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ABSTRACT
People’s cultural background has been shown to affect the
way they reach agreements in negotiation and how they ful-
fill these agreements. This paper presents a novel agent de-
sign for negotiating with people from different cultures. Our
setting involved an alternating-offer protocol that allowed
parties to choose the extent to which they kept each of their
agreements during the negotiation. A challenge to designing
agents for such setting is to predict how people reciprocate
their actions over time despite the scarcity of prior data of
their behavior across different cultures. Our methodology
addresses this challenge by combining a decision theoretic
model with classical machine learning techniques to predict
how people respond to offers, and the extent to which they
fulfill agreements. The agent was evaluated empirically by
playing with 157 people in three countries—Lebanon, the
U.S., and Israel—in which people are known to vary widely
in their negotiation behavior. The agent was able to out-
perform people in all countries under conditions that varied
how parties depended on each other at the onset of the ne-
gotiation. This is the first work to show that a computer
agent can learn to outperform people when negotiating in
three countries representing different cultures.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]

General Terms
Experimentation
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1. INTRODUCTION
The dissemination of technology across geographical and

ethnic borders is opening up opportunities for computer
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agents to negotiate with people of diverse cultures and back-
grounds. For example, electronic commerce (e.g., ebay),
crowd-sourcing (e.g., Amazon Turk) and deal-of-the-day ap-
plications (e.g., Groupon) already involve computer agents
that make decisions together with people from different coun-
tries. People’s cultural background has been shown to be a
key determinant of the way they make and keep their agree-
ments with others [7]. It is thus important for agent de-
signers to model how people from various cultures respond
to different kinds of decision-making behavior employed by
others. To succeed in such settings computer agents need to
adapt to the culture and particular behavior of the individ-
ual they interact with.

This paper presents a novel agent-design for settings in
which participants repeatedly negotiate over the exchange of
scarce resources, and agreements are not binding. Such set-
tings characterize the real-world applications shown above,
in that participants make commitments to purchasing items
or carrying out tasks, they can choose whether and how to
fulfill these commitments, and these decisions affect their fu-
ture interactions with the other participants. For example,
a seller that delivers an item very late to a buyer, or does
not deliver an item at all, may be negatively reciprocated
by the buyer in a future transaction.

Prior work has addressed some of the computational chal-
lenges arising in repeated negotiation between people and
computer agents [6, 11]. However, additional challenges
arise when designing agents that adapt to different cultures.
First, agents need to adopt a separate strategy in each cul-
ture, requiring large amounts of data to be collected of peo-
ple’s play in the different cultures. Second, people’s individ-
ual behavior within a culture displays wide variance, as peo-
ple’s strategies are inconsistent and prone to noise [7]. Thus,
a computer agent needs to adapt quickly to the individual
strategy of its negotiation partner over time. To address
the first challenge, we combined a decision-theoretic model
with classical machine learning techniques to model human
behavior in different cultures. The decision-theoretic model
used an influence diagram to efficiently represent and reason
about the negotiation process. The learning techniques were
based on features that represent players’ states in the nego-
tiation, as well as social factors that reflect their generosity
and reliability over time. To address the second challenge,
we collected data in three different countries in which peo-
ple are known to exhibit distinct cultural differences in their



negotiation behavior (Israel, Lebanon and the U.S). In or-
der to boost the amount of data available for learning, we
trained the model of people’s play with baseline computer
agents as well as other people.

Our proposed agent incorporated the learned models of
people’s play and solved the influence diagram to make deci-
sions in the game. We evaluated this agent when negotiating
with new people in each of the three countries. Our results
show that the agent was able to outperform people in all
three countries, and in conditions varying how participants
depended on each other’s resources during negotiation. The
agent learned to adapt to the behavior of its negotiation
partner over time in each of the cultures, and used a gen-
eral model of their behavior when little or no history of play
was available. These results demonstrate the need for agent-
designers to model the effects of culture on human behavior
when agents are deployed globally or in multi-cultural set-
tings. It is the first work to show that a computer agent
can learn to outperform people when negotiating in three
different cultures.

There is a body of work in the psychological and social
sciences that investigates cross-cultural behavior among hu-
man negotiators [2]. However, there are scant computa-
tional models of human negotiation behavior that reason
about cultural differences. Past work in AI has used machine
learning and opponent modeling approaches toward build-
ing computer agents that negotiate with people. [13].Jonker
et al. [10] designed an agent architecture that used conces-
sion strategies to avoid impasses in the negotiation. Byde
et al. [1] constructed agents that bargain with people in a
market setting by modeling the likelihood of acceptance of a
deal and allowing agents to renege on their offers. Oshrat et
al. [12] have used learning techniques to model the extent to
which people exhibit different social preferences when they
accept offers in one-shot and multiple interaction scenarios.
To date, all work on human-computer negotiation assumes
that agreements are binding and have relied on prior data
of people’s negotiation behavior. A notable exception is the
work by Gal et al. [5] that proposed an agent for negotiating
with people in the U.S. and Lebanon using the same proto-
col and setting as this work. However, this agent used hand-
designed rules of behavior and did not model its partner in
a formal way. This agent was able to outperform people in
the U.S. but not in Lebanon, whereas our learned agent was
able to outperform people in the U.S., Lebanon and Israel.
Thus, our work is novel in showing that combining decision
theory and machine learning is a better approach towards
building agents in the same settings they considered.

2. IMPLEMENTATION: COLORED TRAILS
Our empirical setting consisted of a game that interleaved

negotiation to reach agreements and decisions of whether
and how much to fulfil the agreement. The game was con-
figured using the Colored Trails (CT) game [4] and played
on a 7x5 board of colored squares. One square on the board
was designated as the goal square. Each player’s icon was
initially located in one of the non-goal positions, eight steps
away from the goal square. To move to an adjacent square, a
player needed to surrender a chip in the color of that square.

At the onset of the game, one of the players was given the
role of proposer, while the other was given the role of re-
sponder. The interaction proceeded in a recurring sequence
of phases, using an alternating offers protocol. In the “nego-

Figure 1: An example of a CT Board

tiation phase”, the player designated as the proposer could
make an offer to the other player, who was designated the
responder. In turn, the responder could accept or reject the
offer. If the offer was rejected, then players switched roles:
the responder became the proposer and the proposer became
the responder. After the counter offer was accepted or re-
jected by the responder, the game moved to the next phase.
In the “transfer phase” both players could choose chips to
transfer to each other. The transfer action was done simul-
taneously, such that neither player could see what the other
player transferred until the end of the phase. A player could
choose to transfer more chips than it agreed to, or any subset
of the chips it agreed to, including transferring no chips at
all. In the “movement phase” both players could move their
icons on the board one step towards the goal square, pro-
vided they had the necessary chip. Players alternated their
roles, such that the first proposer in the previous negotiation
phase was designated as a responder in the next negotiation
phase, and vice versa. These phases repeated until the game
ended, which occurred when one of the following conditions
held: (1) at least one of the participants reached the goal
square; or (2) at least one of the participants remained dor-
mant and did not move for three movement phases.

When the game ended, both participants were automat-
ically moved as close as possible to the goal square, and
their score was computed as follows: 100 bonus points for
getting to the goal square, 5 bonus points for any chip left
in a player’s possession; a 10 point penalty for each square
left in the path from a player’s final possession to the goal
square. These parameters were chosen so that getting to
the goal was by far the most important component, but if a
player could not get to the goal it was preferable to get as
close to the goal as possible. Note that players had full view
of the board and each others’ chips, and thus they had com-
plete knowledge of the game situation at all times during
the negotiation process.

An advantage of using CT is that it provides a realistic
analog to task settings, highlighting the interaction among
goals, tasks required to achieve these goals and resources
needed for completing tasks. In CT, chips correspond to
agent capabilities and skills required to fulfill tasks. Differ-
ent squares on the board represent different types of tasks.
A player’s possession of a chip of a certain color corresponds
to having the skill available for use at that time.



We used two different types of boards in the study to rep-
resent different dependency relationships between players.
In one of the boards, neither player could reach the goal
given its initial chip allocation, and there existed at least
one exchange such that both players could reach the goal.
We referred to players in this game as task co-dependent.
In the other board type, one of the players, referred to task
independent, possessed the chips it needed to reach the goal,
while the other player, referred to as task dependent, re-
quired chips from the task-independent player to get to the
goal. An example of the co-dependent board used in our
study is shown in Figure 1. In this game both the “me” icon
and “square” icon players were missing three chips to get to
the goal: The “me” player was missing three yellow chips
whereas the “square” player was missing three gray chips.
The relevant path from the point of view of the “me” player
is outlined.

3. A DYNAMIC MODEL OF INTERACTION
In this section we describe an agent-design termed the Per-

sonality Adaptive Learning (PAL) agent. Before describing
the decision theoretic model used by PAL, we make the fol-
lowing definitions. Let n denote an arbitrary negotiation
phase in the game. For any two participants i and j, let cni
denote the set of chips in possession of i at phase n in the
game. Let on = (oni , o

n
j ) denote a proposal at round n in

which oni ⊆ cni is the set of chips that i sends to j, and onj is
the set of chips that j sends to i. Note that the proposal on

can be made by either player i or player j. Let an denote
the other player’s response to on whether to reject or accept
the proposal. Let tni ⊆ cni be the set of chips transferred by
i following the response, and let tnj ⊆ cnj be the set of chips
transferred by j. The protocol allows participants to trans-
fer chips regardless of whether or not an offer is accepted.

The current score for i at round n measures the score in
the game given its chips cni . This is defined as un

i (ci).
1 Given

a proposal on at round n, the promised score to player i at
round n measures the score in the game that i would receive
in the case that j was fully reliable and sent onj promised
chips to player i. The reliability measure of player j at round
n, denoted rnj , reflects the extent to which j fulfilled its com-
mitment to send onj chips to i. It is defined as the ratio be-
tween the current score to i after j transferred chips and the
promised score to i. A reliability measure of 1 means that
player j transferred all of its promised chips to i; the extent
to which the reliability measure is lower than 1 represents
the degree to which the player did not fulfill its commitment
for a given agreement, as defined below.

rnj =
ui(c

n
i ∪ tni )

ui(cni ∪ onj )
(1)

Note that the reliability measure of j only depends on the
chips it sent to i, and does not depend on the chips sent by
i to j. The reliability of player i is defined symmetrically,
and omitted for brevity.

PAL uses an influence diagram [9] to efficiently represent
and reason about its decisions over time. An influence di-
agram is a directed acyclic graph containing three kinds of
nodes: chance nodes denoted by ellipses, decision nodes de-

1The score in the game also depends on players’ positions
on the board and the board layout, which we omit for ex-
pository convenience.
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Figure 2: An Influence Diagram for two rounds of
interaction in the CT game.

noted by gray rectangles, and utility nodes denoted by di-
amonds. Each chance node has an associated conditional
probability distribution (CPD). A utility node has an asso-
ciated deterministic function from values of its parents to
the real numbers. The parents of a decision node represent
information that is known to the decision maker at the time
of making the decision, and are called informational parents.
Each decision and utility node is associated with a particu-
lar agent. An influence diagram representing two rounds of
interaction in the game is shown in Figure 2. Each decision
node is labeled with the corresponding decision for PAL in
the game and appears in gray background. The decision
nodes onP and tnP represent the proposal made by PAL and
the chips it decides to transfer at round n. Similarly, the
decision node on+1

P and tn+1
P represent the proposal made

by PAL and the chips that it decides to transfer at round
n+ 1.

The person’s decisions in the influence diagrams are mod-
eled as chance nodes. The nodes anH and an+1

H represent the
person’s response to the proposal made by PAL in rounds
n and n+ 1. The node tnH and tn+1

H represents the person’s
decision to transfer chips at round n+ 1.

The node sn represents the state of the game at round n.
This node is a parent of all decisions made by both partici-
pants in round n. This represents the fact that the state is
observed by the participants in the game when making their
decisions in each round. The state encapsulates the history
of the game into a tuple that contains relevant information
about the game, as well players’ reliability measures in the
game. The domain relevant information includes players’
positions on the board, their chips, and the number of dor-
mants rounds already played in the game. The reliability
measure for each player is rn, as computed in Equation 1.
The decisions at each round n depend only the state sn and
not on the history of past play. This violates the traditional
“no-forgetting” rule that requires each decision to depend on
all of the previous decisions, but is an acceptable assumption
in repeated negotiation settings [6].

After players make their decisions in round n, the state
sn+1 is updated for both players at each round to reflect the
evolution of the game. This is represented by the edges from
the decisions of both participants in the game at state sn to
node sn+1, shown in dashed outline. In this process, the
domain dependent information is updated to reflect players’
positions and chips in round n. Also the reliability of the



person in round n is aggregated using a weighted average:

rnH = (1− α) · rn−1
H + α · rnH (2)

where α is a decaying constant that weighs the past reli-
ability, and is tuned empirically, as we explain in the next
section. The state information sn+2 is updated to reflect the
decisions of participants in round sn+1 in a similar way.

In this section we will assume the existence of the prob-
ability distribution P (tnH | on, an, sn) modeling how people
transfer chips following proposal on and response an at state
sn, and the probability distribution P (an | on, sn) modeling
how people respond to a proposal on in game at round n (we
also assume the existence of the corresponding probability
distributions for modeling people’s play in round n+1). We
detail how we learn these models in the next Section.

A key challenge to designing strategies for PAL in the
game is how to assign credit to intermediate states in the
game. Due to the scarcity of human data, the prediction ac-
curacy of people’s behavior decreases for later stages of the
game, and constructing an influence diagram that spans the
entire game is not feasible. Thus, PAL uses a heuristic value
function to assign utilities to intermediate states. The value
function is an estimate of the score that PAL will receive at
the end of the game. This estimate is based on whether PAL
gets to the goal, its score as computed by the CT scoring
function described in Section 2, and game-relevant informa-
tion such as the dependency relationship between players at
the current state. Specifically, let sm denote an intermediate
state in the game. The node G equals true if PAL will reach
the goal in the future, given that its current state is sm. The
value function is denoted fP (sm, G) and equals PAL’s score
in the game given that its chip set is modified by a constant
factor as follows: If PAL can get to the goal independently
of the other participant, this constant is large. If PAL is
dependent on the other player to get to the goal, this con-
stant is smaller, and depends on the extent to which PAL
is dependent on the other. Solving the influence diagram
shown in Figure 2, sn+2 is chosen to be the final state and
the utility node fP (sn+2, G) represents the value function at
that state.

Lastly, as can be seen in the influence diagram, the PAL
agent is assumed to be the proposer in both rounds n and
n+ 1. This significantly facilitated inference in the decision
tree, because we did not need to learn a model of people’s
proposals. Given that there were 24 chips given to each
player (see Figure 1 for an example of a board game), con-
sidering every possible proposal is infeasible. This protocol
is correct for half of the game instances we collected in our
setting (when PAL makes a counter proposal and is chosen
to make the proposal in the next round). As we show in
the Empirical section, this assumption did not impede the
agent’s performance.

Solving the influence diagram provides a strategy for PAL
for any of its decisions given that final state is sm. To this
end, the influence diagram is converted to a decision tree
and solved using backward induction. The results of this
process are as follows. In the final state sm, PAL’s utility
is computed using the value function fP (G, sm) given the
probability distribution P (G | sm) (whether PAL reaches
the goal)

ESP (. | sm) = P (G | sm) ·fP (G, sm)+P (G | sm) ·fP (G, sm)
(3)

For any state n < m, we list the equations that corre-
spond to solving the influence diagram for each of PAL’s
decisions. Suppose that PAL’s decision is how many chips
to transfer at round n after proposal on and response an.
The expected score to PAL from transferring tnP chips is
denoted ESP (tnP | on, an, sn) and depends on its model
P (tnH | on, sn) of people’s reliability.

ESP (tnP | on, an, sn) =
∑

tn
H
⊆on

P (tnH | onP , sn)·

max
o
∗,n+1
P

ESP (o∗,n+1
P | sn+1)

(4)

where sn+1 is the updated state that realizes players’ chips
given that PAL transferred tnP chips and the human trans-
ferred tnH chips, and ESP (o∗,n+1

P | sn+1) is the score to PAL
from the best proposal to make in the next state sn+1.

Suppose that PAL’s decision is what proposal to make
at round n. The expected score to PAL from making a
proposal on depends on its model P (anH | on, sn) of how
people respond to proposals. The expected utility to PAL
from proposal on is denoted ESP (onP | sn) and computed as

ESP (onP | sn) =
∑

an
H
∈yes,no

P (anH | onP , sn)·

max
t
∗,n
P
⊆cn

P

ESP (t∗,nP | onP , anH , sn)
(5)

where anH is the response of the person in round n, cnP is
the set of chips in PAL’s possession, and t∗,nP is the set of
chips that PAL transfers that maximize its expected utility
ESP (t∗,nP | onP , anH , sn) defined in Equation 4.

Lastly, suppose that PAL’s decision is whether to accept
a proposal onH from the person at round n. The expected
score to PAL of its response anP to the proposal is denoted
ESP (anP | onP , sn) and is computed as

ESP (anP | sn) = maxt
∗,n
P
⊆cn

P
ESP (t∗,nP | on, a∗,nP , sn) (6)

where t∗,nP is the set of chips that PAL transfers that max-
imize its expected utility ESP (t∗,nP | onP , anP , sn) defined in
Equation 4.

4. LEARNING PEOPLE’S BEHAVIOR
In this section we describe how we constructed probabilis-

tic models of people’s behavior from data collected in the
game. We defined a set of features representing aspects of
the game as well as players’ reliability measures. We trained
classifiers for predicting people’s behavior using the subset
of features that performed well on a held-out set of data
instances, and maximized the likelihood of the training set.
These classifiers were incorporated into the influence dia-
gram described in the last section and used by PAL to adapt
to people’s negotiation behavior in each country.

Past work on human-computer negotiation trained pre-
dictive models of human behavior based on their play with
other people [12, 6]. There were several challenges to using
this methodology in our work. First, it is logistically diffi-
cult to collect data in three countries representing different
cultures under identical laboratory conditions. In particu-
lar, access to subjects in Lebanon was extremely limited.
Second, the repeated nature of the game and the relatively
complex rules required a session of 70-80 minutes to collect a
single game instance. (We expand on the instructions given



to subjects in Section 5.) The combination of these two fac-
tors made it difficult to obtain sufficient data instances to
train classifiers from each country. Third, collectivist soci-
eties such as Lebanon are more homogeneous and display less
variance in the extent to which they fulfill commitments [8].
This made it difficult to predict how this population would
respond to a computer player whose strategies differed from
the general population.

To meet these challenges we used three sources of data to
train our classifiers. First, we used the 222 game instances
consisting of people playing the hand-designed agent used
by Gal et al. [5]. In addition, in the U.S. and in Israel, we
were also able to collect 112 game instances of people playing
other people. Lastly, in Lebanon, we collected 64 additional
games in which people played a variant of the agent used
by Gal et al. that was programmed to be significantly less
reliable when fulfilling its agreement. In this way, we were
able to collect data of people’s reactions to more diverse
negotiation behavior in the game.

We defined a general set of salient features that describe
people’s behavior and various aspects of the game. The
features are described below from the point of view of a
general player i at round n in state sn. We first describe
features based on the terms defined in Section 3. The cur-
rent score to i at state sn; the Previous Reliability of i at
round n−1, as measured by the reliability measure of Equa-
tion 1; the Aggregate Reliability at round n, as measured by
the weighted average reliability of Equation 2. We further
define the following additional features: the Offer Generos-
ity of player i, which measured the difference between the
number of chips offered by i and requested by i in a pro-
posal; the Role of player i, (whether proposer or responder);
the number of Dormant Rounds in which i did not move in
the game. (Similar features were defined from the point of
view of the other player j.)

We constructed the following probabilistic models of a
general player i using the data described above. The proba-
bility P (ani | on, sn) that i accepts a proposal onj made by the
other player j at state sn; the probability P (tni | on, an, sn)
that player i transfers chips tni after proposal on and re-
sponse an at state sn. (Note that the proposal on can be
made by either player i or j); the probability P (G | sn) that
i will get to the goal when it is in state sn.

We trained multi-layered neural network classifiers to im-
plement the various models described above using the WEKA
framework.2 We selected the features for each learning task
based on their performance (measured by mean-square clas-
sification error) on a held-out set of instances as well as
measuring the likelihood of the models on the training set.

The best performance for predicting people’s reliability
and proposal acceptance measures was obtained in Israel
and in Lebanon. To explain this, we observe that the relia-
bility of people in the data collected in Lebanon (0.67) was
significantly higher than the reliability of people in the U.S.
(0.289) and in Israel (0.46). This aligns with past studies
showing that people care more about honor in the Middle
East and are thus more reliable than in the U.S. [8].

5. EMPIRICAL METHODOLOGY
2http://www.cs.waikato.ac.nz/ml/weka/. The continu-
ous measure of people’s reliability was discretized to facili-
tate learning.

This Section describes the evaluation of PAL’s perfor-
mance when playing against new people in the game. To
make decisions, PAL used the influence diagram described
in Section 3, together with the machine learning models and
the training data described in Section 4. To evaluate PAL
we recruited 157 subjects from the three countries. These
included 48 students studying in the Beirut area, 46 students
from greater Boston area, and 63 students from universities
in Israel. Each participant played a single game with the
PAL agent, making a total of 157 games. At least 14 games
were played in each of the dependency relationships in each
country. Each participant was given an identical 30 minute
tutorial on CT, consisting of a written description of the
CT game, as well as an 8-minute movie that explained the
rules of the game using a board that was different than those
boards used in the actual study. Participants were seated in
front of terminals for the duration of the study, and could
not speak to each other or see their terminals. To standard-
ize conditions with the experiments for collecting the data
for learning, all participants played one game with the PAL
agent, and were told they would be playing with different
people.3

All results reported to be significant have been tested for
significance in the p < 0.05 range using statistical ANOVA
tests. We list the following three implementation details:
First, the decay parameter for weighting players’ reliabil-
ity measures in Equation 2 was set to 0.3. This weight was
tuned empirically by comparing the performance of the PAL
agent on the same held-out set of instances used to evalu-
ate the learning models in Section 4. Second, PAL chose
proposals within a 10-point interval of its maximal expected
score (defined in Equation 5) with uniform probability. This
“trembling-hand” randomization to PAL’s behavior, follows
results demonstrating the benefit of randomization and un-
predictability in human negotiation [3]. Third, to increase
its likeness to human play, PAL did not make offers that
were not present in its training set.

5.1 Comparison of Performance
Table 1 (on the following page) reports performance (in

average score per game) for each of the countries and for
each dependency condition. As shown by the Table, PAL
was able to outperform people in all dependency conditions
and in all countries: On average, PAL achieved 192.6 points
in the U.S. (right-hand column in boldface), compared to
75.77 points for people; 132.6 points in Lebanon, compared
to 94.86 points for people; and 152.75 points in Israel, com-
pared to 97.85 points for people. As shown in Figure 3, PAL
was also able to reach the goal significantly more often than
people in all dependency conditions and in all countries.

The best performance for PAL and the worst performance
for people occurred in the U.S: As Table 1 shows, PAL’s aver-
age performance in the U.S. (192.6 points) was significantly
higher than its performance in Lebanon (152.75 points) and
Israel (132.6 points points), while people’s average perfor-
mance in the U.S. (75.77 points) was significantly lower
than in Lebanon (94.86 points) and Israel (97.85 points).
As shown in Figure 3, these results are also supported when
analyzing the number of times PAL got to the goal: For
all dependency conditions, PAL was able to get to the goal
significantly more often in the U.S. than in Lebanon and

3All procedures involving people were authorized by the
ethics review board of the relevant institutions.



Co-Dependent
PAL People

Leb. 107 73
U.S. 188 47
Isr 123 78

Independent
PAL People
212.18 196.3
226.25 171.56
207.5 182.5

Dependent
PAL People
79.3 15.3

163.75 8.75
127.77 33.05

Average
PAL People
132.6 94.86
192.6 75.77
152.75 97.85

Table 1: Performance comparison for each condition and country
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Figure 3: Getting to the Goal (in percentage of
games)

Israel, and people were able to reach the goal significantly
less often in the U.S. than in Lebanon and Israel. The rest
of this Section explains how PAL was able to succeed in the
various conditions given this information.

5.2 Analysis of PAL Behavior
From observing PAL’s play in many games, we were able

to identify several rules of behavior used by PAL that were
consistent across the various dependency conditions. (1)
PAL based its initial reliability measure in the games in
the evaluation set (hence referred to as “evaluation games”)
on people’s behavior in the game instances in the data used
to train the models (hence referred to as “training games”).
When people’s reliability in the training games was consis-
tently very low or consistently very high, it commenced the
evaluation games with a low reliability measure in fulfilling
its agreements. In these clear-cut situations, it makes sense
for PAL to adopt a low reliability. When people’s reliability
measure in the training games was moderate, PAL adopted
a higher reliability measure. (2) PAL was significantly less
reliable when it became independent and did not depend on
the other participant to reach the goal (or if it was already
independent at the onset of the game). (3) PAL was signif-
icantly more reliable in games that lasted for many rounds.
This caused PAL to establish reciprocal relationships with
the other parties. (4) PAL was significantly less likely to ful-
fill agreements that allowed people to get to the goal. In the
following sections, we will use these rules to analyze PAL’s
performance in the various dependency relationships in each
country.

5.2.1 Task Co-Dependent Condition
As shown in Table 1, the highest performance of PAL in

the co-dependent condition (188 points, left-hand column
in boldface) occurred in the U.S. In addition, PAL got to
the goal significantly more often in the U.S. (92%) than in
Lebanon (35%) and in Israel (44%) in this condition. Table 2
reports the average reliability of participants in each of the
conditions. As shown in the Table, the reliability of PAL was
significantly lower in the U.S. (0.19) than in Israel (0.35) and
in Lebanon (0.50). Also shown in the Table is that people’s

Co-Dependent
PAL People

Leb. 0.8 0.7
U.S. 0.29 0.456
Isr 0.55 0.46

Independent
PAL People
0 0.64

0.07 0.1
0.55 0.46

Dependent
PAL People
0.89 0.69
0.375 0.312
0.90 0.46

Table 3: Learned and Adapted Reliability

reliability in the U.S. (0.52) was lower than their reliability
in Lebanon (0.63). To explain PAL’s success in the U.S.
in light of the low reliability measures exhibited by both
PAL and people, we need to analyze the evolution of PAL’s
behavior over time.

We begin by describing PAL’s reliability at the onset of
the game. Table 3 shows people’s average reliability in the
games in the training games in each country, and PAL’s
adopted reliability measure after the first agreement in the
games in the evaluation games. As shown by the Table,
people’s reliability in the training games in Lebanon (0.7)
were significantly higher than their reliability in the U.S.
(0.456) and in Israel (0.46). Therefore, by learned rule (1),
PAL’s initial reliability in Lebanon (0.8) was significantly
higher than in the U.S. (0.29) or in Israel (0.55).

To explain the difference between PAL’s initial reliability
in the U.S. and in Israel, we need to distinguish those pro-
posals that offered people to get to the goal, referred to as
“Task Independent (TI) proposals for people”. Not shown
in the table, is that over 77% of the first offers made in
games in the U.S. were task TI offers for people, compared
to 23% of first offers made in Lebanon, and 12% of first offers
made in Israel. By learned rule (3), PAL was significantly
less reliable when fulfilling TI proposals for people. This
is supported by Table 4, which presents the percentage of
TI proposals for people in the game (out of the entire set
of proposals made in the game) and the reliability of PAL
when fulfilling TI offers for people. As shown by the Table,
in the co-dependent condition in the U.S., the reliability of
PAL when fulfilling TI offers for people (0.05, in boldface)
was significantly lower than its reliability when fulfilling TI
offers in Lebanon (0.14) and in Israel (0.1).

Next, we analyze PAL’s behavior during the game in the
co-dependent condition. We refer to those proposals that
offered PAL to get to the goal as “Task Independent propos-
als for PAL”. Table 5 shows the percentage of TI proposals
for PAL in the game (out of the entire set of proposals made
in the game) and the reliability of people when fulfilling TI
offers for PAL. As shown in the Table the reliability of peo-
ple in the U.S. when fulfilling TI offers for PAL was 0.45 (in
boldface). But recall that Table 4 shows that the reliability
of PAL in the U.S. when fulfilling TI offers for people was
0.05. This means that in the U.S. PAL was much less likely
to fulfill its commitments than were people.

Further analysis revealed that the vast majority of pro-
posals in the U.S. (93%) occurred after PAL became inde-
pendent and did not need the other player to get to the goal



Co-Dependent
PAL People

Leb. 0.50 0.63
U.S. 0.19 0.52
Isr 0.35 0.45

Independent
PAL People
0.08 0.82
0.05 0.69
0.22 0.55

Dependent
PAL People
0.59 0.60
0.48 0.62
0.81 0.52

Average
PAL People
0.39 0.69
0.19 0.6
0.38 0.5

Table 2: Reliability Measures for Participants

Co-Dependent
TI ratio PAL’s

reliability
Leb. 1.05 0.14
U.S. 4.7 0.05
Isr. 3.07 0.1

Dependent
TI ratio PAL’s

reliability
1.53 0
4.5 0.02
4.5 0.015

Table 4: Analysis of TI offers for people

Co-Dependent
TI ratio People’s

reliability
Leb. 0.94 0.4
U.S. 1.64 0.45
Isr. 1.7 0.25

Dependent
TI ratio People’s

reliability
0.73 0.37
1.56 0.496
0.72 0.54

Table 5: Analysis of TI offers for PAL

(not shown in the table). This means that PAL was able
to reach the goal in early stages of the game in the U.S.
According to learned rule (2), PAL was not reliable when
it was independent. These findings explain how PAL was
able to succeed in the U.S. while adapting a generally low
reliability towards people. In contrast to the U.S., only 26%
of proposals in Lebanon were made after PAL became task
independent, which explains why PAL’s average reliability
measure in the co-dependent condition in Lebanon (0.39),
shown in Table 2 was higher than its reliability in the U.S.
(0.19).

To illustrate how PAL adapted its behavior in different
countries the co-dependent condition, we include two ex-
amples of the evaluation games in Israel and Lebanon. In
the Lebanon example, PAL began by accepting a 2-chip-
for-2-chip proposal and transferring both chips following the
agreement. The next agreement offered PAL the chips to get
to the goal. As shown in Table 3, from the training games
PAL learned that people in Lebanon were highly reliable.
Therefore, PAL did not send any chips to the person follow-
ing this agreement. In contrast, the person sent its promised
chips to PAL, allowing PAL to get to the goal. This game
was typical of Lebanon, in that games were relatively short,
and people were generally reliable.

In Israel, games were longer, and people were less reliable
in the training games than in Lebanon. Specifically, in our
example in Israel, PAL was fully reliable following the first
two agreements, while the person did not send any of its
promised chips. As a result, PAL did not send any chips for
the third and fourth agreements. In the fifth agreement (a
1-chip-for-1-chip proposal), PAL was fully reliable. Lastly,
for the sixth agreement (a 1-chip-per-3-chip proposal), which
allowed PAL to get to the goal, the human was fully reliable,
while PAL did not send any of its three promised chips. This
example demonstrates PAL’s ability to establish a reciprocal
relationship with its partner.

Lastly, we explain the difference in PAL’s performance
across countries. As shown in Table 5, the ratio of TI offers

for PAL in the U.S. (1.64, in boldface) was almost twice as
high as the ratio of TI offers for PAL in Lebanon (0.94).
Thus, there were significantly more proposals that allowed
PAL to reach the goal in the U.S. than in Lebanon. In
contrast, the ratio of TI offers for PAL in Israel (1.7) was as
high in the U.S. However, as the Table also shows, people’s
reliability following TI offers for PAL in Lebanon (0.4) and in
the U.S. (0.45) was significantly higher than their reliability
following TI offers for PAL in Israel (0.25). As a result, PAL
was more likely to reach the goal in the U.S.

5.2.2 Task Dependent Condition
As shown by Table 1, the best performance for PAL in

the task dependent condition was in the U.S. (163 points, in
boldface). Table 2 shows that the lowest reliability exhib-
ited by PAL (0.48, column “dependent”), was obtained in
the U.S. In addition, PAL’s reliability measure in the task
dependent condition in the U.S. (0.48) was lower than that
of its reliability measure in Lebanon (0.59) and Israel (0.81).
These results are similar to those reported for the task co-
dependent condition. However, participants’ roles were not
symmetric in the board games in the task dependent con-
ditions. Specifically, in the games in which PAL was task
dependent, people were task independent (and vice versa).
Thus there were different factors that contributed to PAL’s
success in the task dependent condition.

We first observe Table 3, which shows that in the task
independent condition, people’s reliability in the training
games in Israel (0.46) and in Lebanon (0.64) was higher than
their reliability in the U.S. (0.1). Therefore, by learned rule
(1), PAL commenced the evaluation games with a higher
reliability in the task dependent condition in Israel (0.9)
and in Lebanon (0.89) than in the U.S. (0.375).

As shown by Table 2, people’s average reliability in the
task independent condition in the evaluation games in the
U.S. (0.69) was significantly higher than their reliability in
the training games (0.1, previously shown in Table 3). As a
result, PAL increased its reliability in the evaluation games
in the U.S. from 0.375 (shown in Table 3, dependent column)
to 0.48 (shown in Table 2, dependent column). The differ-
ence between people’s reliability in the evaluation games in
Lebanon and the U.S. compared to their reliability in the
training games was not statistically significant. In addition,
the evaluation games in Lebanon (3 rounds) were shorter
than the evaluation games in Israel (6 rounds). Following
learned rule (3), PAL dropped its reliability in Lebanon from
0.89 (shown in Table 3) to 0.59 (Table 2), and to a lesser
extent in Israel from 0.9 to 0.81.

To illustrate PAL’s strategy in the task-dependent condi-
tion, we bring an example of its play in the U.S. As shown in
Table 3, from the training games PAL learned that people
in the U.S. were not reliable. Therefore PAL does not send
any of its chips after the first agreement (a 4-chip-per-3-chip
proposal). In contrast, the person sends two of its promised
3 chips to PAL. PAL responds to this by being fully reliable



and sending all of its promised chips in the second agree-
ment. However, the person did not send any of its promised
chips to PAL in this agreement. In the third agreement (a
2-chip-per-1-chip proposal), PAL sent only one of its two
promised chips to the person. The person sent PAL the
chip it needs to get to the goal. As the example shows, it
made sense for PAL to be partially reliable when the person
is task independent at the onset of the game.

To explain PAL’s success in the task dependent condition
across all countries, we use Table 5, which analyzes the TI
offers for PAL. As shown in the Table, the ratio of TI offers
in the U.S. (1.56, in boldface) was more than twice that
in Lebanon (0.73) and in Israel (0.72). This means there
were significantly more offers made in the U.S. that allowed
PAL to get to the goal. In addition, the reliability of people
following TI offers for PAL in the task dependent condition
in U.S. (0.496), shown in Table 5 was significantly higher
than the reliability of PAL following TI offers for people in
the task dependent condition in the U.S. (0.02), shown in
Table 4. This is because when people were task dependent,
PAL was task independent, and by learned rule (2), PAL
was not reliable when it was independent.

5.2.3 Task Independent Condition
Recall that players in the task independent condition al-

ready possessed the necessary chips to get to the goal, and
in addition could help their partners get to their own goal.
As we expected, Table 1 shows that both the scores for PAL
and people in this condition were higher than their scores in
the task dependent and task co-dependent conditions.

Similarly to the task co-dependent condition, Table 1 shows
that the highest performance by PAL and the worst perfor-
mance for people were obtained in the U.S. Table 2 shows
that the reliability of PAL in the task independent condition
was significantly lower for each country than its reliability
in the other conditions. This can be explained by rule (2),
in that PAL was far less likely to fulfill agreements when
it did not need its partner to get to the goal. Interestingly,
the Table also shows that the reliability of people in the task
independent condition was significantly higher than their re-
liability in the other conditions. To explain this discrepancy,
we observe that in the games in which people were task in-
dependent, PAL was task dependent. As shown by Table 2,
the reliability of PAL in the task dependent condition was
significantly higher in each country than its reliability in all
of the other conditions. We thus attribute people’s high
reliability measures when task independent to people’s reci-
procity to the high reliability exhibited by PAL.

6. CONCLUSIONS AND FUTURE WORK
This paper proposed a novel agent design for human-

computer negotiation in different cultures. It focused on
settings where participants engage in repeated rounds of ne-
gotiation and agreements are not binding. To succeed in
such settings agents need to reason about the effects of their
negotiation behavior over time, and to adapt to people’s
reaction to their behavior in different cultures. The pro-
posed agent design combined a decision theoretic approach
with classical machine learning techniques to model people’s
behavior. This agent was evaluated empirically by playing
with 157 people in three countries—Lebanon, the U.S., and
Israel. The results show that the agent was able to outper-
form people in all countries and when varying how parties

depended on each other in the negotiations. The agent based
its initial strategy on a general model of the population in
each culture, and adapted its behavior to its particular part-
ner over time. We are currently investigating the use of
Markov Chain Monte Carlo sampling techniques for more
efficient inference in the game.
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