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ABSTRACT
We show how machine learning and inference can be har-
nessed to leverage the complementary strengths of humans
and computational agents to solve crowdsourcing tasks. We
construct a set of Bayesian predictive models from data and
describe how the models operate within an overall crowd-
sourcing architecture that combines the efforts of people and
machine vision on the task of classifying celestial bodies de-
fined within a citizens’ science project named Galaxy Zoo.
We show how learned probabilistic models can be used to
fuse human and machine contributions and to predict the
behaviors of workers. We employ multiple inferences in con-
cert to guide decisions on hiring and routing workers to tasks
so as to maximize the efficiency of large-scale crowdsourcing
processes based on expected utility.

Categories and Subject Descriptors
I.2 [Distributed Artificial Intelligence]: Intelligent agents

General Terms
Design, Algorithms, Economics

Keywords
crowdsourcing, consensus tasks, complementary computing,
decision-theoretic reasoning

1. INTRODUCTION
Efforts in the nascent field of human computation have

explored methods for gaining programmatic access to peo-
ple for solving tasks that computers cannot easily perform
without human assistance. Human computation projects
include work on crowdsourcing, where sets of people jointly
contribute to the solution of problems. Crowdsourcing has
been applied to solve tasks such as image labeling, product
categorization, and handwriting recognition. To date, com-
puters have been employed largely in the role of platforms
for recruiting and reimbursing human workers; the burden of
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managing crowdsourcing tasks and making hiring decisions
has relied on manual designs and controls. However, interest
has been growing in applications of learning and planning
to crowdsourcing.

We investigate principles and algorithms for construct-
ing crowdsourcing systems in which computer agents learn
about tasks and about the competencies of workers con-
tributing to solving the tasks, and make effective decisions
for guiding and fusing multiple contributions. As part of
this investigation, we demonstrate how we can leverage the
complementary strengths of humans and computer agents
to solve crowdsourcing tasks more efficiently. We describe
the operation of key components and overall architecture of
a methodology we refer to as CrowdSynth, and demonstrate
the operation and value of the methods with data and work-
load drawn from a large-scale legacy crowdsourcing system
for citizen science.

We focus on solving consensus tasks, a large class of crowd-
sourcing. With consensus tasks the goal is to identify a hid-
den state of the world by collecting multiple assessments
from human workers. Examples of consensus tasks include
games with a purpose (e.g., image labeling in the ESP game)
[13], paid crowdsourcing systems (e.g., product categoriza-
tion in Mechanical Turk) [6], and citizen science projects
(e.g., efforts to classify birds or celestial objects). Consen-
sus efforts can be subtasks of larger tasks. For example, a
system for providing real-time traffic flow and predictions
may contact drivers within targeted regions for reports on
traffic conditions [8].

We describe a general system that combines machine learn-
ing and decision-theoretic planning to guide the allocation
of human effort in consensus tasks. Our work derives from
a collaboration with the Galaxy Zoo citizen science effort
[1], which serves as a rich domain and source of data for
evaluating machine learning and planning methods as well
as for studying the overall operation of an architecture for
crowdsourcing. The Galaxy Zoo effort was organized to seek
help from volunteer citizen scientists on the classification of
thousands of galaxies that were previously captured in an
automated astronomical survey, known as the Sloan Digital
Sky Survey (SDSS). The project has sought assessments via
the collection of multiple votes from non-experts. Beyond
votes, we have access to a database of SDSS image analysis
data, containing 453 image features for each galaxy, which
were extracted automatically via automated machine vision.

We shall describe how successful optimization of the en-
gagement of people with Galaxy Zoo tasks hinges on models
learned from data that have the ability to predict the ul-



timate classification of a celestial objects, including objects
that are undecidable, and of the next votes that will be made
by workers. Such predictions enable the system to balance
the expected benefit versus the costs of hiring a worker. We
formalize Galaxy Zoo as a Markov Decision Process with
partial observability, using likelihoods of outcomes gener-
ated by the predictive models for states of ground truth and
for worker assessments. We demonstrate that exact com-
putation of the expected value of hiring workers on tasks is
infeasible because of the long horizon of Galaxy Zoo tasks.
We present approximation algorithms and show their effec-
tiveness for guiding hiring decisions. We evaluate the meth-
ods by drawing votes from the dataset collected from the
Galaxy Zoo system during its operation in the open world.
The evaluations show that the methods can achieve the max-
imum accuracy by hiring only 47% of workers who voted
in the open-world run of the system. The evaluations call
attention to the robustness of different algorithms to uncer-
tainties in the inferences from the learned predictive models,
highlighting key challenges that arise in fielding large-scale
crowdsourcing systems.

2. RELATED WORK
Modeling workers and tasks has been an active area of

crowdsourcing research. Whitehill et al. apply unsupervised
learning to simultaneously predict the correct answer of a
task, the difficulty of the task and the accuracy of workers
based on some assumptions about the underlying relation-
ships between the answer, the task, and workers [14]. Dai
et. el. assume that worker reports are independent given
the difficulty of tasks, and learn models of workers and task
quality under this independence assumption [3].

Previous work on decision-theoretic reasoning for crowd-
sourcing tasks focused on tasks that can be decomposed into
smaller tasks [10], and on workflows that are composed of an
improve and verify step, which can be solved via methods
that perform short lookaheads [3]. In a related line of work,
researchers proposed greedy and heuristic approaches for ac-
tive learning in crowdsourcing systems [11]. Our work differs
from previous approaches in the generality of the Bayesian
and decision-theoretic modeling, and in our focus on learn-
ing and executing expressive models of tasks and workers
learned from real-world data.

3. SOLVING CONSENSUS TASKS
A task is classified as a consensus task if it centers on

identifying a correct answer that is not known to the task
owner and there exists a population of workers that can
make predictions about the correct answer. Formally, let t
be a consensus task and A be the set of possible answers for
t. There exists a mapping t → ā ∈ A that assigns each task
to a correct answer.

Figure 1 presents a schematic of components and flow of
analysis of a utility-directed consensus system. The consen-
sus system takes as input a consensus task. The system has
access to a population of workers, who are able to report
their noisy inferences about the correct answer. Given that
L ⊆ A is a subset of answers that the system and work-
ers are aware of, a report of a worker includes the worker’s
vote, v ∈ L, which is the worker’s prediction of the correct
answer. The system can hire a worker at any time or may
decide to terminate the task with a prediction about the cor-

Figure 1: CrowdSynth: Key components and flow
of analysis.

rect answer of the task based on reports collected so far (â).
The goal of the system is to predict the correct answer of a
given task based on potentially noisy worker reports while
considering the cost of resources.

A successful system for solving consensus tasks needs to
manage the tradeoff between making more accurate predic-
tions about the correct answer by hiring more workers, and
the time and monetary costs for hiring. We explore the op-
portunity to optimize parameters of this tradeoff by making
use of a set of predictive models and a decision-theoretic
planner.

The modeling component is responsible for constructing
and using two groups of predictive models: answer models
for predicting the correct answer of a given consensus task
at any point during the process of acquiring votes, and vote
models that predict the next state of the system by predict-
ing the votes that the system would receive from additional
workers should they be hired, based on the current informa-
tion state. The modeling component monitors the worker
population and task execution, and collects data about task
properties and worker statistics, votes collected, and feed-
back received about the correct answer. A case library of
execution data is used to build the answer and vote models.

We construct the answer and vote prediction models with
supervised learning. Log data of any system for solving con-
sensus tasks provides labeled examples of workers’ votes for
tasks. Labeled examples for training answer models are ob-
tained from experts who identify the correct answer of a task
with high accuracy. When expert opinion is not available,
the consensus system may assume that the answer deduced
from the reports of infinitely many workers according to a
predetermined consensus rule is the correct answer of a given
task (e.g., the majority opinion of infinitely many workers).
To train answer models without experts, the system collects
many worker reports for each task in the training set, de-
duces the correct answer for each task, and records either
the consensus answer or the undecidable label.

Both answer and vote models are inputs to the plan-
ner. Vote models constitute the stochastic transition func-
tions used in planning for predicting the future states of the
model. The planner makes use of answer models for esti-
mating the confidence on the prediction so that the planning
component can decide whether to hire an additional worker.

The decision-theoretic planner models a consensus task as



Figure 2: Galaxy Zoo interface for acquiring votes.

a Markov Decision Process (MDP) with partial observabil-
ity. The MDP model is able to represent both the system’s
uncertainty about the correct answer and uncertainty about
the next vote that would be received from workers. The
planner computes the expected value of information (VOI)
that would come with the hiring of an additional worker and
determines whether the system should continue hiring (H)
or terminate (¬H) at any given state to maximize the total
utility of the system. The utility is a combination of the
reward (or punishment) of the system for making a correct
(or incorrect) prediction and cost for hiring a worker.

3.1 Tagging Galaxies as a Consensus Task
In Galaxy Zoo, volunteers provide votes about the correct

classifications of millions of galaxies that have been recorded
in an automated sky survey [1]. Crowdsourcing provides a
novel way for astronomers to reach a large group of workers
around the world and collect millions of classifications under
the assumption that the consensus of many workers provide
the correct classification of a galaxy.

Figure 2 displays the main interface between the system
and workers for collecting worker reports. The system dis-
plays images of celestial objects taken from SDSS and asks
workers to classify them into 6 possible classes: elliptical
galaxy, clockwise spiral galaxy, anticlockwise spiral galaxy,
other spiral galaxy, and stars and mergers.

The dataset collected to date includes over 34 million
worker reports obtained for 886 thousand unique galaxies.
We use a subset of this dataset to train and test predictive
models. We use another subset to simulate the real-time exe-
cution of the methodology within a prototype system named
CrowdSynth and evaluate its performance under varying do-
main conditions.

4. PREDICTIVE MODELS FOR
CONSENSUS TASKS

We now focus on the construction of predictive models for
answers and votes.

4.1 Datasets
We shall perform supervised learning from a case library

that includes log entries collected during the operation of the
Galaxy Zoo system. Each log entry corresponds to a worker
report collected for a galaxy. A worker report is a combi-
nation of a vote (vi ∈ L), and information and statistics
(fsi) about the worker delivered vi. vi represents a worker’s

prediction of the correct answer (e.g., elliptical) and fsi in-
cludes the worker’s identity, the dwell time of the worker,
the time and day the report is received. In addition to vi

and fsi , a log entry for a galaxy includes the visual features
of a galaxy (SDSS features). We divided the celestial objects
in the Galaxy Zoo dataset into a training set, a validation
set and a testing dataset, each having 628354, 75005, and
112887 galaxies respectively.

We defined sets of features that summarize task character-
istics, the votes collected for a task, and the characteristics
of the workers reported for the task. f , the set of features for
a galaxy, is composed of four main sets of features: f0, task
features, fv, vote features, fw, worker features, and fv−w,
vote-worker features. Task features include 453 features that
are extracted automatically from sky survey images by mak-
ing use of machine vision [9]. These features are available for
each galaxy in the system in advance of votes from workers.
Vote features capture statistics about the votes collected by
the system at different points in the completion of tasks.
These features include the number of votes collected, the
number and ratio of votes for each class in L, the entropy
of the vote distribution, and the majority class. Worker
features include attributes that represent multiple aspects
of the current and past performance, behaviors, and expe-
rience of workers contributing to the current task. These
features include the average dwell time of workers on pre-
vious tasks, average dwell time for the current task, their
difference, mean and variance of number of tasks completed
in past, and average worker accuracy on aligning with the
correct answer. We use the training set to calculate features
about a worker’s past performance. Finally, vote-worker
features consist of statistics that combine vote distributions
with worker statistics. These include such attributes as the
vote by the most experienced worker, the number of tasks
responded by a worker, the vote of the worker who has been
most correct, and her accuracy.

A feature extraction function F takes a galaxy task and a
history of worker reports ht = {< v1, fs1 >, ..., < vt, fst >},
and creates f , the set of features described here, as input to
the predictive models.

Based on an analysis on the dataset, the designers of the
Galaxy Zoo system identified the following consensus rule:
After hiring as many workers as possible for a celestial ob-
ject (minimum 10 reports), if at least 80% of the workers
agree on a classification (e.g., elliptical, spiral, etc.), that
classification is assigned to the celestial object as the cor-
rect answer. Experts on galaxy classifications note that the
correct answers assigned to galaxies with this rule agree with
expert opinions in more than 90% of the cases, and thus us-
ing this rule to assign ground truth classification to galaxies
does not significantly diminish the quality of the system [9].
In our experiments, we consider galaxies with at least 30
votes and apply this rule to generate labeled examples.

Not all galaxies in the dataset have votes with 80% agree-
ment on a classification when all votes for that galaxy are
collected. We classify such galaxies as ”undecidable” and we
define A = L ∪ {undecided}, where L is the set of galaxy
classes. Having undecidable galaxies introduces the addi-
tional challenge for the predictive models of identifying tasks
that are undecidable, so that the system does not spend
valuable resources on tasks that will not converge to a classi-
fication. MA, the answer model, is responsible for deciding if
a galaxy is decidable as well as identifying the correct galaxy



class if the galaxy is decidable without knowing the consen-
sus rule that is used to assign correct answers to galaxies.
Because the number of votes each galaxy has in the dataset
varies significantly (minimum 30, maximum 95, average 44),
predicting the correct answer of a galaxy at any step of the
process (without knowing how many votes the galaxy has
eventually) is a challenging prediction task. For example,
two galaxies with the same vote distribution after 30 votes
may have different correct answers.

We perform Bayesian structure learning to data from the
case library to build probabilistic models that make predic-
tions about consensus tasks. For any given learning prob-
lem, the learning algorithm selects the best predictive model
by performing heuristic search over feasible probabilistic de-
pendency models guided by a Bayesian scoring rule [2]. We
employ a variant learning procedure that generates decision
trees for making predictions.

4.2 Predicting Correct Classification
We now explore the challenge of predicting the correct

answer of a consensus task based on noisy worker reports.
We first implement several basic approaches as proposed by
previous work [12], and then present more sophisticated ap-
proaches that can better represent the dependency relation-
ships among different features of a task.

The most commonly used approach in crowdsourcing re-
search for predicting the correct answer of a consensus task is
majority voting. This approach does not perform well in the
galaxy classification domain because it incorrectly classifies
many galaxies, particularly the tasks that are undecidable.

Next, we implement two approaches that predict the cor-
rect answer using Bayes’ rule based on the predictions of the
following models: MA(ā, F (f0, ∅)), a prior model for the cor-
rect answer, and MV ′(vi, ā, F (f0, hi−1)), a vote model that
predicts the next vote for a task conditional on the complete
feature set and the correct answer of the galaxy. Because vi

is the most informative piece of a worker’s report and pre-
dicting fsi is difficult, we only use MV ′ model to predict a
worker’s report.

The Naive Bayes approach makes the strict independence
assumption that worker reports are independent of each
other given task features and the correct answer of the task.
Formally, Pr(ā|f), the likelihood of the correct answer being
ā given feature set f , is computed as below:

Pr(ā|f) = Pr(ā|F (f0, ht))

≈ MA(ā, F (f0, ∅))
tY

i=1

MV ′(vi, ā, F (f0, ∅))/Zn

where Zn is the normalization constant.
Next, we introduce an iterative Bayes update model that

relaxes the independence assumptions of the Naive Bayes
model. The iterative Bayes update model generates a pos-
terior distribution over possible answers at time step t by
iteratively applying the vote model on the prior model as
given below:

Pr(ā|f) ∝ Pr(ā|F (f0, ht−1))Pr(< vt, fst > |ā, F (f0, ht−1))/Zb

≈ MA(ā, F (f0, ∅))
tY

i=1

MV ′(vi, ā, F (f0, hi−1))/Zb

where Zb is the normalization constant.
Another approach is building direct models for predicting

Figure 4: Comparison of accuracies of different mod-
els for predicting correct answer.

the correct answer of a task. A direct model takes as input
f , the complete set of features, and predicts ā. Figure 3
shows an example of a direct model trained for predicting
the correct answer of a galaxy task.

Figure 4 compares the accuracies of different answer mod-
els with a baseline model that classifies every task instance
as the most likely correct answer in the training set. Both
naive Bayes and iterative Bayes update models perform bet-
ter than the direct models when the system has a small
number of votes. However, the direct models outperform
all others as the system collects more votes and as vote fea-
tures become more predictive of the correct answer. When
the system has 45 votes for a galaxy, the accuracy of direct
models reach 95%. Based on the significantly stronger per-
formance of the direct models for large numbers of votes, we
use direct models in the consensus system.

4.3 Predicting the Next Vote
We also construct a model that predicts the next vote that

a system would receive based on task features and worker
reports collected so far. This model, symbolized as MV ,
takes as input the complete feature set f . It differs from
MV ′ in that the correct answer of a task (ā) is not an input
to this model. MV achieves 65% accuracy when 15 or more
votes are collected. We compare the performance of MV

with a baseline model that simply guesses the most likely
vote (elliptical galaxy), as the next vote. The comparison
shows that MV has better accuracy than the baseline when
10 or more votes are collected.

4.4 Predicting Termination
Although the system may decide to hire another worker

for a task, the execution on a task may stochastically ter-
minate because the system may run out of workers to hire
or it may run out of time. Tasks logged in the Galaxy Zoo
dataset are associated with different numbers of worker re-
ports. The system has to terminate once all reports for a
galaxy are collected. To model the distribution over votes
received per task for Galaxy Zoo, we construct a proba-
bilistic termination model from the training set (See Figure
5). The termination model predicts the probability of the
system stochastically terminating after collecting different
numbers of worker reports.

5. DECISIONS FOR CONSENSUS TASKS
At any time during the execution of the consensus system,

the system needs to make a decision about whether to hire
an additional worker for each task under consideration. If
the system does not hire another worker for a task, it termi-



Figure 3: Direct model generated with Bayesian structure learning from Galaxy Zoo data. The model predicts
correct answer of a task and next vote that the system would receive.

Figure 5: Termination probabilities estimated from
training data.

nates and delivers the most likely answer that is predicted
by the answer model. If the system decides to hire another
worker, it collects additional evidence about the correct an-
swer, which may help the system to predict the answer more
accurately. But, hiring a worker incurs monetary and time
costs. For solving consensus tasks effectively, the system
needs to trade off the long-term expected utility of hiring
a worker with the immediate cost. Deliberating about this
tradeoff involves the consideration of multiple dimensions of
uncertainty. The system is uncertain about the reports it
will collect for a given task, and it is not able to observe ā,
the correct answer of a consensus task. We shall model this
decision-making problem as an MDP with partial observabil-
ity, which makes calls to the answer and next vote models.
We show that exact solutions of consensus tasks over long
horizons is intractable and present approximate algorithms
for estimating the expected value of hiring a worker.

5.1 Modeling Consensus Tasks
A consensus task is partially observable because the con-

sensus system cannot observe the correct answer of the task.
For simplicity of representation, we model a consensus task
as an MDP with uncertain rewards, where the reward of
the system at any state depends on its belief about the
correct answer. A consensus task is formalized as a tuple

< S,A, T, R, l >. st ∈ S, a state of a consensus task at time
t, is composed of a tuple st =< f0, ht >, where f0 is the
set of task features initially available, and ht is the complete
history of worker reports received upto time t.
A, the set of actions for a consensus task include H, hire

a worker, and ¬H, terminate and deliver the most likely
answer to the task owner. T (st, α, st+1) is the likelihood
of transitioning from state st to st+1 after taking action α.
The transition function represents the system’s uncertainty
about the world and about worker reports. The system tran-
sitions to a terminal state if the selected action is ¬H. If the
system decides to hire a worker, the transition probability
to a next state depends on likelihoods of worker reports and
the likelihood of termination. A worker report is a combina-
tion of vi, worker’s vote, and fsi , the set of features about
the worker. To predict the likelihood of a worker report, we
use the next vote model, and use average worker statistics
computed from the training data to predict fsi .

The reward function R(st, α) represents the reward ob-
tained by executing action α in state st. The reward function
is determined by the cost of hiring a worker, and the utility
function U(â, ā), which represents the task owner’s utility
for the system predicting the correct answer as â when it is
ā. For the simple case where there is no chance of termina-
tion, R(st, H) is assigned a negative value which represents
the cost of hiring a worker. The value of R(st,¬H) depends
on whether the answer that would be revealed by the sys-
tem based on task features and reports collected so far is
correct. bt is a probability distribution over set A that rep-
resents the system’s belief about the correct answer of the
task, such that for any a ∈ A, bt(a) = MA(a, F (f0, ht)).
Let â be the most likely answer according to bt, the reward
function is defined as R(st,¬H) =

P
ā bt(ā)U(â, ā).

We model consensus tasks as a finite-horizon MDP. l, the
horizon of a task, is determined by the ratio of the maxi-
mum reward improvement possible (e.g., the difference be-
tween the reward for making a correct prediction and the
punishment of making an incorrect prediction) and the cost
for hiring an additional worker.



A policy π specifies the action the system chooses at any
state st. An optimal policy π∗ satisfies the following equa-
tion for a consensus task of horizon l.

V π∗(sl) = maxα∈AR(sl, α)

V π∗(st) = maxα∈A
`
R(st, α) +

X
st+1

T (st, α, st+1) V π∗(st+1)
´

Now, we can calculate the value of information (VOI) for
any given initial state si.

V OI(si)) = V H(si)− V ¬H(si)

= R(si, H) +
X
si+1

T (si, H, si+1) V π∗(si+1)

−R(si,¬H)

V OI is the expected value of hiring an additional worker
in state si. It is beneficial for the consensus system to hire
an additional worker when V OI is computed to be positive.

5.2 Solving Consensus Tasks Efficiently
A state of a consensus task at any time step is defined by

the history of observations collected for the task. The state
space that needs to be searched for computing an optimal
policy for a consensus task grows exponentially in the hori-
zon of the task. For large horizons, computing a policy with
an exact solution algorithm is infeasible due to exponential
complexity. For example, an average Galaxy Zoo task in-
cludes 44 worker reports, and the horizon of such a task can
be up to 93 time steps.

Myopic decision making and k-step lookahead search are
approaches proposed by previous work for approximating
the value of information efficiently [5, 4]. These approaches
could perform well for solving consensus tasks, if collecting
a small set of evidence changed the system’s prediction of
the correct answer. This condition is unlikely to be satisfied
by consensus tasks where worker’s reports each provide only
weak evidence about the correct answer, and the system
needs to reason about the value of collecting a large set of
worker reports. For instance, there exists a set of Galaxy
Zoo tasks with some particular initial features such that
even obtaining 10 consecutive worker reports of the same
galaxy label is not enough to change the system’s current
opinion about the correct answer. Thus, a limited lookahead
search has little chance of improving the predictions of the
system for this subset of tasks in a reasonable amount of
computation time.

Monte-Carlo planning has been used to solve large fully
observable MDPs [7]. We move to investigate sampling-
based solution algorithms, which can be employed in par-
tially observable real-world systems for solving consensus
tasks accurately and efficiently. These algorithms use Monte-
Carlo sampling to perform long lookaheads up to the hori-
zon and to approximate the value of information. Instead
of searching a tree that may be intractable in size, this ap-
proach samples execution paths (i.e., histories) from a given
initial state to a terminal state. For each execution path, it
estimates V ¬H , the value for terminating at the initial state,
and V H , the value for hiring more workers and terminating
later. The value of information is estimated as the difference
of these values averaged over a large number of execution
path samples. We introduce two algorithms that use this
sampling approach to approximate VOI, but differ in the

way they estimate V H . The lower-bound sampling (LBS)
algorithm picks a single best termination point in the fu-
ture across all execution paths, V H is assigned the expected
value of this point. The upper-bound sampling (UBS) algo-
rithm optimizes the best state for termination for each exe-
cution path individually. V H is estimated by averaging over
the values for following these optimal termination strategies.
Both algorithms decide to hire an additional worker if V OI
is computed to be positive. After hiring a new worker and
updating the current state by incorporating new evidence,
the algorithms repeat the calculation of V OI for the new
initial state to determine whether to hire another worker.

For any given consensus task modeled as an MDP with
partial observability, and any initial state si, a next state is
sampled with respect to the transition function; the likeli-
hood of sampling a state is proportional to the likelihood
of transitioning to that state from the initial state. Fu-
ture states are sampled accordingly until a terminal state
is reached. Because sampling of future states is directed by
the transition function, the more likely states are likely to
be explored. For each state sj

t on path j, âj
t is the answer

predicted based on the current state. When a terminal state
is reached, the correct answer for path j, āj , is sampled ac-
cording to the system’s belief about the correct answer at
this terminal state, when the system is most confident about
the correct answer. An execution path from the initial state
si to a terminal state sj

n is composed of each state encoun-
tered on path j, the corresponding predictions at each state,
and the correct answer sampled at the end. It is represented
by the tuple: pj =< si, âi, s

j
i+1, â

j
i+1, ..., s

j
n, âj

n, āj >.
An execution path represents a single randomly generated

execution of a consensus task. For any given execution path,
there is no uncertainty about the correct answer or the set of
observations that would be collected for the task. Sampling
an execution path maps an uncertain task to a deterministic
and fully observable execution. To model different ways a
consensus task may progress (due to the uncertainty about
the correct answer and the worker reports), a library of ex-
ecution paths (P ) is generated by repeating the sampling
of execution paths multiple times. This library provides a
way to explore long horizons on a search tree that can be
intractable to explore exhaustively. If the library includes
infinitely many execution paths, it constitutes the complete
search tree.

Given an execution path pj that terminates after collect-
ing n reports, Vk(pj) is the utility for terminating on this
path after collecting k-many worker reports. Vk(pj) is com-
puted with respect to the answer predicted based on the
worker reports collected in the first k steps and the correct
answer sampled at the terminal state. Given that c is the
cost for hiring a worker, Vk(pj) is defined as follows:

Vk(pj) =


U(âj

k, āj)− kc if k ≤ n
U(âj

n, āj)− nc if n < k ≤ l

For simplicity of presentation, we assume a constant cost for
hiring workers. The definition of Vk(pj) and consequently
LBS and UBS algorithms can be easily generalized to set-
tings in which worker costs depend on the current state.

We define V ¬H with respect to execution path library P
as given below:

V ¬H(si) =
X

pj∈P

Vi(p
j)/|P |



The lower-bound sampling (LBS) algorithm approximates
V H as given below:

V H(si) = max
i<k≤l

(
X

pj∈P

Vk(pj)/|P |)

LBS picks the value of the best termination step in average
for all execution paths. This algorithm underestimates V H

because it picks a fixed strategy for future, and does not
optimize future strategies with respect to different worker
reports that could be collected in future states. LBS is a
pessimistic algorithm; given that the MDP model provided
to the algorithm is correct and the algorithm samples in-
finitely many execution paths, all hire (H) decisions made
by the algorithm are optimal.

The upper-bound sampling (UBS) approximates V H by
optimizing the best termination step individually for each
execution sequence:

V H(si) =
X

pj∈P

( max
i<k≤l

Vk(pj)/|P |)

In distinction to the LBS algorithm, the UBS algorithm
overestimates V H by assuming that both the correct state
of the world and future state transitions are fully observ-
able, and thus by optimizing a different termination strategy
for each execution sequence. The UBS algorithm is an op-
timistic algorithm; given that the MDP model provided to
the algorithm is correct and the algorithm samples infinitely
many execution paths, all not hire (¬H) decisions made by
the algorithm are optimal. In the next section, we empiri-
cally evaluate the performance of LBS and UBS algorithms
on a dataset collected from the Galaxy Zoo system.

6. EXPERIMENTS
We evaluated the ability of the CrowdSynth prototype

to guide the solution of consensus tasks on a subset of the
testset collected from the Galaxy Zoo project. The test-
set includes 44350 votes collected for 1000 randomly se-
lected galaxies, and 453 SDSS image features describing each
galaxy. We evaluated variations of the system by employing
different decision-making algorithms.

The MDP used in CrowdSynth for modeling Galaxy Zoo
tasks includes the belief update functions and transition
functions learned from real-world data, as described ear-
lier. These predictive models are not perfect; they can be
noisy, there can be inconsistencies between consecutive be-
liefs. This study also helps to evaluate the effect of the noise
in the building blocks of an MDP on the performance of dif-
ferent MDP solution algorithms.

6.1 Results
We compare the performance of the decision-theoretic

CrowdSynth methodology to two baselines. The first base-
line is named no hire as it hires no workers and delivers
the most likely answer prediction based on the features ex-
tracted digitally. The second baseline collects all worker
reports available for a task and makes a prediction about
the correct answer afterwards. We name this baseline hire
all. We also implemented myopic and k-step lookahead al-
gorithms, which have been proposed by previous work to es-
timate V OI. In these experiments, the system is rewarded
$1 for correctly predicting the correct answer of a task (in-
cluding predicting undecidables), and the cost of hiring a

Figure 6: Performance of decision-making models
with variation of worker costs.

Figure 7: Analysis of behavior of UBS algorithm for
varying worker costs.

worker is varied between $0.1 and $0.0001. The LBS and
UBS algorithms used in our investigations terminate after
2000 samples.

Figure 6 summarizes the performances of different decision-
making algorithms and baselines as a function of the cost of
a worker. We divide the figure into two regions of worker
costs: high worker costs (Region 1) and low worker costs
(Region 2). For high worker costs, none of the decision-
theoretic algorithms are able to perform better than the no
hire baseline, because the expected cost for hiring enough
workers to change the system’s prediction of the correct an-
swer is as high as or higher the expected benefit.

As shown in Figure 3, predictions of direct answer models
are noisier when a few worker reports are collected than
when no reports are collected. In Region 1, all decision-
theoretic algorithms are affected by this noise because the
lookahead depth is relatively short. In addition, the UBS
algorithm is affected negatively by the overestimation of VOI
in this region.

When the cost of a worker is low, the UBS algorithm per-
forms significantly better than all other algorithms and base-
lines. The performance of the LBS algorithm is negatively
affected by the underestimation of VOI in this region. k-step
lookahead algorithms are outperformed by UBS and by LBS
(except when cost is 0.005), because for many Galaxy Zoo
tasks, even having 16 steps lookahead may not be enough
to properly estimate V OI. Overall, the UBS algorithm out-
performs the default policy used in the Galaxy Zoo effort
(hire all) for all worker costs, including high worker costs.

The decision-theoretic approach can perform better than
the hire all baseline for varying cost values as it successfully
trades off the estimated utility for hiring a worker with the



Figure 8: Comparison of decision-making policies
under a fixed budget.

cost of doing so. Figure 7 reports the accuracy of the UBS
algorithm and the percentage of votes collected by the al-
gorithm for varying cost values. When the cost for hiring
a worker is very high, the algorithm hires very few workers
(less than 1 worker per celestial object), which results in a
slight improvement in accuracy. The algorithm gradually
improves its accuracy in predicting the correct answer by
hiring more workers as the cost decreases. The algorithm
reaches 95% accuracy by collecting only 23% of the reports,
it reaches the accuracy of the hire all policy by collecting
only 47% of the votes. The algorithm is able to improve its
accuracy by hiring only a subset of the votes because it can
distinguish the set of galaxies for which its decision is likely
to change in the future.

For the next set of experiments, we modify the problem
so that hiring decisions are not influenced by the cost of
hiring a worker, but instead by varying limitations in bud-
get. The budget constrains the total number of workers
that can be hired for 1000 celestial objects. The challenge
for the system is distributing a limited budget among 1000
different objects to achieve the highest prediction accuracy.
We experiment with four decision-making models. The first
model, random galaxy, randomly selects a celestial object
and collects all available votes for that object. The random
vote model is the approach followed by the original Galaxy
Zoo system. This model selects a random object and col-
lects a single vote for that object at each iteration until it
runs out of budget. UBS-budget and LBS-budget models
calculate VOI for each celestial object with the UBS and
LBS algorithms, and hire a worker with the highest VOI.

Figure 8 compares the performance of these models for
varying budgets. Both UBS and LBS models outperform
other approaches for all budget sizes. After collecting 20000
votes, the accuracy of the VOI models converge as the sys-
tem has collected all the evidence it needs to make accurate
predictions.

7. DISCUSSION AND FUTURE WORK
We reviewed our efforts to take a principled end-to-end

approach to consensus crowdsourcing. We composed a sys-
tem that combines machine vision, machine learning, and
decision-theoretic planning to make effective decisions about
when to hire workers and how to perform classifications
when observations cease. We constructed a prototype sys-
tem and evaluated our learning and decision-making tech-
niques on real-world data collected during the operation of
the Galaxy Zoo system in the open world. The experi-
ments demonstrate that the methodology can solve consen-

sus tasks accurately and achieve significant savings in worker
resources by intelligently allocating resources.

We are exploring extensions of the methods that can rea-
son about optimal timing and pricing of tasks. We have been
investigating models that can make predictions about indi-
vidual workers, so that the decision-theoretic planner can
make effective decisions about the best worker to hire and
the best task to assign to workers who come available. We
are also investigating Monte-Carlo approaches that can more
accurately estimate VOI. Finally, we are studying challenges
with the development of online crowdsourcing services that
have the ability to continue to learn from data, combine re-
ports in a coherent manner, and ideally route people and
tasks with the Bayesian and decision-theoretic procedures
that we have described.
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