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ABSTRACT
We present a novel computational method for advice-
generation in path selection problems which are difficult for
people to solve. The advisor agent’s interests may conflict
with the interests of the people who receive the advice. Such
optimization settings arise in many human-computer appli-
cations in which agents and people are self-interested but
also share certain goals, such as automatic route-selection
systems that also reason about environmental costs. This
paper presents an agent that clusters people into one of
several types, based on how their path selection behavior
adheres to the paths presented to them by the agent who
does not necessarily suggest their most preferred paths. It
predicts the likelihood that people will deviate from these
suggested paths and uses a decision theoretic approach to
suggest paths to people which will maximize the agent’s ex-
pected benefit, given the people’s deviations. This technique
was evaluated empirically in an extensive study involving
hundreds of human subjects solving the path selection prob-
lem in mazes. Results showed that the agent was able to
outperform alternative methods that solely considered the
benefit to the agent or the person, or did not provide any
advice.

1. INTRODUCTION
Research in multi-agent systems primarily encompasses

systems composed of automated agents. Cooperative sys-
tems are usually described by a single utility function which
all agents attempt to maximize. Competitive systems, on
the other hand, may be designed and analyzed, for example,
as zero sum games where the gain of one agent is the loss
of another. In this paper, we focus on systems composed
of both automated agents and human users. Although in
general these interactive systems are cooperative, users and
machines may have different interests. Each party may want
to optimize different parameters, not necessarily at the ex-
pense of the other. In particular, we study automated agents
interested in persuading their users to perform actions that
increase the agent’s utility.

Machines can try to persuade their users to perform cer-
tain actions by implementing different methods. For ex-
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ample, machines could provide higher rewards (e.g., score,
ranking stars, etc.) when users choose actions desirable by
the agents. Automated agents may disclose information not
available to their users in order to encourage them to take
certain actions. For example, Azaria et al. [3] have shown
that agents can provide correct, although partial, informa-
tion about a state of the world (unknown to the user, but
relevant to his decision) and thus persuade them to take
certain actions beneficial to the agent. We can also consider
agents providing advice (based on the agents’ advantageous
information or computational power) that may lead their
users to choose actions that are beneficial to the agents.

In this paper, we focus on the last method: we study how
to automatically generate advice that will encourage users
to choose actions preferred by the automated system.

We chose a domain, composed of human users and com-
puters which are self-interested but also have shared goals.
Consider a route selection domain where an automatic sys-
tem suggests commuting routes to a human driver. Both
participants in this setting share the goal of getting the
driver from home to work and back. However, each par-
ticipant also has its own incentives. The driver wishes to
choose the route that minimizes the commuting time, while
the computer may prefer taking a longer route that emits
fewer pollutants, or does not pass near schools and play-
grounds. The route selection domain is an example of a com-
putationally demanding domain where even having complete
knowledge is not enough for a user to solve such a problem
optimally. As we will show in our experiments, finding the
shortest path in large maps with many intersections may not
be a trivial problem to solve. In such cases, the computer’s
advice might be perceived as helpful and trustful as it comes
from powerful computational software.

However, the development of methods to identify agent
strategies for deciding which advice to give to people is chal-
lenging. First, it is known that people are not known to max-
imize their monetary value. When facing noisy data, people
often follow suboptimal decision strategies. This bounded
rational behavior [7] is attributed to: 1) sensitivity to the
context of the decision-making; 2) lack of knowledge of the
user’s own preferences; 3) the effects of complexity; 4) the
interplay between emotion and cognition and 5) the problem
of self-control. Furthermore, people discount the advice they
receive from experts[5] and it was shown that if the adviser
has a monetary stake in the advice being followed, people
will follow its advice even less [21]. Finally, the learned
model should be generalized to new environments as well as
different people. To face these challenges we will integrate



machine learning and psychological models for predicting
human response to advice.

Our study includes a 2-participant task setting for choos-
ing a path on a large colored grid that is analogous to the
route-selection problem. The person’s sole incentive is to
choose the shortest path, while the agent’s incentives also
include the number of color changes in the path. Choosing
a path on the grid corresponds, for example, to selecting a
route for commuting between home and work. The colors
on the grid represent constraints, such as environmental and
social considerations. Switching between colors on the path
represents the violation of one of these constraints. The per-
son’s preferences consider the length of the route only, while
the agent’s preferences take into account both the length of
the route as well as the number of constraint violations.

We developed the User Modeling for Path Advice (UMPA)
approach for the generation of advice, comprised of a train-
ing stage and three additional steps required to learn from
this data and to generate the agent’s advice. We first ran ex-
periments with human subjects to collect data on how users
react when provided with advice. The system proposes three
types of advice in different testing scenarios: advice that is
optimal to the user, advice that is optimal to the system
and advice that considers both the user’s and system’s pref-
erences. We found three types of user behaviors: those that
follow the system’s advice, no matter how bad this advice
is subjectively perceived to be; those that ignore the advice
and follow their chosen path; and those that modify the ad-
vised path. This last phenomenon is very interesting since
just the fact that advice is provided affects the user’s choices.
The user’s modifications may completely change the advice
or their own choice, but this change occurs only as a result
of having seen such a system proposal. In particular, we
noticed that users of the third type took cuts when solving
the route selection problem. Cuts are deviations from a sug-
gested path and are alternative segments for connecting two
local points from the original path. A cut may improve the
path from the user’s point of view by shortening it, but may
decrease the benefit to the agent.

Once we collected this data, the UMPA approach pro-
ceeded to 1) learn the percentage of types of users who will
follow, ignore or modify the given advice, 2) learn with what
probability each cut will be chosen for a given advised path
and 3) compute the advice with the lowest expected cost for
the agent given the users’ predicted types and behaviors.

We evaluated the UMPA approach in an extensive empir-
ical study comprising near 700 human subjects solving the
path selection problem in four different mazes. The results
showed that our UMPA agent outperformed alternative ap-
proaches for suggesting paths, based on either the user’s or
the system’s preferences. In addition, people were satisfied
with the advice provided by the UMPA agent.

2. RELATED WORK
Game theory researchers studied related research ques-

tions in the context of persuasion games. In these games, a
speaker attempts to persuade a listener to accept a certain
request [14, 28, 29]. Most of these works make the strong
assumption that people follow equilibrium strategies. How-
ever, agents that follow equilibrium strategies when inter-
acting with people are often not beneficial [19, 24, 3]. This
can be explained by the significant experimental and other
empirical evidence which indicates that people may be non-

Figure 1: Path selection problem visualized in a
small maze

strategic when interacting in persuasion games [13, 11, 4, 6,
8].

Route or path selection has become one of the most promi-
nent applications of computer assisted guidance (see a sur-
vey in [17]). In fact, route guidance systems using GPS have
become pervasive over the years, thanks to the significant re-
search effort in addressing both the cognitive limitations and
the range of individual preferences of human users (e.g. [12,
23]). Many of the challenges in the development of route
guidance systems stem from the high variance among indi-
viduals regarding their evaluation and acceptance of route
advice. This variance makes it important to tailor route ad-
vice and guidance to a specific user. To this end, a wide
range of machine learning techniques are used to capture
and utilize user routing preferences (e.g. [23]).

Instead of tailoring routes to users, we model user at-
titudes towards route advice such that the choices made
by the users, after being given advice, will be beneficial to
the agent. There has been some work on driver acceptance
of unreliable route guidance information [15]. Antos and
Pfeffer [2] designed a cooperative agent that uses graphi-
cal models to generate arguments between human decision-
makers and computer agents in incomplete information set-
tings. They use a qualitative approach that does not model
the extent to which people deviate from computer-generated
advice. Other works have demonstrated a human tendency
to accept advice given by an adversary in games [21]. Some
theoretical analysis suggests this behavior to be rational [26].
To some extent, these results were used in the framework of
large population traffic manipulation (either by explicitly
changing the network topology or by providing traffic infor-
mation, e.g. [20, 9]). However, to the best of our knowledge,
we are the first to study the combination of human choice
manipulation and the personal route selection problem in a
given network.

3. THE MODEL
To allow a formal discussion of the path selection problem,

we employ a maze model. We assume that a user has to solve
the shortest path problem within a rectangular maze either
by constructing a path or by considering a path suggestion.
More formally, we define a maze M as a grid of size n ×m
with one vertex marked as the source S and another vertex
as the target T . Each vertex v is associated with a label
c(v) that we will refer to as the color of v. We will denote
the white color or label number 0 as an obstacle. x(v) and
y(v) denote the horizontal and the vertical grid coordinates



of the vertex v, respectively. We assume that the user can
move along the grid edges in the four standard directions:
up, down, left or right. A sequence of vertexes that does not
include an obstacle and can be traversed by moving in the
four standard directions is a valid path. In the remainder of
the paper, to distinguish between vertexes of different paths,
we will denote them by the path’s name with a superscript:
e.g. vertexes of a path π will be denoted by π1, ..., πl. A
valid path will be called a full path if π1 = S and πl = T ,
i.e. it begins at the source node and ends at the target node,
thus solving the maze.

The path selection problem is modeled as the user’s task
to find the shortest full path through the maze. Formally,
we assume that the user’s cost of a path π is equal to its
length, i.e. Costu(π) = l(π). In contrast, the agent’s cost
depends on the length of the path and also on the number of
color switching done along the path. Formally, given a color
switching cost W , the agent’s cost Costa of a full path π is
given by: Costa(π) = l(π)+W ·

∑
1≤i<l 1{c(π

i) 6= c(πi+1)}.
We use the term greedy path to refer to a full path that
minimizes Costa, and the term shortest path to refer to a full
path that minimizes Costu. Notice, that there are multiple
valid paths through a maze and it is possible that there are
many full paths as well.

In addition to the maze grid, its color labeling and the
source and target nodes, we also allow a secondary labeling
of a particular full path through the maze. This labeling
represents the path advised by the agent to the user. We
assume that the user is aware of this labeling prior to solving
the path selection problem. In fact, the advised path is part
of the input to the path selection problem. When a user is
given a maze (with or without an advised path), his goal
is to solve the maze by finding the shortest full path from
source S to target T . However, due to the complexity of the
maze, finding such shortest path may not be trivial or clear
from looking at the maze during the limited amount of time
given to the user. Therefore, the user may find it beneficial
to take some advice provided to him regarding which route
to choose.

The best-advised path problem is modeled as the agent’s
task to compute a full path that, once presented to a user,
will yield the agent the lowest expected cost.

Figure 1 visualizes the formal setting in a small maze.
In the figure, obstacles are represented by the color white,
while the start and the target nodes are black. In turn, the
dotted nodes represent the advised path, while the crossed
nodes represent a valid (partial) path selected by the user.

4. THE UMPA APPROACH
We assume the availability of training data for the predic-

tion stages (see experiments in Section 5). UMPA is given a
training set, Ψ, of tuples (M ′, π, µ, α) collected from exper-
iments where people were provided with advice and where:
M ′ is a maze; π is an advised path through the maze; α
is a binary variable indicating whether the user considers π
to be a good solution or not (α equals 1 or 0 respectively);
and µ is the solution selected by a human user, who was
presented with M ′ and π. In addition, we assume that Ψ
includes examples (M ′, µ) collected from games where the
agent was silent. Given a maze M (not in the maze set from
the training examples), we employ a three-stage process to
solve the best-advised path problem: (i) Cluster users into
one of three types, depending on the extent to which their

path selection behavior adheres to suggested paths that may
be more beneficial to the agent than to themselves. Then we
predict the likelihood that a user will belong to one of these
three clusters;(ii) predicting the likelihood that people devi-
ate from a suggested path; and (iii) generating the advised
path using a decision theoretic approach which utilizes the
prediction from the first two stages in order to compute the
expected cost of the agent from a given path. In the next
subsections we provide details of our implementation of each
one of these steps.

Predicting human response to an advised path is diffi-
cult due to the diversity in people’s behavior. We propose
to integrate psychological models into the machine learning
process. In particular, we have defined a Seemliness-value
feature that measures the path’s direction towards the target
node’s horizontal and vertical coordinates. This attribute
will be used in the learning of UMPA. The feature value
is based on the following principles known from behavioral
science:

• Loss aversion [30] (Prospect theory): people dislike los-
ing more than they like wining. Tversky and Kah-
neman found that losses are weighted roughly twice
as much as gains. Therefore, while each step in the
path toward the target contributes a single unit to the
Seemliness-value, each step away from the target re-
duces two units from the value.

• Future discount [25]: people care more about the
present than the future and therefore discount losses
or gains in the future. The farther the loss or the gain
is in the future, the more it is discounted. Future dis-
counting is commonly assumed to be exponential, with
some discount factor [10]. Therefore, while each step
in the path toward the target at the beginning of the
path adds one unit (and a step away from the target
in the beginning of the path reduces two units), the
contribution of any consecutive steps’ is multiplied by
a discount factor (which is exponential in the number
of steps from the beginning of the path).

The total path Seemliness-value is calculated as a discounted
sum of steps contribution along the path and is denoted s(φ).
For an intuitive example, the dotted path shown in Figure 1
has a relatively high Seemliness-value since its earlier steps
are in the target direction and steps in the opposite direc-
tion appear only later; however, in Figure 2 the dotted path
has a relatively low Seemliness-value since the steps at the
beginning of the path are in the opposite direction of the
target.

4.1 Modeling Diversity in People’s Reactions
Based on what was observed in the behavioral data col-

lection experiments (as explained in Section 5), UMPA clus-
ters users into three types: Advice followers, Advice ignorers
and Advice modifiers. Given a new maze, when considering
a path to be given as advice, UMPA would like to estimate
the probability of a user belonging to one of these clusters.
For this task, it first labels the examples of Ψ with one of
the three types and put the examples in Ψl.

The labels are determined as follows. Advice followers are
users who follow the advised path blindly without modifying
it, even when believing that it is not of good quality. That
is, the user of an example (M ′, π, µ, α) ∈ Ψ is labeled as



Figure 2: A second example of a path and a cut

an Advice follower if µ = π and α = 0. Users that took
the system’s advice as provided and also believed that the
advised path really did have good quality were included in
the Advice modifiers type set (these users may have chosen
the advice because it was of good quality and not because
they were told to choose it).

However, most users would at least attempt to improve
upon the advised path, or simply ignore it entirely. In order
to characterize these users, we will introduce the concept of
a cut and a modified solution.

Given two vertexes ,πi and πi
′
, of an advised path π, any

path τ between these two vertexes (that does not otherwise
intersect with π) is termed a cut. Although there may be
an exponential number of cuts, certain human cognitive ten-
dencies (see e.g. [12, 27]) allow us to bound the maximal cut
length. All users who deviated from the advised path solely
by taking cuts are termed Advice modifiers.

More formally, given a valid path π, we define a cut τ of
length l to be a valid path such that ∃i, τ1 = πi and ∃i′ >
i, τ l = πi

′
and ∀1 < i′′ < l, @j, πi

′′
= πj . The sequence of

πi, ..., πl will be called the original segment of cut τ and will
be denoted by o(τ). Figure 1 and Figure 2 show examples for
cuts marked by crossed nodes. We only consider cuts whose
lengths are smaller than some threshold and also not much
longer that their original segment. Formally, let L1 ∈ N and
L2 ∈ R+, l(τ) ≤ min{L1, L2 · l(o(τ))}.

Finally, we define the Advice ignorers as all users who are
neither Advice modifiers nor Advice followers. The relevant
examples of Ψ were labeled accordingly. It is important to
understand that being an advice follower does not depend on
the specific maze and advice. However, deciding whether to
ignore advice or use it as a baseline and modify it, depends
on the specific maze and advice.

Next we compute the likelihood of users being associated
with the different types as required in the first step of the
UMPA approach. Based on the literature on route selection
(see e.g. [18]), we presume that the proportion of Advice
modifiers for the given advice π is strongly characterized by
the overall Seemliness-value of π, denoted s(π). In order to
use the Seemliness-value of a path as an indicator for the
proportion of Advice modifiers in that path, we first nor-
malize the Seemliness-value by subtracting the average of
all Seemliness-values of all paths that appear in the data-set
and divide by their standard deviation. Once we have a stan-
dardized (scaleless) value, we assume that it predicts a stan-
dardized proportion of Advice modifiers in that path, there-
fore, this value must be unstandardized using the appropri-
ate units found in the data-set. Formally, given Ψl, UMPA

generates a set of tuples π′, s(π′), prop(π′) where prop(π′)
is the proportion of users in Ψl that received the advice π′

and are labeled as Advice modifiers. Denote the average
(standard deviation) of the s(π′)s by AvgSV (StdSV ) and
the average (standard deviation) of prop(π′)s by AvgBU
(StdBU). Finally, we estimate the proportion of Advice

modifiers to be: pb(π) = s(π)−AvgSV
StdSV

· StdBU +AvgBU .
The Advice followers follow the advised path even if they

did not evaluate it as a good path, which allows us to assume
that the proportion of Advice followers is constant across
all advised paths. We extracted this proportion from Ψl,
and denote it by pf . The remaining proportion of users
1 − pf − pb(π) is assumed to be the Advice ignorers. This
latter set of users deviates from the advised path so much
that it is possible to assume that they would have selected
the same path with or without any advice given.

4.2 Predicting Advice Deviations
Given the possible advice π, UMPA estimates the prob-

ability of a user taking a specific cut τ at a given vertex
πi. We denote this probability as p(M,π, πi, τ) and use
p(τ) when the other parameters are clear from the context.
UMPA assumes that the function p(τ) is a linear combina-
tion of three cut features: cut benefit, cut orientation and
cut seemliness (see e.g. [18]).

The Cut Benefit measures the relative reduction in steps
between the cut and the original path segment. Formally,
l(o(τ))−l(τ)

l(τ)
. For example, the cut shown in Figure 1 (marked

with crossed nodes) has a positive benefit value since the
length of the original path segment (between the first and
last nodes of the cut) is greater than the length of the cut.
The cut shown in Figure 2 has a benefit of 0 since the cut
has the same length as the original path segment.

The Cut Orientation captures the tendency of human
users to continue with a straight line motion. Its value de-
pends on whether the cut or the original segment conformed
to this tendency. The reference motion is the edge between
the cut divergence node πi and its predecessor in the advised
path πi−1. If the cut deviates from the advice by remaining
in the same direction as the edge (πi−1, πi), we say that the
cut has positive +1 orientation. If the original path segment
(πi, πi+1) is similarly directed as (πi−1, πi), we say that the
cut has negative −1 orientation. Otherwise, the cut’s ori-
entation is 0 (neutral). For example, in Figure 1 the value
of the orientation of the cut marked by crossed nodes is 1,
since the cut continues straight while the advised path turns
left. The cut shown in Figure 2, however, has an orientation
of −1 since the original path continues straight and the cut
turns left.

The Cut Seemliness measures how seemly the cut is
in the user’s eyes. This value is calculated by subtract-
ing the Seemliness-value of the original segment from the
Seemliness-value of the cut. The seemliness of the cut shown
in Figure 2 is positive since the first steps of the cut are in
the same direction of the target, while the first steps in the
original segment are in the opposite direction of the target.

Given that there is a very large number of cuts, it is al-
most impossible to collect enough examples in Ψ to learn the
weights of p(τ)’s features directly. Therefore, this estimation
process was divided into two steps. First, UMPA estimates
the probability, r(M,π, πi, τ), that a cut τ will be taken by
a user at vertex πi, assuming that τ is the only possible
cut at πi. It was assumed that r is a linear combination



of the three cut features described above, similar to p(τ).
To compute the weights of r(τ)’s features, UMPA created a
training set of the form (M ′, π, πi, τ, prop(πi)), where τ is a
cut of π that starts at πi and is the cut that was taken at
πi by the highest number of users according to Ψ. prop(πi)
is the proportion of users that visited πi and deviated there
by taking any cut. Using these examples, the weights were
estimated using linear regression.

Next, r(τ) is used to compute p(τ) after normalization.
For any πi, it was assumed (based on the way that r(τ) was
learned) that the probability of the deviation at πi across all
cuts is equal to the highest r(τ) value of a cut, starting at
πi. This probability is distributed across all possible cuts,
starting at πi, proportional to their r(τ) value.

4.3 Estimating the Cost of an Advised Path
Given a maze M and the possible advice π, UMPA es-

timates the expected cost that an agent may incur when
presenting users with π. We denote this estimation by
ECost(π). This estimation is based on Ψl (the set of ex-
amples labeled with user types).

Notice that the contribution of the Advice followers is rel-
atively easy to calculate. These are users that, independent
of the maze or the particulates of the advised path π, al-
ways comply fully with π. Therefore, their contribution to
ECost(π) will always be Costa(π) multiplied by the ratio of
Advice followers.

The contribution of the Advice ignorers is calculated based
on the data of users who received no advice. Let Ω∅ =
{τ |(M,φ) ∈ Ψ}, i.e. the set of paths in Ψ selected by users
who did not receive any advice. We assume that the con-
tribution of Advice ignorers to ECost is the average agent
cost on the paths in Ω∅. Denote this value by ECosti.

Calculating the contribution of the Advice modifiers to the
agent’s expected cost is more complex and is described here-
under. Having the estimated probability for each cut p(τ),
an estimation for the agent’s cost associated with Advice
modifiers from advice π starting at πi is denoted as b(π, πi).
It can be calculated using the following recursive formulas:

b(π, πl(π)) = 1

b(π, πi) =
∑

τ,τ1=πi

p(τ) · (Costa(τ)− 1) + b(π, τ l(τ))+

+ (1−
∑

τ,τ1=πi

p(τ)) · (b(π, πi+1) + Costa(πiπi+1)− 1)

Note that the expression Costa(πiπi+1) − 1 is the agent’s
cost of traveling from πi to πi+1, which can either be 1 if no
color switching occurs, or W + 1 if color switching occurs.
Now, using b, UMPA can estimate the contribution of the
Advice modifiers to the agent’s expected cost of an entire
path π setting ECostb(π) = b(π, S).

An efficient algorithm for computing ECostb appears in
the Appendix.

Given the users’ proportions as estimated in Section 4.1
and the utility contributions estimated above, we can
compose the final heuristic estimate of the advised path
cost ECost(π), which is the expected agent’s cost across all
human generated path solutions in response to π:

ECost(π) = pf · Costa(π) + (1− pf − pb(π)) · ECosti+
pb(π) · ECostb(π)

4.4 Searching for Good Advice
Searching for advice is done by transforming the

maze(grid) to a tree such that the start node, S, is asso-
ciated with the root of the tree. Each node in the tree is
associated with a vertex in the maze. A node nv in the tree
that is associated with the vertex v will have an offspring
which is associated with v′ if no ancestor of nv is associated
with v′ and v′ is connected to v in the grid. Note that a
vertex in the grid might be associated with many nodes in
the tree. When given a node nv in the tree that is associated
with the vertex v, there is a unique path in the tree from the
root node of the tree to nv that is associated with a path on
the grid from S to v. We denote this path as θ.
A∗ [16], which is a best-first search algorithm in graphs,

uses the sum of a cost function and a heuristic function in
order to determine which node to view next. We use the
A∗ search algorithm on the tree, to find a path π from the
root node S to any target T . The cost function for a given
node nv is ECost(θ) and the agent uses the minimal agent
cost of traveling between v and T as the heuristic function
of nv in the tree. We use Dijkstra’s algorithm, which is an
efficient algorithm for calculating the shortest path from a
given node to all other nodes in a graph, starting at T , in
order to calculate the minimal agent cost to travel from each
vertex to T .

To limit the manipulation effect of UMPA, the search only
considers paths with cuts where the agent does not gain by
the user taking them. That is, the agent prefers that the
user takes the advised path and does not benefit from his
deviation. Formally, UMPA only considers paths such that,
for any suffix σ = πi · · ·πl(π), i ≥ 1, ECost(σ) ≥ Costa(σ)
holds. If A∗ stops with a path that does not satisfy the
condition above it will be rejected, and A∗ will be forced to
continue the search.

5. EXPERIMENTAL EVALUATION
We have developed an online system that allows people

to solve path selection problems in a maze. It can be ac-
cessed via http://azariaa.com/selfmazeplayer.swf. The
maze design was chosen to remove all effects of familiarity
with the navigation network from the experiments. Fur-
thermore, every human subject was presented with a single
instance of the problem in order to exclude effects of learn-
ing or trust. We ran two kinds of experiments. First, the
experiments were aimed at collecting data on users’ behav-
iors when facing advice that either benefited the users or the
system utilities regarding route selection. Second, after the
UMPA approach was applied using the collected data, we
ran experiments to validate our hypothesis regarding users’
behavior change as a result of providing them with advice
adapted to the user’s behavior as learned in the first exper-
iments. Furthermore, the main goal has been to test the
hypothesis that UMPA outperformed all of the other advice
generator methods that we considered.

Participation in our study consisted of 681 subjects from
the USA: 383 females and 298 males. The subjects’ ages
ranged from 18 to 72, with a mean of 37.

5.1 Methodology

5.1.1 Running Experiments on Amazon Mechanical
Turk

http://azariaa.com/selfmazeplayer.swf


All of our experiments were run using Amazon Mechanical
Turk (AMT) [1], a crowd sourcing web service that coordi-
nates the supply and demand of tasks which require human
intelligence to complete. Amazon Mechanical Turk has be-
come an important tool for running experiments with human
subjects and was established as a viable method for data col-
lection [22]. We took several actions to encourage subjects
to truly attempt to find the shortest path: we only selected
workers with a good reputation; a set of questions, designed
to verify understanding of the task, was presented to the
subjects prior to the task execution; and as a stimulus, all
subjects were guaranteed a monetary bonus inversely pro-
portionate to the length of the path that they selected. Our
previous experience in running experiments on Mechanical
Turk demonstrated that almost all subjects have considered
our tasks seriously. We asked a group of university students
and Mechanical Turk workers to perform the same task and
found that the average score of the Amazon Turk workers
was higher than that of the students. Thus, our own expe-
rience confirms other studies [22] about the viability of this
medium for empirical research.

5.1.2 Experimental Setup
Each experiment consisted of a colored-maze panel similar

to the one depicted in Figure 1. A single panel was shown to
each participant. The user’s task was to select the shortest
path through the maze that connected the source and target
nodes. When subjects were presented with advice from the
system, they were informed that this advice was calculated
to reduce the number of color switches in addition to min-
imizing the path length. We implicitly asked the subjects
a question regarding the system’s intention to make sure
that they understood this crucial point. We used four dis-
tinct mazes, all of size 80 × 40. These mazes were complex
enough so that users would find it difficult to compute the
shortest path in the limited time allotted for the task. We
set the weight W for color switching to 15.

We ran four training sessions to learn user behaviors from
three mazes. Then we ran our UMPA algorithm on the
fourth maze to compute the advice, using information about
this maze and the parameters learned from the other three
mazes (we did this for each one of the four mazes). That is,
UMPA’s results are averaged over four different mazes and
training and testing data were strictly separated.

Finally, we presented the subjects with post-task ques-
tions that were designed to assess the general attitude to-
wards computer advice and the subjective evaluation of the
advised path quality.

5.1.3 Basic Algorithms
We compared the performance of our UMPA algorithm to

the following three cases:

• No advice (silent) – no advice is presented on the maze
panel,

• Shortest path – the advice presented corresponds to the
shortest path from source to target,

• Greedy – the advice that the user gets is the path com-
puted to minimize the agent’s cost of traversing it,
Costa.

The Shortest solution is the one that minimizes the cost
of the user and, therefore, we expect that its acceptance

by the users will be high. Moreover, the number of advice
ignorers will be small and the probability of deviation will be
low as well. However, since the agent’s cost for this path is
usually high, we expect that presenting Shortest will yield
the agent a relatively high average cost. When providing
Greedy advice, we run the risk that most of the users will
ignore it, while the ones that will accept it will yield the
highest benefits to the agent. We first compared the agent’s
average cost when providing any one of these three types of
advice. (This comparison was performed using ANOVA, a
method of analysis used to determine the level of statistical
significance when dealing with more than two groups). Then
we chose the one that was best for the agent and compared
the UMPA solution to this baseline algorithm. Then we
considered UMPA estimation methods, its performance vs.
the baseline algorithm and whether it decreased the user’s
benefit and satisfaction or if it was mutually beneficial for
both the agent and the user.

5.2 Basic Results
We calculated the effects that Silent, Shortest and Greedy

types of advice have on the average agent cost across paths
selected by users in our experiments. The corresponding
three bar charts on the left of Figure 3 summarize the results
(the lower the better). The average costs over four mazes
of types Silent, Shortest and Greedy were 559.73, 559.55
and 501.68, respectively. That is, the paths chosen by users
after receiving Greedy advice have resulted in a significantly
(p < 0.001) lower cost to the agent than the cost attained
when the other two types of advice were given (Shortest and
Silent).

We have also studied the statistics of the advice effect on
the user’s cost (see three left-most bar charts of Figure 4).
As expected, the cost of the paths chosen by users was sig-
nificantly lower (130.85) when Shortest advice was provided,
than when the other two types of advice were given (Greedy
(144.6) and Silent (142.75)). Moreover, we wanted to check
whether giving advice that results in the lowest costs to the
agent can also decrease the costs to the users, when com-
pared to the case where no advice is provided. The results
were mixed and no significant difference was found between
Greedy and Silent. That is, while Greedy advice signif-
icantly decreased the agent’s cost, it did not significantly
increase the user’s costs. We concluded that the UMPA ad-
vice generation algorithm should be compared to the case
where Greedy advice is provided.

5.3 UMPA Advice Algorithm Performance
We set the UMPA parameters as follows: the length of a

cut L1 was bound to 40; a cut’s potential increase in length
L2 to 20% of the corresponding original segment and the
discount factor δ in the cut-seemliness feature calculation
was set to 0.95. These parameters where chosen to optimize
prediction accuracy within computational limitations.

The first step in the evaluation of our UMPA algorithm
was to verify the effectiveness in computing p(M,π, πi, τ)
(i.e., the predicted number of users that will take cut τ when
facing divergence node i, when advice π was provided in
maze M). We found a high correlation (0.77) between this
prediction and the actual fraction of users who took it when
reaching the cut’s divergence node. A high correlation (0.7)
was also found between the actual fraction of users that took
advice π or manipulated it, the Advice modifiers and our



Figure 3: Average agent’s costs

Figure 4: Average users’ costs

predicted number of such users, pb(π). Finally, we obtained a
high correlation (0.76) between the estimated value of advice
π, ECosta(π) and the empirical average value of the actual
paths selected in response to advice π. This is significant
since the correlation between the agent’s cost of π itself and
the empirical average of the selected path was only 0.06.

We then compared the average cost attained by the agents
when users chose paths after receiving either the UMPA-
based advice or Greedy advice. Consider the two corre-
sponding bar charts on the right side of Figure 3 (the lower
the better). UMPA’s average costs over the four mazes
was 484.95 compared with the Greedy advice that was
501.68. That is, on average, the UMPA approach outper-
formed Greedy advice, resulting in significantly lower costs
(p < 0.05) for the agent.

We also compared the average cost incurred by the paths
chosen by users to the users themselves when receiving the
advice provided by the UMPA algorithm and Greedy advice
(see the two right-most bar charts of Figure 4). To our sur-
prise, the average results attained by the users that were
given the UMPA advice (142.33) were significantly better
(lower cost) than those attained by users who were presented
with Greedy advice (142.33) (p < 0.05). In summary, when
comparing the results obtained by running two advice gener-
ation techniques (one provides UMPA advice and the other
provides Greedy advice), we conclude that UMPA-based ad-
vice outperforms Greedy advice. That is, the average cost
incurred by the agent when users selected their paths and the
average cost incurred by the human users would decrease sig-
nificantly when the users were provided with UMPA advice.
So UMPA manipulative advice is indeed mutually beneficial
when compared with Greedy advice.

Finally, we considered the subjective view of the users on
the paths that were advised. Users were presented with the
following questions after they finished the route selection
task: (i) ”How good was the advice given to you by the sys-
tem?” and (ii) ”How much did you trust the advice given to
you by the system?” The possible answers were on a scale

Figure 5: Users’ satisfaction and trust

of 1-5, where 5 indicates the highest satisfaction and 1 the
lowest satisfaction. The results are presented in Figure 5.
Regarding the first question, UMPA advice was considered
to be significantly better than Greedy advice, with p < 0.05.
The average rating for UMPA was 3.29 and the average rat-
ing for Greedy was only 3.05. Similarly, with respect to trust,
the average rating of UMPA was 3.23 whereas the average
rating of Greedy was only 2.92, i.e., users trusted UMPA
advice significantly more than Greedy advice (p < 0.05).

6. CONCLUSIONS AND FUTURE WORK
This paper presents an innovative computational model

for advice generation in human-computer settings where
agents are essentially self-interested but share some com-
mon goals with the human. To assess the potential effec-
tiveness of our approach, we performed an extensive set of
path selection experiments in mazes. Results showed that
the agent was able to outperform alternative methods that
either solely considered the agent’s or the person’s benefit,
or did not provide any advice.

The approach that was described in this paper can be
technically summarized as follows: first, sample user re-
sponse to basic advice patterns. Then create a model of
the response using machine learning and relevant psycholog-
ical models. Finally, solve inverse kinematics of the model
in order to find the most profitable advice. This techni-
cal structure can be repeated in any domain or task where
a self-interested agent can provide advice to a human user
and the basic response data can be obtained. Specifically,
whenever the task can be converted into a path-in-graph for-
mulation (e.g. supply-chain plans), our solution can become
an out-of-the box (yet tunable) method for advice provision.

Given these encouraging results, we expect that the pro-
posed technology can be applied to other applications where
the agent’s goal is to provide people with advice that will
lead them to take beneficial actions. Recent applications,
such as coaching humans in weight-loss programs, programs
to help quit smoking or online service providers such as au-
tomated travel agents are domains that are promising.

In future work, we will extend this approach to settings in
which people and computers interact repeatedly, requiring
the agent to reason about the effects of its current advice on
people’s future behavior.
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APPENDIX
Input: A maze, with an advised path π.
Output: ECostb(π) – estimated cost contributed by Advice

modifiers
1: ECostb ← Costa(π).

2: vec ∈ Rl(π) ← ~0. vec(0) = 1.
3: for each i < l(π) do
4: for each cut τ s.t. τ1 = πi do
5: {Predict the fraction of Advice modifiers who

take the cut}
a(τ)← (1 +

∑
j<i vec[j]) · p(τ)

6: ECostb ← ECostb + (Costa(τ)− Costa(o(τ))) · a(τ).
7: {Update mass at cut entry point.}

vec[i]← vec[i]− a(τ)
8: {Update the cut exit point}

vec[j|πj = τ l(τ)]← vec[j] + a(τ)
9: return ECostb.

Intuitively, the algorithm’s basic assumption is that the
set of users forms a continuous unit mass. The algorithm
then traces the flow of this unit of mass along different
cuts that diverge (or converge) at vertexes along the advised
path.

This algorithm can be implemented with a complexity of
O(#cuts+ l(π)).
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