
Robot Exploration with Fast Frontier Detection:
Theory and Experiments

Matan Keidar
MAVERICK Group, Department of Computer

Science, Bar-Ilan University
matankdr@gmail.com

Gal A. Kaminka
MAVERICK Group, Department of Computer

Science, Bar-Ilan University
galk@cs.biu.ac.il

ABSTRACT
Frontier-based exploration is the most common approach to explo-
ration, a fundamental problem in robotics. In frontier-based ex-
ploration, robots explore by repeatedly computing (and moving to-
wards) frontiers, the segments which separate the known regions
from those unknown. However, most frontier detection algorithms
process the entire map data. This can be a time consuming process
which slows down the exploration. In this paper, we present two
novel frontier detection algorithms: WFD, a graph search based al-
gorithm and FFD , which is based on processing only the new laser
readings data. In contrast to state-of-the-art methods, both algo-
rithms do not process the entire map data. We implemented both
algorithms and showed that both are faster than a state-of-the-art
frontier detector implementation (by several orders of magnitude).

General Terms
Algorithms Performance

Keywords
Robot, Exploration, Frontier, Laser

1. INTRODUCTION
The problem of exploring an unknown territory is a fundamental

problem in robotics. The goal of exploration is to gain as much new
information as possible of the environment within bounded time.
The most common approach to exploration is based on frontiers.
A frontier is a segment that separates known (explored) regions
from unknown regions. By moving towards frontiers, robots can
focus their motion on discovery of new regions. Yamauchi [17]
was the first to show a frontier-based exploration strategy. His work
preceded many others (e.g, [3, 4, 10, 11]).

Most frontier detection methods are based on edge detection and
region extraction techniques from computer vision. To detect fron-
tiers, they process the entire map data with every execution to the
algorithm. State-of-the-art frontier detection algorithms can take a
number of seconds to run, even on powerful computers. If a large
region is explored, the robot actually has to wait in its spot until the
frontier detection algorithm terminates. Therefore, many explo-
ration implementations call the frontier detection algorithm only
when the robot arrives at its destination.

This can cause inefficiencies in the exploration. We present two
examples: First, consider a common single-robot case (Figure 1),
where a robot exploring its environment detects a frontier and moves

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

(a) (b) (c)

Figure 1: A single-robot example. In 1(a) the robot is heading
towards the marked target on the frontier. In 1(b) the target
and all of the remaining are covered by the robot’s sensors, but
because the robot does not re-detect frontiers, it continues to
move. In 1(c) the robot has reached the frontier, unnecessarily.

(a) (b)

Figure 2: A multi-robot example. In 2(a), the top robot (R2) is
heading towards the right target, t2; the other robot (R1) heads
towards the top target t1. In 2(b) R2 has reached its target,
clearing both t1 and t2, making R1’s movements unnecessary.

towards it (Figure 1(a)). Because of sensor coverage, the robot may
in fact sense (and clear) all remaining unknown area (Figure 1(b)),
but because it cannot call the frontier-detection mechanism, it con-
tinues to move unnecessarily (Figure 1(c)). Similarly, consider a
multi-robot case (Figure 2). Here, two robots, are exploring the
environment, from their initial locations (Figure 2(a)). One of the
robots passes by a target assigned to the other, thus clearing it (Fig-
ure 2(b)). But because the other robot cannot continuously re-detect
frontiers, it unnecessarily continues towards the covered target, in-
stead of turning to more fruitful exploration targets.

In this paper, we thus focus on significantly speeding up frontier
detection. We introduce two algorithms for fast frontier detection:
The first, WFD (Wavefront Frontier Detector) is an iterative method
that performs a graph-search over already-visited map points. It
builds on ideas suggested in earlier work [5] which were not eval-
uated as an alternative to the edge-detection state-of-the-art. The
key idea in WFD is that it does not scan the entire map, only the
regions that have already been visited by the robot. However, as ex-
ploration progresses, the scanned area grows, and thus WFD cannot
be expected to perform well in large areas. Our second contribu-
tion is FFD (Fast Frontier Detector), a novel approach for frontier
detection which processes raw sensor readings, and thus only scans
areas that could contain frontiers. But because it works with raw

sensor data, it requires extending the mapper (SLAM) with addi-
tional data-structures, so that frontiers are maintained even when
they are no longer within sensor range. We describe these data-
structures in detail, focusing on fast implementations.

We provide a detailed evaluation of these algorithms, and con-
trast them with the state-of-the-art (SOTA). We examine their per-
formance in different types of environments and two different CPUs.
We show that WFD is faster than SOTA by 1–2 orders of magni-
tude, and that FFD is faster than WFD by 1–2 orders of magnitude.
The results make it possible to execute real-time frontier-detection
on current-day robot CPUs, opening the way to novel frontier-
based exploration methods which were impractical until now.
2. RELATED WORK

An outline of the exploration process can be described as fol-
lows: while there is an unknown territory, allocate each robot a tar-
get to explore and coordinate team members in order to minimize
overlaps. In frontier-based exploration, targets are drawn from ex-
isting frontiers, segments that separate known and unknown regions
(see Section 3.1 for definitions).

Most literature ignores the computational cost of frontier detec-
tion. To the best of our knowledge, all of the following works uti-
lize a standard edge-detection method for computing the frontiers.
They recompute frontier locations whenever one robot has reached
its target location or whenever a certain distance has been traveled
by the robots or after a timeout event.

Yamauchi [17] developed the first frontier-based exploration meth-
ods. The robots explore an unknown environment and exchange
information with each other when they get new sensor readings.
As a result, the robots build a common map (occupancy grid) in a
distributed fashion. The map is continuously updated until no new
regions are found. In his work, each robot heads to the centroid, the
center of mass of the closest frontier. All robots navigate to their
target independently while they share a common map. Frontier de-
tection is performed only when the robot reaches its target.

Burgard et al. [3, 4] focus their investigation on probabilistic ap-
proach for coordinating a team of robots. Their method considers
the trade-off between the costs of reaching a target and the utility of
reaching that target. Whenever a target point is assigned to a spe-
cific team member, the utility of the unexplored area visible from
this target position is reduced for the other team members. In their
work, frontier detection is carried out only when a new target is to
be allocated to a robot.

Wurm et al. [15] proposed to coordinate the team members by di-
viding the map into segments corresponding to environmental fea-
tures. Afterwards, exploration targets are generated within those
segments. The result is that in any given time, each robot explores
its own segment. Wurm [16] suggests to call frontier detection ev-
ery time-step of the coordination algorithm. Moreover, he claims
that updating frontiers frequently is important in a multi-robot team
since the map is updated not only by the robot assigned to a given
frontier but also by all of the robots in the team. He suggests ex-
ecuting the algorithm 0.5m − 1m or every second or whenever a
new target is requested.

Stachniss [12] introduced a method to make use of background
knowledge about typical structures when distributing the team mem-
bers over the environment. In his work, Stachniss computes new
frontiers when there new targets are needed to be allocated. This
happens whenever one robot has reached its designated target loca-
tion or whenever the distance traveled by the robots or the elapsed
time since last target assignment has exceeded a given threshold.

Berhault et al. [1] proposed a combinatorial auction mechanism
where the robots bid on a bunch of targets to navigate. The robots
are able to use different bidding strategies. Each robot has to visit

all the targets that are included in his winning bid. After combining
each robot’s sensor readings, the auctioneer omits selected frontier
cells as potential targets for the robots. Frontier detection is per-
formed when creating and evaluating bids.

Visser et al. [14] investigated how limited communication range
affects multi-robot exploration. They proposed an algorithm which
takes into account wireless constraints when selecting frontier tar-
gets. Visser [13] suggests recomputing frontiers every 3–4 meters,
which in his opinion, has positive effect.

Our work on WFD is independent from previous work, though [5]
mentions a frontier detection algorithm that utilizes breadth-first
search, similar to WFD . However, [5] does not provide details of
the algorithm, nor evaluation of its performance, and so exact sim-
ilarities and differences cannot be assessed. Our work here also
significantly extends and corrects our own earlier work [9], which
presented preliminary—and incomplete—versions of the WFD and
FFD algorithms. Compared to [9], this paper presents corrected al-
gorithms, proves the soundness and completeness of FFD , and
reports new experimental and analytical results.

3. WAVEFRONT FRONTIER DETECTOR
We present a graph search based approach for frontier detection.

The algorithm, WFD (Algorithm 1), processes the points on map
which have already been scanned by the robot sensors and there-
fore, does not always process the entire map data in each run, but
only the known regions.

3.1 Definitions and Terms
In this section we define and explain the terms that are used in

the following sections. We assume the robot in question uses an
occupancy-grid map representation in the exploration process (Fig-
ure 3) within the map:
Unknown Region is a territory that has not been covered yet by
the robot’s sensors.
Known Region is a territory that has already been covered by the
robot’s sensors.
Open-Space is a known region which does not contain an obstacle.
Occupied-Space is a known region which contains an obstacle.
Occupancy Grid is a grid representation of the environment. Each
cell holds a probability that represents if it is occupied.
Frontier is the segment that separates known (explored) regions
from unknown regions. Formally, a frontier is a set of unknown
points that each have at least one open-space neighbor.

Definition. Suppose we are given a temporal sequence of observa-
tions 〈O0, . . . , Ot〉 (time 0 to time t), where each observation Ox

is a tuple 〈Gx, Px, Rx〉 composed of: (i) the occupancy-grid Gx of
time x; (ii) the robot pose Px (in occupancy-grid coordinates); and
(iii) the range sensor readings Rx originating at the robot location
(given in either ego-centric polar coordinates, or in occupancy-grid
coordinates). The Frontier Detection Problem is to return all fron-
tiers existing at time t, given the sequence.

Existing algorithms for frontier detection rely on edge-detection
methods. The algorithms systematically search for frontiers all
over the occupancy-grid, i.e., both in known and unknown regions.

3.2 WFD
WFD (Algorithm 1) is based on Breadth-First Search (BFS).

First, the occupancy-grid point that represents the current robot po-
sition is enqueued into queuem, a queue data-structure used to de-
termine the search order (Lines 1–3).

Next, a BFS is performed (Line 4–30) in order to find all frontier
points contained in the map. The algorithm keeps scanning only

Figure 3: Evidence grid, frontier points, extraction of different
frontiers (from left to right). Taken from [17].

Algorithm 1 Wavefront Frontier Detector (WFD)
Require: queuem // queue, used for detecting frontier points from

a given map
Require: queuef // queue, used for extracting a frontier from a

given frontier cell
Require: pose // current global position of the robot

1: queuem ← ∅
2: ENQUEUE(queuem, pose)
3: mark pose as “Map-Open-List”

4: while queuem is not empty do
5: p← DEQUEUE(queuem)

6: if p is marked as “Map-Close-List” then
7: continue
8: if p is a frontier point then
9: queuef ← ∅

10: NewFrontier ← ∅
11: ENQUEUE(queuef , p)
12: mark p as “Frontier-Open-List”

13: while queuef is not empty do
14: q ← DEQUEUE(queuef)
15: if q is marked as {“Map-Close-List”,”Frontier-Close-

List”} then
16: continue
17: if q is a frontier point then
18: add q to NewFrontier
19: for all w ∈ adj(q) do
20: if w not marked as {“Frontier-Open-

List”,“Frontier-Close-List”, “Map-Close-List”}
then

21: ENQUEUE(queuef ,w)
22: mark w as “Frontier-Open-List”
23: mark q as “Frontier-Close-List”
24: save data of NewFrontier
25: mark all points of NewFrontier as “Map-Close-List”
26: for all v ∈ adj(p) do
27: if v not marked as {“Map-Open-List”,“Map-Close-List”}

and v has at least one “Map-Open-Space” neighbor then
28: ENQUEUE(queuem,v)
29: mark v as “Map-Open-List”
30: mark p as “Map-Close-List”

points that have not been scanned yet and represent open-space
(Line 27). The above scanning policy ensures that only known re-
gions (that have already been covered by the robot’s sensors) are
actually scanned. The significance of this is that the algorithm does
not have to scan the entire occupancy-grid each time.

Because frontier points are adjacent to open space points, all
relevant frontier points will be found when the algorithm finishes
(Line 30). If a frontier point is found, a new BFS is performed
in order to extract its frontier (Lines 13–25). This BFS searches
for frontier points only. Extracting the frontier is ensured because
of the connectivity of frontier points. At the end of the extraction
(Line 25), the extracted frontier data is saved to a set data-structure
that stores all frontiers found in the algorithm run.

In order to avoid rescanning the same map point and detecting
the same frontier reachable from two frontier points, WFD marks
map points with four indications:

1. Map-Open-List: points that have already been enqueued by
the outermost BFS (Line 28)

2. Map-Close-List: points that have already been dequeued by
the outermost BFS (Line 5)

3. Frontier-Open-List: points that have already been enqueued
by the frontier extraction BFS (Line 21)

4. Frontier-Close-List: points that have already been dequeued
by the frontier extraction BFS (Line 14)

The above marks indicate the status of each map point and deter-
mine if there is a need to handle it in a given time.

The key innovation in WFD is that it prevents scanning unknown
regions, since frontiers never appear there. However, it still searches
all known space.

3.3 Speeding-Up WFD Even Further
WFD’s execution time can be boosted even more by reducing the

grid size. Of course, there is a trade-off between shorter execution
time and the quality of the output frontiers. Even though, standard
exploration tasks can utilize the output frontiers received in this
manner. The grid is divided into blocks in size of the robot’s width
and height. Smaller blocks will not make sure that robot will be
able to pass through terrain obstacles (i.e. corridors). Each block
in the real world is represented by a single cell in the reduced grid.
In order to determine the value of the cell, we examined different
strategies. We considered both the speed of creating the new grid
and the quality of the output. We found out that sampling the center
of the block edges and the block center yields the best results.

4. FAST FRONTIER DETECTOR
Unlike other frontier detection methods (including WFD), our

proposed algorithm (Algorithm 2) only processes new laser read-
ings which are received in real time. It therefore avoids searching
both known and unknown regions. In doing this, we make use of
the fact that by definition, frontiers represent the boundaries be-
tween the known and unknown regions of the environment (see
Figure 3). Hence, scanning all unknown regions is definitely un-
necessary and not time-efficient. The FFD algorithm contains four
steps (Algorithm 2), and can be called with every new scan.

4.1 Sorting
The first step (line 1) sorts range readings based on their angle,

i.e., based on the ego-centric polar coordinates with the robot as the
origin. Normally, laser readings are given as a sorted set of polar
coordinated points, making this sorting step unnecessary. How-
ever, if this is not the case, a sorting is needed to be applied on the
received laser readings.

To sort the readings, we assume that range readings are a set
of Cartesian coordinated points, which consists of the locations

Algorithm 2 Fast Frontier Detector (FFD)
Require: frontiersDB // data-structure that contains last known

frontiers
Require: pose // current global position of the robot
Require: lr // laser readings which were received in current

iteration. Each element is a 2-d cartesian point

// polar sort readings according to robot position
1: sorted← SORT_POLAR(lr, pose)

// get the contour from laser readings
2: prev ← POP (sorted)
3: contour ← ∅
4: for all Point curr ∈ sorted do
5: line← GET_LINE(prev, curr)
6: for all Point p ∈ line do
7: contour ← contour ∪ {p}

// extract new frontiers from contour
8: NewFrontiers← ∅ // list of new extracted frontiers
9: prev ← POP (contour)

10: if prev is a frontier cell then // special case
11: create a new frontier in NewFrontiers
12: for all Point curr ∈ contour do
13: if curr is not a frontier cell then
14: prev ← curr
15: else if curr has been visited before then
16: prev ← curr
17: else if curr and prev are frontier cells then
18: add curr to last created frontier
19: prev ← curr
20: else
21: create a new frontier in NewFrontiers
22: add curr to last created frontier
23: prev ← curr

// maintainance of previously detected frontiers
24: for all Point p ∈ ActiveArea do
25: if p is a frontier cell then
26: // split the current frontier into two partial frontiers
27: get the frontier f ∈ frontiersDB which enables p ∈ f
28: f1 ← f [1 . . . p]
29: f2 ← f [(p+ 1) . . . |f |]
30: remove f from frontiersDB
31: add f1 and f2 to frontiersDB
32: for all Frontier f ∈ NewFrontiers do
33: if f overlaps with an existing frontier existFrontier then
34: merged← f ∪ existFrontier
35: remove existFrontier from frontiersDB
36: add merged to frontiersDB
37: else
38: create a new index and add f to frontiersDB

of range hits (
{
(x0, y0), . . . , (xn, yn)

}
where n is the number of

readings). The naive method for converting Cartesian to polar co-
ordinates uses two CPU time-consuming functions: atan2 and sqrt.

To speed angle sorting, we use a cross product [6] to avoid con-
verting Cartesian to polar coordinates, while still sorting the points
based on polar angle. Given 3 Cartesian coordinated points:

P0 = (x0, y0), P1 = (x1, y1), P2 = (x2, y2)

the cross product is defined as:

(p1−p0)×(p2−p0) = (x1−x0)·(y2−y0)−(x2−x0)·(y1−y0)

If the result is positive, then
−−−→
P0P1 is clockwise from

−−−→
P0P2. Else, it

is counter-clockwise. If the result is 0, then the two vectors lie on
the same line in the plane (i.e., the angle is the same).

Therefore, by examining the sign of the cross product, we can
determine the order of the Cartesian points according to polar co-
ordinates, without calculating their actual polar coordinate value.
This applies only five subtractions and two multiplications which
are far less time-consuming than calling atan2 and sqrt.

4.2 Contour

Figure 4: Example of pro-
duced contour.

In this step (lines 2–7) we use
the angle-sorted laser readings.
The output of the contour step
is a contour which is built from
the sorted laser readings. The
algorithm computes the line that
lies between each two adjacent
points from the set. The line is
computed by calling the func-
tion GET_LINE. In our implementation we use Bresenham’s
line algorithm [2]. Next, all points that are represented by all the
lines (including the points from the laser readings set) are merged
into a contour (Figure 4).

4.3 Detecting New Frontiers
In this step (lines 8–23) the algorithm extracts new frontiers from

the previously calculated contour. There are three cases correspond
to each two adjacent points in the contour:

1. Current scanned point is not a frontier cell: therefore, it
does not contribute any new information about frontiers and
can be ignored.

2. Current and previous scanned points are frontier cells:
therefore, both points belong to the same frontier and current
scanned point is added to last detected frontier.

3. Current point is a frontier cell but the previous is not:
a new starting point of a frontier was detected. Hence, the
algorithm creates a new frontier and adds the new starting
point to it.

4.4 Maintaining Previously Detected Frontiers
FFD gains its speed by processing the laser readings only, rather

than entire regions of the map. However, if the robot navigates
towards a specific frontier, other previously detected frontiers are
no longer updated because they are not covered by the robot’s sen-
sors. Thus, scanning the new received laser readings enables FFD
to detect only new frontiers in each execution. In this step (lines
24–38), in order to get complete information about the frontiers,
the algorithm performs maintenance over previously detected fron-
tiers which are no longer covered in the range of the sensors. Only
by joining together new detected frontiers and previously detected
frontiers, we get the overall frontiers in current world state. This
step has multiple targets: avoiding detection of new frontiers in

an already scanned area (Section 4.4.2), eliminating frontier points
which are no longer belong to frontiers (Section 4.4.3) and join-
ing correctly the new detected frontiers together with previously
detected frontiers (Section 4.4.4).

4.4.1 Data-Structures
In order to perform the maintenance step within a very short time

as possible, FFD utilizes two data-structures which have a short ac-
cess time. These data structures must maintain memory of frontiers
between calls. Thus FFD has to have persistent memory, i.e., data
structures that persist between calls. This is contrast to other ap-
proaches that can be executed in a certain time, and only then.

Another thing to note is that in particle filter based systems (our
focus in this paper), each particle represents a possible hypothe-
sis of the world state (including the robot position of course). The
“best” particle is chosen according to a likelihood measurement.
FFD requires the previously detected frontiers to be robust against
map orientation changes caused by loop-closures of the mapping
algorithm. Therefore, when a new laser reading is received, each
particle executes its own instance of FFD algorithm on its own
map, using its own data structures. More specifically, each parti-
cle performs maintenance with its own map because particles do
not share maps. We describe the data structures for maintenance
below.

Grid of Frontier Indices This data-structure is an extension of the
occupancy grid (though it can be implemented as a separate en-
tity). In addition to occupancy information, each grid cell contains
a frontier index, pointing to a frontier to which the grid cell belongs,
or NULL otherwise. The pointer is into the Frontier Database (de-
scribed below). In our implementation, we used integer index val-
ues. After accessing a grid cell, querying for its frontier index is
O(1).

Frontier Database This data-structure maps frontier indexes (point-
ers) to sets of points. All detected frontiers are stored in this data-
structure. We use it to map frontier index to the actual set that con-
tains the points in world coordinates. In our implementation, we
use the default C++ implementation of a map template, which is
implemented as a self-balancing binary search tree. Therefore, as-
suming n represents the number of frontiers stored in the database,
searching for a frontier index takes O(logn), inserting a new fron-
tier takes O(logn) and removing a frontier index takes O(logn),
though a (hash) table lookup implementation can make this faster.

4.4.2 Avoiding Re-Detection of Same Frontier
FFD detects new frontiers by processing laser readings only.

Hence, FFD might detect the same frontier again and classify it
as a new frontier if the robot did not change its position during
two following FFD executions. Moreover, if the robot travels back
to an already visited region, no new frontiers should be detected.
FFD has to distinguish between laser readings from between time
frames. Otherwise, FFD might wrongly detect a new frontier which
lies within an already scanned area.

Therefore, we keep track of the number of sensor visits (sen-
sor covers) of each map cell. The definition of a frontier point is
now expanded: a frontier point is a point which represent an un-
known region, has at least one open-space neighbor and has not
been scanned before. Given a contour, the detection of new fron-
tiers ignores points that have already been scanned by the laser sen-
sors and treats them as non-frontier points (lines 15–16).

Figure 5 demonstrates the necessity of the above. Figure 5(a)
shows frontiers extraction without tracking the number of visits. It
can be seen that there are frontiers that lie inside an open space

(a) Incorrectly re-detected fron-
tiers.

(b) Correct detection.

Figure 5: An example of re-detecting same frontiers.

area. This is absolutely wrong because frontiers are supposed to be
positioned on the boundaries between known and unknown regions.
In contrast, Figure 5(b) shows frontiers extraction with avoidance
of redetecting same frontiers. It can be seen that every frontier
separates known and unknown regions.

4.4.3 Eliminating Previously Detected Frontiers
In order to complete the process, points which are no longer in

frontiers (i.e. were covered by the robot’s sensors) have to be elim-
inated. Lines 24–31 contain the elimination logic applied by FFD.

Let ti be a time frame and lrti be the laser readings which were
received in time frame ti. In order to perform maintenance in a
specific time, we define the Active Area of time frame ti to be the
blocking rectangle that can be constructed using the farthest laser
readings of lrti , relative to the robot position in time frame ti.

xmin = min({x|x ∈ lrti}), ymin = min({y|y ∈ lrti})

xmax = max({x|x ∈ lrti}), ymax = max({y|y ∈ lrti})

ActiveAreati = {(x, y) |xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax}

The active area’s rectangle is constructed from the following ver-
tices: (xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin).
The rectangle is an approximation to the real active area that is ac-
tually bounded within the laser readings.

By processing received laser readings, FFD extracts new fron-
tiers. However, in order to get the complete world’s frontiers state,
points that are no longer on frontiers have to be eliminated. FFD
maintains a frontier database which maps an integer (frontier index)
to a set of points (frontier).

An unknown region is classified as known region only if it is
covered by the robot’s sensors. FFD gets its input from the new re-
ceived laser readings, and thus only regions that are covered by the
robot’s sensors might contain frontiers that have to be eliminated.
Thus, if there are frontiers that need to be eliminated, they must lie
inside the Active Area. Hence, the active area is a key feature in
the process of maintaining frontiers. FFD scans each point that lies
inside the active area and checks if it was previously belonged to a
frontier. The check can be performed very fast as explained before.
If the current scanned point was belonged to a frontier, the current
scanned point is removed from the frontier and the frontier is spit
into two partial frontiers using the current scanned point as a pivot
(lines 28–29).

In the end of this process, all no-longer frontier points in the
frontier database are removed and the database contains only points
that are still valid frontiers.

4.4.4 Storing New Detected Frontiers
In the last phase of the maintenance step (lines 32– 38) new de-

tected frontiers are stored in the frontier database alongside with
existing valid frontiers. For each new detected frontier, FFD checks
if it overlaps with an already existing frontier. This comparison can
be performed in a short time using the matrix of frontier indices.

Each frontier point is queried in O(1) operations. If an overlap is
found, the frontier is merged with the frontier that it is overlapped
with. If no overlap is found, then the frontier is inserted to the
frontier database.
5. FFD IS SOUND AND COMPLETE

We show that Algorithm 2 is sound and complete. We begin
with a lemma that demonstrates that FFD always recognizes new
frontiers (i.e., frontiers that appeared at time t, but did not exist
before). This will then be used to prove completeness of FFD .

LEMMA 5.1. Suppose f is a frontier point at time t, which was
not a frontier point at any time s, where s < t. Then FFD will
mark f as a frontier given observation Ot.

PROOF. Let f be a valid frontier point in time t and was not a
classified as frontier in time s < t. Since f is a valid frontier point,
then it has a value of Unknown and has at least one Open Space
neighbor at time t. Assume towards a contradiction that FFD did
not recognize f as a frontier point. First, let us show that f is
contained in the contour handled in Lines 8–23. Since f is a valid
frontier point, then it has a value of Unknown and has at least one
Open Space neighbor in time t. The point f cannot be located
wholly within an unknown region because it must have at least one
Open Space neighbor. Also, the point f cannot be located wholly
within a known region since f is a valid frontier point and hence, its
value is Unknown. Therefore, f must be located on the contour
itself. Lines 8–23 handle points on the contour, which we have
just shown f is on. In these lines, the FFD algorithm scans all
contour points sequentially and specifically searches for frontier
points. Because if scans all points on the contour, and we have
shown that f is on the contour, it follows that f would be detected,
contradicting the assumption that FFD did not recognize f as a
frontier point at time t.

We now turn to proving the completeness of the FFD algorithm.
THEOREM 5.2. Let f be a valid frontier point at time t. Then

FFD will mark f as a frontier point given the sequence of observa-
tions 〈O0, . . . , Ot〉.

PROOF. Two cases should be examined:

Case 1. f is a new frontier point at time t. Trivially, this case is
handled directly by lemma 5.1.

Case 2. f was a new frontier point at time s, where s < t. Let
s be the earliest time in which f was a frontier. Based on lemma
5.1, it follows that it was detected at this time. All that remains to
show is that given the f is still valid at time t, FFD will maintain
knowledge of it from time s and report on it.

If f is still a valid frontier point at time t, then it has not been
covered yet by the robot’s sensors. Otherwise, it would no longer
contain an Unknown value and hence, will not be a valid frontier
point. So if it was not yet covered, it must be a frontier point that
is maintained by FFD. The only way in which f can be eliminated
from being classified as a frontier point is done by lines 24–31. In
these, FFD scans all points that are covered by the robot’s sensors
and checks if any points should be eliminated (line 25). Since f is
not covered by the sensors, then it will not be scanned and elimi-
nated in time t⇒ f remains classified as a frontier by FFD.

In both cases we show FFD will recognize f to be a valid frontier
at time t.

Since Theorem 5.2 is true for any frontier point valid at time t, it
follows that FFD is complete.

To show the soundness of FFD , we must demonstrate that there
does not exist a case where FFD marks a point f̂ as a frontier, when
it is not.

(a) Cartesium Building, Uni-
versity of Bremen.

(b) Freiburg, Building 079.

Figure 6: Some of the testing environments.

THEOREM 5.3. Let f̂ be an arbitrary point in the occupancy
grid, which is not a frontier at time t. Then FFD will not return f̂ as
a frontier point, given the sequence of observations 〈O0, . . . , Ot〉.

PROOF. Assuming that f̂ is an arbitrary point which is not a
frontier point at time t, then f̂ is either contains value different
from Unknown or all its adjacent values are different from Open
Space. We will examine two cases:

Case 1. f̂ is marked as a new frontier. Suppose, towards a con-
tradiction, that FFD detects f̂ as a new frontier (i.e., true at time t,
but not a frontier in time s, where s < t). Since detection of new
frontier points (Lines 8–23) considers only points on the contour, it
follows that f̂ must be located on the contour and detected by lines
8–23. However, line 13 specifically avoids classifying non-frontier
points as frontiers. Since f̂ is a non-frontier point, it is ignored by
FFD. Therefore, f̂ cannot be marked as a new frontier ⇒ contra-
dicting the assumption that it is detected by FFD as a new frontier.
Case 1 is impossible.

Case 2. f̂ is an old frontier but was not eliminated by the main-
tenance routine. Suppose, towards a contradiction, that f̂ is lo-
cated inside the active area and is not eliminated by the mainte-
nance section. Therefore, f̂ is a point that was covered by the
robot’s sensors and no longer contains an Unknown value, yet is
still marked as a frontier by the FFD algorithm. We remind the
the reader that in order to maintain frontier points across runs, each
point in the grid keeps a value which contains NULL if the point is
not a frontier point or the index of the frontier to whom it belongs.
Therefore, in line 25 FFD scans all points in the active area and
checks if they contain a frontier index. When FFD scans f̂ , it will
find out that it contains a valid frontier index (because it has pre-
viously belonged to a valid frontier) and continues executing lines
27–31. In these lines, FFD checks and removes from the DB all
points that are no longer frontier points and previously were fron-
tier points. Thus f̂ will be eliminated after scanning the active area,
contradicting the assumption that f̂ was not eliminated.

Since in both cases we show that FFD necessarily eliminated f̂

from the valid frontier list, it follows that if f̂ is not a frontier-point
at time t, it would not be marked as such by FFD. Since Theorem
5.3 holds for any arbitrary point, it follows that FFD never incor-
rectly marks a non-frontier point as a frontier. It is thus sound.
6. EXPERIMENTAL RESULTS

We have fully implemented WFD and FFD and performed test-
ings on data obtained from the Robotics Data Set Repository (Radish)
[8]. We used WFD without the suggested speed-up feature, in order
to compare all algorithms fairly. Figure 6 shows a few of the envi-
ronments used for the evaluation. WFD and FFD were compared
with a SOTA (state-of-the-art) frontier detection algorithm, due to
Wurm and Burgard [15, 16].

To evaluate the algorithms, we integrated them into a single-
robot exploration system. The system is based on GMapping, an
open-source SLAM implementation [7]. We integrated our code

into the ScanMatcher component which is contained inside gsp
thread (Grid SLAM Processor). At the time that a new MapEvent
is raised, all frontier detection algorithms are executed according
to current world state. Execution times are measured by Linux
system-call getrusage, which measures the CPU-process time. We
examined the run-time of all algorithms on two different machines:
• First experiment: we used a fast desktop computer contain-

ing Intel Core 2 Duo T6600 CPU with clock speed of 2.20
GHz and Random Access Memory (RAM) in size of 4 GB.
• Second experiment: we used a slower desktop computer con-

taining Intel Pentium III (Coppermine) with clock speed of
800 MHz and Random Access Memory (RAM) in size of 1
GB. Research-grade robots typically have a faster CPU, but
commercial robots typically do not.

We used several environments taken from Radish [8]:
(A) Cartesium Building, University of Bremen
(B) Freiburg, Building 079
(C) Outdoor dataset recorded at the University of Freiburg, (C)
(D) 3rd Floor of MIT CSAIL
(E) Edmonton Convention Centre (site of the AAAI 2002 Grand

Challenge)
Note that we use the exploration data (raw sensor readings and

odometry) from these data sets, and thus all algorithms use exactly
the same data, form the same robot trajectories. Thus the movement
of the robot is identical, and the only thing we examine is how
quickly it can compute frontiers.

FFD is called every-time a new laser reading is received. There-
fore, in order to compare FFD execution time to other algorithms
correctly, we accumulate FFD’s execution times between calls to
other algorithms. In other words, if we call WFD in time-stamps ti
and ti+1, then FFD’s accumulated execution time is calculated by:

ti+1∑
x=ti

ExecutionT imeFFD(x)

Moreover, we remind the reader that because FFD is called for
every particle in the particle-filtering GMapping [7], the results
here accumulate also over the number of particles (30 in our case).

We begin by examining overall performance. Figure 7 shows
one set of results of the comparison in each of the two machines.
Each group of bars represents a run over a separate map. For each
algorithm, we calculate the mean execution time, over the dura-
tion of the exploration. The vertical axis measures the calculated
execution time in microseconds, on a logarithmic scale. The one-
second line is at 106 microseconds. The next tick, at 107, marks 10
seconds.

Figure 7 shows that WFD is faster than SOTA by approximately
one order of magnitude. FFD is faster than WFD by one to two or-
ders of magnitude. Indeed, FFD performs close to the one-second
line. In contrast, WFD and SOTA typically take anywhere from 10
to 100 seconds to perform their task, even on relatively fast ma-
chines.

FFD’s improvement over the others is indeed notable, given that
the measured results are not for single FFD runs, but in fact show
accumulated run-time, over the frequency of the sensor readings,
multiplied over the number of particles (approximately 2000 calls
to FFD for each WFD or SOTA calls). These multiplicative factors
have significant impact on FFD’s usability. It is important to un-
derstand whether the number of particles influences the result more
than the frequency of sensor readings, as the number of particles is
often increased for better quality.

We thus turn to evaluating FFD at a finer resolution. Figure 8
compares the run-time of individual particles in specific environ-
ments. Each bar represents a specific particle. The vertical axis

(a) Intel T6600

(b) Intel Coppermine

Figure 7: Comparing WFD and FFD to State-of-the-Art algo-
rithm on different machines.
measures the mean run-time of FFD for the particle. The error-
bars represent the standard deviation of each particle’s run-time.

The figure shows that the per-particle run-time is measured in a
few hundred micro-seconds. Thus the overall results were accu-
mulating comparing the accumulation of thousands of FFD runs
against single WFD and SOTA runs. Indeed, one can boost FFD’s
execution time by not executing it on every received laser reading,
since the frequency of receiving new laser readings is often higher
than the speed of processing and updating the map anyways. Many
laser sensors generate output at 30Hz–75Hz, at least three times
faster than the rate at which the robots process the information.
By ignoring some laser readings, FFD would perform much better,
without any noticeable decay in mapping quality.

7. CONCLUSIONS AND FUTURE WORK
Frontier-based exploration is the most common approach to solve

the exploration problem. State-of-the-art frontier detection meth-
ods process the entire map data, which hangs the exploration sys-
tem for a few seconds with every call to the detection algorithm.

We introduced two novel faster frontier detectors, WFD and FFD.
The first, a graph based search, processes the map points which
have already been scanned by the robot sensors and therefore, does
not process unknown regions in each run (though it grows slower as
more area is known). The second, a laser-based approach for fron-
tier detection, only processes new laser readings which are received
in real time eliminating also much of the known area search. How-
ever, maintaining previous frontiers knowledge requires tight inte-
gration with the mapping component, which may not be straight-
forward. We describe efficient implementation for both algorithms,
and compare them empirically. FFD is shown to outperform WFD
and the state-of-the-art by 1–2 (2–3, resp.) orders of magnitude.

In future, we plan to integrate FFD with EKF-based SLAM map-
pers, which we hope will lead to further improvements. We also

(a) Cartesium Building, Bremen

(b) Freiburg, Building 079

(c) Outdoor dataset, University of
Freiburg

(d) 3rd Floor of MIT CSAIL

(e) Edmonton Convention Centre

Figure 8: FFD run-time for individual SLAM particles.

plan to begin investigation of novel exploration policies, based on
real-time frontier-detection.

Acknowledgements. We thank Kai M. Wurm and Wolfram Bur-
gard for providing us with their own implementation of state-of-
the-art frontier detection algorithm. Thanks go to Cyrill Stachniss,
Giorgio Grisetti and Nick Roy for providing data to the Robotics
Data Set Repository (Radish) [8].

8. REFERENCES
[1] M. Berhault, H. Huang, P. Keskinocak, S. Koenig,

W. Elmaghraby, P. Griffin, and A. Kleywegt. Robot
exploration with combinatorial auctions. In IROS-03, pages
1957–1962, 2003.

[2] J. Bresenham. Algorithm for computer control of a digital
plotter. IBM Systems Journal, 4(1):25–30, 2010.

[3] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun.
Collaborative multi-robot exploration. In IEEE International
Conference on Robotics and Automation. Vol. 1, pages
476–481, 2000.

[4] W. Burgard, M. Moors, C. Stachniss, and F. Schneider.
Coordinated multi-robot exploration. IEEE Transactions on
Robotics, 21(3):376–378, 2005.

[5] D. Calisi, A. Farinelli, L. Iocchi, and D. Nardi.
Multi-objective exploration and search for autonomous
rescue robots: Research articles. J. Field Robot.,
24:763–777, August 2007.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, 2001.

[7] G. Grisetti, C. Stachniss, and W. Burgard. Improved
techniques for grid mapping with Rao-Blackwellized particle
filters. IEEE Transactions on Robotics, 23:34–46, 2007.

[8] A. Howard and N. Roy. The robotics data set repository
(RADISH), 2003.

[9] M. Keidar, E. Sadeh-Or, and G. A. Kaminka. Fast frontier
detection for robot exploration. In F. Dechesne, H. Hattori,
A. ter Mors, J. M. Such, D. Weyns, and F. Dignum, editors,
Advanced Agent Technology: AAMAS 2011 Workshops.
Revised Selected Papers, volume 7068 of Lecture Notes in
Computer Science (LNCS), pages 281–294. 2012.

[10] H. Lau and A. NSW. Behavioural approach for multi-robot
exploration. In Australasian Conference on Robotics and
Automation (ACRA), Brisbane, December, 2003.

[11] R. Sawhney, K. M. Krishna, and K. Srinathan. On fast
exploration in 2D and 3D terrains with multiple robots. In
AAMAS-09, pages 73–80, 2009.

[12] C. Stachniss. Exploration and Mapping with Mobile Robots.
PhD thesis, University of Freiburg, Department of Computer
Science, 2006.

[13] A. Visser. personal communication. Email, January 4th,
2011.

[14] A. Visser and B. A. Slamet. Including communication
success in the estimation of information gain for multi-robot
exploration. In WiOpt-08, pages 680–687, 2008.

[15] K. Wurm, C. Stachniss, and W. Burgard. Coordinated
multi-robot exploration using a segmentation of the
environment. In IROS-08, Nice, France, Sept. 2008.

[16] K. M. Wurm. personal communication. Email, January 20th,
2011.

[17] B. Yamauchi. Frontier-based exploration using multiple
robots. In Agents-98, pages 47–53, 1998.

