ence of the ‘dirty’ money. The physical state is defined by
the joint location of the dirty money and that of the sensor.
The red team may perform any of the three nondetermin-
istic actions of placement, layering or integration to move
its assets from one location to another or it could listen to
gain noisy information about the location of the blue team’s
sensor. The blue team may place its sensors in one of eight
locations or it could confiscate the assets of the red team.
This problem exhibits a physical state space of 99 states
for the subject agent (blue team), 9 actions for the subject
agent and 4 for the opponent, and 11 observations for the
subject and 4 for the other.
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Figure 3: Average rewards for the multiagent tiger
problem generally improve until convergence as we
allocate more nodes to controllers to facilitate es-
caping local optima, in I-BPI. As we may expect,
controllers generated for more strategically nested
I-POMDPs eventually lead to better rewards. Al-
though we do not show the variance for clarity, it
tends to be small.

We begin by focusing on the tiger problem, and noting
the average reward obtained from simulating converged con-
trollers of different node sizes, and of different levels, in
Fig. 3. Observe the generally increasing trend of the average
rewards as the controllers increase in size on escaping from
local optima. This property lends itself to an anytime be-
havior for I-BPI. Each reward data point is averaged over 5
trials each involving 100 initial beliefs randomly generated,
and for each belief, between 100 and 1000 simulation runs
were carried out.

Next, in Table 1, we report the average discounted re-
wards obtained from simulating the controllers that I-BPI
generates along with the associated I-BPI run times, as we
scale in the context of the number of nesting levels. We com-
pare these rewards with those reported using the previous
best I-POMDP approximation technique, I-PBVI [5], where
the latter are obtained from actual simulation runs as well.
Although I-BPI’s controller is for an infinite number of time
steps, we limit our runs in the simulations to a finite num-
ber of steps in order to compare with I-PBVI. Notice that
I-PBVI is able to reasonably scale up to two levels only and
the corresponding rewards are significantly lower than those
obtained by I-BPI.

As we see from Table 1, I-BPI allows scaling solutions of
I-POMDPs up to four levels deep in time duration that is



Problem Level Method Time(s) Avg. Rwd

Mult. tiger
1

I-BPI 69 11.34
I-PBVI 2,000 5.34

2
I-BPI 1,109 12.48
I-PBVI 696 3.15

3
I-BPI 3,533 13.00
I-PBVI — —

4
I-BPI 3,232 13.22
I-PBVI — —

MM
1

I-BPI 15 20.22
I-PBVI 815 4.86

2
I-BPI 39 20.55
I-PBVI 431 3.27

3
I-BPI 117 21.28
I-PBVI — —

4
I-BPI 157 21.36
I-PBVI — —

AUAV† 1 I-BPI 7,979 74.08
I-PBVI — —

Money Laun.† 1 I-BPI 1,354 -156.21
I-PBVI — —

Table 1: Average rewards of the controllers at var-
ious levels for multiple problem domains. ‘—’ indi-
cates that the corresponding values are not avail-
able likely because of scalability issues. †Rewards
reported for these larger problem domains are the
expected rewards (values) of the corresponding con-
trollers. These results were generated on a RHEL 5
system with Xeon Core2 duo, 2.8GHz each and 4
GB of RAM.

within one hour. It also scales to larger, realistic problem
domains. This improvement is primarily due to representing
the model space using a finite number of nodes. Comparison
with I-PBVI reveals that the quality of the controllers is sig-
nificantly improved. Furthermore, previous approaches have
not scaled solutions beyond two levels.

Next, we demonstrate the performance and scalability of
the algorithm on the two large and realistic problems, AUAV
reconnaissance and money laundering, in Table 1. Although
the latter has been solved previously using the interactive
particle filtering [13], the approach assumed an initial be-
lief over the interactive state space and reported run times
were more than an order of magnitude greater compared to
the time taken by I-BPI. Furthermore, our approach pro-
vides a general solution valid over the entire belief space.
Table 1 shows the run times for generating converged con-
trollers of good quality for the larger problem domains. The
rewards are the expected rewards (values) averaged over
100,000 randomly-generated belief points. While the AUAV
problem consumes slightly more than two hours, the money
laundering problem takes well within one hour. Converged
controllers consisted of 45 nodes for the AUAV problem and
12 nodes for the money laundering problem. Although scal-
ing in the nesting to level two is possible, the corresponding
time taken is well beyond our cutoff of two hours. Neverthe-
less, the reported expected reward is competitive in compar-
ison to those reported by Ng et al. [13] for particular initial
beliefs and parameter configurations for money laundering.

An interesting empirical observation in all of these prob-
lem domains is that the level l controller, πi,l, converged –
it stops improving and its value vectors obtained by solving
the system of linear equations given by Eq. 1 fixate – after
the lower-level controller, πj,l−1, converges.

6. DISCUSSION
As applications emerge for I-POMDPs, approaches that

allow its solutions to scale become even more crucial. We
introduced a generalized policy iteration algorithm for mu-
tiagent settings in the context of I-POMDPs. This is, to
the best of our knowledge, the first policy iteration algo-
rithm proposed for I-POMDPs. We construct a finite state
controller for each differing frame of other agents, and mod-
els of the other agents get naturally mapped to nodes in
the respective controllers. The application of generalized
BPI to these controllers ensure that the size of the model
space doesn’t increase rapidly thereby subduing the effect
of the curse of dimensionality, which excessively impacts I-
POMDPs.

A limitation of interactive BPI is its convergence to local
optima leading to controllers whose quality is unpredictable.
While techniques for escaping from local optima may help,
this is not guaranteed and the globally optimal value may
not be achieved. In particular, the approach of seeking an im-
proved value vector that is uniformly greater than a previous
vector leads to multiple local optima; relaxing the constraint
of uniform improvement may help.

Another, more practical hurdle was our use of LAPACK++
(http://math.nist.gov/lapack++) to solve the system of
linear equations in the policy evaluation step. Although LA-
PACK++ is a popular linear algebra package, it’s not opti-
mized for exploiting sparseness in matrices, which we often
encountered. We think that further scalability is immedi-
ately possible by exploiting the sparsity of the matrices dur-
ing evaluation. Furthermore, as the number of variables in
the linear programs with non-zero values is often low, sparse-
ness may be further exploited in the policy improvement step
analogously to the proposal by Hansen [10] in the context of
POMDPs. It also seems possible to further improve the per-
formance by accounting for the structure of the controllers.
If the controller contains a strongly-connected component,
we can evaluate it first thereby focusing on a subset of the
nodes, followed by evaluating the rest of the nodes.

Another line of future work is to evaluate the performance
of this approach on problem domains having more than two
agents. Additionally, the finite state controllers that we use
are a type of automata called Moore machines. Recently,
Mealy machines were utilized in the context of decentral-
ized POMDPs to good effect [1]. Therefore, another avenue
is to investigate the utility of different types of controllers
including Mealy machines in our context.
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