
A Model-Based Online Mechanism with Pre-Commitment
and its Application to Electric Vehicle Charging

Sebastian Stein, Enrico Gerding, Valentin Robu and Nicholas R. Jennings
Electronics and Computer Science, University of Southampton

Southampton, SO17 1AE, United Kingdom
{ss2,eg,vr2,nrj}@ecs.soton.ac.uk

ABSTRACT
We introduce a novel online mechanism that schedules the allo-
cation of an expiring and continuously-produced resource to self-
interested agents with private preferences. A key application of our
mechanism is the charging of pure electric vehicles, where owners
arrive dynamically over time, and each owner requires a minimum
amount of charge by its departure to complete its next trip. To truth-
fully elicit the agents’ preferences in this setting, we introduce the
new concept of pre-commitment: Whenever an agent is selected,
our mechanism pre-commits to charging the vehicle by its reported
departure time, but maintains flexibility aboutwhenthe charging
takes place and atwhat rate. Furthermore, to make effective alloca-
tion decisions we use a model-based approach by modifying Con-
sensus, a well-known online optimisation algorithm. We show that
our pre-commitment mechanism with modified Consensus incen-
tivises truthful reporting. Furthermore, through simulations based
on real-world data, we show empirically that the average utility
achieved by our mechanism is 93% or more of the offline optimal.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
multiagent systems

General Terms
Algorithms, Design, Economics

Keywords
electric vehicles, mechanism design, pricing

1. INTRODUCTION
Recent years have seen a proliferation of interest in electric vehicles
(EVs), generally perceived as a key technology for achieving sus-
tainable mass transportation with low carbon emissions [7]. While
EVs are a promising technology, their widespread use is also ex-
pected to place considerable strains on existing electricity distribu-
tion networks. EVs typically require high charging rates, up to 3
times the maximum demand of a typical home. This means that
if all vehicle owners plug in at peak times (typically in the early
evening), the transformers involved in distributing electricity to lo-
cal neighbourhoods may be overloaded by the additional demand

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

[7]. To this end, the charging of vehicles needs to be scheduled in
order to balance the load. However, different consumers may have
different time constraints and willingness to pay, which the sched-
ule needs to take into consideration. To address this challenge, in
this paper, we apply and extend techniques from mechanism design
and the stochastic optimisation literature to ensure incentive com-
patibility (i.e., to incentivisestrategicagents to reveal their prefer-
ences truthfully), and produce effective schedules for EV charging.

Dealing with the limitation of local distribution networks has
been discussed in a range of recent works. For example, [2] and
[12] provide a thorough descriptive analysis of this problem, al-
though they only discuss the problem at a high level and do not
propose specific scheduling heuristics. Moreover, these and most
other papers assume that information about the EVs is known and
they do not consider the elicitation problem, where strategic agents
may misreport their preferences if this is in their best interest.

Framed in more general terms, the problem involves the real-
time scheduling of jobs released over time (in our case, electric
vehicles that require a certain amount of charge by their depar-
ture) sharing a scarce resource (in our case, electricity that is lim-
ited by the maximum transformer capacity), and given uncertainty
about future arrivals. Such problems are addressed in the impor-
tant and growing field of stochastic optimisation [6]. However, it
has been shown that solving these problems optimally is NP-hard
(see [10] for an overview) and many heuristics have been devel-
oped. The approach in our paper is based on one of the most widely
used such heuristics, the Consensus approach introduced in [1]. In
their approach, a number of future scenarios are sampled, and then
the scheduling is solved for each of these scenarios (which can be
solved using an offline algorithm). Then, the decision whether to
schedule a particular job (in our case, an EV) is made based on
a Consensus vote between these scenarios. However, unlike our
work, [1] only applies to settings with a single machine (corre-
sponding to a setting where only a single EV can be charged at
any time) and agents are assumed to be non-strategic.

A number of papers have considered scheduling with strategic
agents. Specifically, [11] examines the scheduling of jobs on a sin-
gle machine and proposes an incentive compatible mechanism for
this setting. However, their work assumes a computational setting
where the results of a job are released to the agents only on comple-
tion or by the agent’s reported deadline. This approach cannot be
used for electricity distribution, since electricity must be allocated
instantly when available. More recently, [5] proposes a mecha-
nism that deals with multi-dimensional, marginally decreasing val-
uations, showing how this setting naturally applies to the charging
of hybrid EVs (where any shortfall in electricity can be supple-
mented by fuel). However, that approach does not readily extend to
the case of pure EVs, which is better characterised by complemen-

tary preferences (since agents only receive value when the battery
is sufficiently charged), and it assumes both discrete time and sup-
ply. Furthermore, all of these approaches aremodel-free, i.e., they
do not consider possible future arrivals in the allocations. This can
be especially inefficient in case of complementary preferences.

There are a few online mechanism design papers which also ac-
count for future arrivals [8, 3]. Like our paper, these are based on
a version of the Consensus algorithm, but their approach results in
allocations which are not necessarilymonotonic(a necessary con-
dition for incentive compatibility). As a result, they require an addi-
tional ironing procedure which cancels allocations that violate the
monotonicity property. This approach has two drawbacks. First,
ironing is computationally prohibitive and thus impractical for the
EV domain, since it needs to consider all possible misreports in or-
der to establish whether cancelling an allocation is required. Sec-
ond, it causes inefficiencies in the allocation, since ironed resources
are lost and cannot be allocated to any other agents. Furthermore,
unlike our setting, both [8] and [3] assume discrete time and indi-
visible resources.

In this work, we address these limitations by proposing the first
incentive-compatible, model-based mechanism for a real-time set-
ting with a continuously divisible resource. This achieves incen-
tive compatibility by ensuring monotonicity for all allocations, thus
avoiding the need for expensive ironing. In more detail, we make
the following contributions to the state of the art:

1) We introduce, for the first time, the notion ofpre-commitment
in online mechanism design. When the mechanism decides to pre-
commit to an agent, it ensures that sufficient resources are reserved
for the agent, but, importantly, retains flexibility over when and
how the resource is allocated. This leaves considerable flexibility
for accommodating other, potentially less patient agents in the fu-
ture.

2) To ensure incentive compatibility, we furthermore modify the
existing Consensus algorithm. Specifically, we introduce aserial-
isation of agents, ensuring that an unallocated agent cannot influ-
ence future pre-commitment decisions. Second, we ensure agents
do not have an incentive to delay their arrival in the system by iden-
tifying re-evaluation points, at which scheduling and pre-commit-
ment decisions may change, and by usingpartly-fixedschedules,
whereby the schedule for committed agents is fixed until the next
re-evaluation point.

3) We evaluate our mechanism using real-world data from the
largest trial of EVs in the UK and show that the average perfor-
mance obtained by our mechanism is 93% or more of an offline
optimal, and that it significantly outperforms a mechanism that al-
locates electricity without knowledge of the agents’ preferences.

The remainder of the paper is organised as follows. In Section 2,
we describe our model. In Section 3, we solve the online schedul-
ing problem for a setting with cooperative agents, while in Section
4 we consider how to ensure truthful reporting by strategic agents.
Finally, an experimental evaluation is presented in Section 5.

2. MODEL
We consider a setting where a limited and expiring resource (e.g.,
electricity) is continuously being produced and must be allocated to
consumers immediately or is otherwise lost. Formally, theproduc-
tion rate(e.g., in kW) of the resource at timet ∈ R is given bys(t).
We assume future supply is known. Furthermore, we model supply
using a step function defined by a set of ratesS = {s0, s1, . . . , sm}
and transition pointsT = {t1, t2, . . . , tm}, such that the supply
rate transitions fromsi−1 to si at timeti.

We letI = {1, 2, . . . , n} denote the set of potential consumers,

henceforth calledagents, who arrive over time. Each agenti ∈ I is
interested in arequired amount, qi, of the resource and has avalue,
vi, for this amount. The agent has no additional value for receiving
more, and has a value of0 for getting less thanqi. Additionally,
agents can only receive the resource during theiractive interval,
[ai, di], whereai anddi are the agent’s arrival and departure times.
Finally, each agent has amaximum consumption rateri, such that,
in a given time interval∆t, agenti can consume at mostri · ∆t
of the resource. Note that agents are indifferent about when they
receive the resource as long as it is within the active interval. To-
gether these form agenti’s type, θi = 〈qi, vi, ri, ai, di〉, and we de-
note the type profile for agents inI by θI = {θ1, θ2, . . . , θn}. This
generic model maps nicely into our EV charging scenario, where
ri is the maximum charging speed (in kW) and[ai, di] represents
the time interval during which the car is at home and available for
charging. Furthermore, this model can be readily applied to a wide
range of other domains where expiring resources become available
continuously over time, such as the allocation of computational re-
sources in cloud settings, the allocation of bandwidth in networks,
or even allocating human resources to projects.

Given this model, we are interested in designing a mechanism
for finding a real-time schedule,ρ, whereρ(i, t) ∈ R determines
theconsumption rateat which agenti receives the resource at time
t. Clearly, such a schedule must satisfy the various constraints
outlined above (i.e., total consumption at any timet may not ex-
ceed the production rates(t), agents cannot receive resources out-
side their active intervals, and they must not exceed their individ-
ual maximum consumption rates). Throughout this paper, we are
interested in finding a schedule that maximises the overallsocial
welfare, i.e., the sum of all agents’ values, as this maximises the
overall benefit to all agents.

3. SCHEDULING COOPERATIVE AGENTS
In this section, we begin by assuming that agents are completely
cooperative and reveal their respective types truthfully to the mech-
anism on arrival. This allows us to develop a number of scheduling
mechanisms which we will later (in Section 4) adapt for settings
with strategic agents.

We start by discussing how to solve theoffline version of the
scheduling problem, where the scheduling mechanism has full in-
formation about all types inθI , including future arrivals. This will
form the basis for the more realisticonlinemechanisms we propose
later.

3.1 Offline Scheduling
To solve the offline problem, we are simply interested in finding
a scheduleρ that maximises the overall social welfare. Formally,
we define the social welfare asW (ρ, θI) =

∑
i∈I

δi(ρ, θi) · vi,
whereδi(ρ, θi) is an indicator function withδi(ρ, θi) = 1 if agent
i receives at least its required amountqi under scheduleρ and
δi(ρ, θi) = 0 otherwise.

Unfortunately, finding such an optimal scheduleρ is NP-hard.1

However, we will describe how to find the optimal solution and
then discuss a more tractable heuristic procedure. In both cases,
we simplify the scheduling problem by partitioning time into non-
overlapping intervals within which neither the set of active agents
nor the production rate changes. This can be done by using all ar-
rival times,ai, departure times,di, and supply transition times,ti,
to define the partition. Since agents are indifferent about when they

1Briefly, this is because it is a generalisation of the NP-hard
1 ||

∑
wjUj scheduling problem, i.e., minimising the weighted

number of tardy jobs [10].

receive the resource within each interval, this allows us to restrict
our attention to finding the appropriate consumption rate for each
agent within each interval.

3.1.1 Optimal Offline Scheduling
We can solve this problem optimally by formulating it as a non-
linear programming problem. Here, the objective function is the
overall social welfare, the decision variables are the (constant) con-
sumption rates for each agent within each interval, and the con-
straints are given by the problem domain, as described in Section 2.
This problem can be solved using standard optimisation tools — we
use ILOG CPLEX in our implementation and denote this mecha-
nism by OPTIMAL . However, due to the inherent complexity of
the problem, finding a solution may be time-intensive, and so we
propose a faster heuristic in the next section.

3.1.2 Greedy Offline Scheduling
To solve the offline scheduling problem more quickly, we first note
that it is possible to find afeasibleschedule for a given set of agents
in polynomial time by formulating it as a maximum flow problem
(similar to the technique used in [4]) and then using a standard algo-
rithm to solve it. In our implementation, we employ the Edmonds-
Karp algorithm and denote this by FINDFEASIBLE (which returns
an empty schedule if no feasible schedule exists).

With this, we can apply a greedy approach and iteratively add
agents to an overall solution. In more detail, our heuristic greedy
algorithm first orders all agents inI in decreasing order of their
value densities, i.e., vi/qi. This order is important, because it is
a heuristic indicator of the agent’s potential value to the final so-
lution (other indicators such asvi could be chosen, but we found
vi/qi to perform particularly well). Then, the algorithm iteratively
considers each agent, adding it to a set of selected agents if a fea-
sible schedule can still be found after including that agent (using
FINDFEASIBLE). This continues until all agents have been consid-
ered and the final feasible schedule including all selected agents is
adopted. We refer to this heuristic algorithm as GREEDY.

3.2 Online Scheduling
In an online setting, the scheduling mechanism may only have prob-
abilistic information about future arrivals (e.g., historical data or
domain knowledge). The agents’ actual types are only revealed to
the mechanism at their respective arrival times. Formally, the type
profile at timet is given byθ〈t〉I = {θi | i ∈ I∧ai ≤ t}. To address
this setting, we compare two approaches: model-free scheduling,
where no model of future arrivals is available, and model-based
scheduling, where the mechanism has access to some statistical
information about future arrivals. While this paper focuses on a
model-based approach, we use the model-free solutions as a bench-
mark and to see if having a model of future arrivals provides any
additional benefits.

3.2.1 Model-Free Online Scheduling
The most straight-forward model-free approach is to simply apply
our offline algorithms toθ〈t〉I . This is done by following the sched-
ule provided by the OPTIMAL or GREEDY offline algorithms, and
repeating the algorithm every time a new agent arrives (while up-
dating the required amount of resource for those agents that have
been partially satisfied). This allows the algorithm to take advan-
tage of higher-value agents as they arrive, possibly abandoning
agents that were previously included in the schedule. Due to the
complexity of solving OPTIMAL , we will focus on the heuristic
version of this algorithm and denote this by ONLINEGREEDY.

Note that the schedules produced by the offline algorithm, and

the FINDFEASIBLE algorithm in particular, may not necessarily re-
sult in a high utilisation of the resource in the short-term. This is
becauseany feasible schedule is found, which may allocate the re-
source at any time in the future or at a lower rate than the supply
would allow. However, in the online setting, it is desirable to fully
utilise the available resources early, so that more agents can be sat-
isfied when they arrive in the future. For this reason, we modify
FINDFEASIBLE to use simple heuristic rules that shift all alloca-
tions to the earliest possible times, within the problem constraints.

So far, we have concentrated on model-free settings, where the
scheduling mechanism does not anticipate future arrivals of agents.
However, in many realistic settings, it is reasonable for the mech-
anism to have some model of the future, for example derived from
historical data or the algorithm designer’s own knowledge of the
system. We explore this in the following section.

3.2.2 Model-Based Scheduling with Consensus
Using a model of the future is useful, because it allows the mech-
anism to adapt its scheduling decisions for likely future events. In
particular, it can anticipate the arrival of future high-value agents
and accordingly allocate less of the resource to the currently active
set of agents when this is likely to be beneficial. Thus, we now as-
sume that our mechanism has some probabilistic knowledge about
future arrivals.

As discussed in Section 1, an optimal online scheduling mech-
anism in these settings is intractable, and so we design a model-
based online mechanism based on the Consensus algorithm. This
algorithm samples a number of possible future scenarios, solves
these using an offline scheduling algorithm, and then uses the ma-
jority vote to select which immediate action to take. In addition to
being computationally tractable, this approach has the advantage of
not requiring a precise model of the future, and so it can be used
even in settings where only imprecise statistical information about
future arrivals is available. However, adopting Consensus in our
setting raises a number of challenges. First, given the continuous-
time nature of our setting, it is not clear when to make each online
decision. An obvious choice here, and one that we verified experi-
mentally to work well, is to do this every time a new agent arrives
in the system.

Second, and more critically, since the resource is continuously
divisible, there are an infinite number of possible actions to take.
This problem is made even worse if the next action consists of a
schedule until the next decision point. To address this problem,
instead of voting on schedules, we modify Consensus to vote only
on the agents that should be included in the online schedule (and
receive their required amount of the resource) and then introduce
a second phase in which we produce a feasible schedule with the
selected agents. Selecting the set of agents is done iteratively by
considering each potential agent in turn, using the greedy heuristic
ordering discussed earlier — if the majority of offline solutions
include this agent in their schedules, we accept the agent, otherwise
we reject it (for the time being). As soon as an agent is accepted, all
other candidate agents are tested again, this time enforcing that the
accepted agent is part of the solution. This repeats until no more
agents are selected, and a final feasible schedule with all accepted
agents is calculated and adopted.

This procedure separates the decision of which agents to sched-
ule (as a binary choice for each agent) from the low-level task of
finding an overall schedule for all agents. Note that a valid alterna-
tive here might be to present all agents to the Consensus scenarios
at once, as is done in [8], but this raises several issues. First, the
offline algorithms now vote on subsets of agents to include rather
than individual agents, which leads to a large decision space that

is voted upon. Moreover, a high-value agent may appear in many
distinct subsets, but it may not get voted into the solution, due to
its votes being divided across these subsets. This issue presents
a problem not only for allocation efficiency, but also for incentive
compatibility (discussed in Section 4). Serial consideration of the
agents avoids these issues.

The full details are given in Algorithm 1. This algorithm keeps in
its statek scenarios that are sampled from a suitable model (line 1),
where each̃θjI is a set of sampledvirtual agents. For efficiency,
we sample these once and re-use them every time Consensus is
called. The algorithm also keeps scheduleρ (line 2), which is con-
structed gradually over time as more agents arrive. Specifically,
we assume the function SIGNAL ARRIVAL (θ〈t〉I , t) is used to no-

tify the algorithm whenever the set of currently known types,θ
〈t〉
I ,

changes. When called, it executes the RUNCONSENSUSfunction
to re-schedule the known agents, but keeps the previous schedule
fixed to satisfy the online property (ρ(−∞,t) is the original schedule
ρ, truncated to the time interval(−∞, t)).

RUNCONSENSUSfirst updates the set of known agent types with
the amount of the resource they have received so far following
scheduleρ, using an appropriate APPLYSCHEDULE function. All
arrival times are also set tot here, to reflect the fact that no past
allocations can be altered. Next, the algorithm retains only those
virtual agents in the scenarios that arrive in the future. Now, the
main loop (lines 11–23) iteratively builds a set of selected agents,
C, which is initially empty. To do this, it considers the agents in
the same order as our greedy heuristic (to reflect their likely value
to the solution), and then solves each of thek scenarios using the
offline GREEDY algorithm. If an agent is included in at least half
the scenarios, we add it toC. Finally, a feasible schedule for only
the agents inC is returned.

Note here that in addition to the set of candidate agents, we add
two further parameters to the GREEDY offline algorithm called in
line 17. Specifically,C is a subset of the types that must be included
in the solution (to reflect the choice of selected agents so far), while
the parameterρc will become important in the setting with strategic
agents and denotes part of a schedule that has been fixed up to the
next decision point. However, here, it is always empty, and, simi-
larly, the setC, holding the set of selected agents, is re-initialised to
the empty set at every invocation (line 5). This gives the algorithm
full flexibility to change its schedule without having to make any
binding pre-commitment choices (a feature that becomes necessary
in Section 4).

So far, we have assumed that agents are cooperative and reveal
their private types truthfully to the scheduling mechanism. In the
next section, we investigate what happens when this is not the case.

4. SCHEDULING STRATEGIC AGENTS
In many realistic settings, agents are self-interested and cannot be
assumed to provide truthful information when this is not in their
best interest. To examine such settings, we will first introduce some
additional terminology from the area of mechanism design (Sec-
tion 4.1), then we will show why our current Consensus implemen-
tation is vulnerable to manipulation (Section 4.2) and finally show
how it can be modified to incentivise truthfulness (Section 4.3).

4.1 Model
In this section, we assume that agents canmisreporttheir private
types to the scheduling mechanism. Specifically, in the EV set-
ting, vehicle owners may plug in their vehicles later than their true
arrival times, unplug them earlier, or report needing more charge
than is actually the case. We denote byθ̂i = 〈ĉi, v̂i, r̂i, âi, d̂i〉

Algorithm 1 CONSENSUSAlgorithm.

1: θ̃1
I , θ̃

2
I , . . . , θ̃

k
I ⊲ Consensus scenarios

2: ρ← ∅ ⊲ Keep track of schedule
3: s ⊲ Supply

4: procedure SIGNAL ARRIVAL (θ〈t〉
I

, t)

5: ρ′ ← RUNCONSENSUS(θ
〈t〉
I

, ∅, ∅, t) ⊲ Future schedule
6: ρ← ρ(−∞,t) ∪ ρ′

[t,∞)

7: procedure RUNCONSENSUS(θ〈t〉
I

, C, ρc, t)

8: θ′
I ← APPLYSCHEDULE(θ

〈t〉
I

, ρ, t) ⊲ Update agents
9: for all j ∈ {1, . . . , k} do

10: θ̃j

I
← {θi|θi ∈ θ̃j

I
∧ aj > t} ⊲ Update scenarios

11: repeat
12: added← false
13: for all θi ← GREEDYORDER(θ′

I \ C) do
14: if added= falsethen
15: votes← 0 ⊲ Initialise votes
16: for all j ∈ {1, . . . , k} do ⊲ Scenarios
17: ρ′ ← GREEDY(θ̃j

I
∪ {θi}, C, ρc) ⊲ Solve

18: if δi(ρ′, θi) then ⊲ In?
19: votes← votes+ 1 ⊲ Vote yes
20: if votes≥ k/2 then
21: added← true ⊲ Include it
22: C ← C ∪ {θi}

23: until added= false
24: return FINDFEASIBLE(C, ρc, s) ⊲ Return final schedule

the type agenti reveals at itsreported arrival timeâi, whereθ̂i
may not be equal toθi. However, we make a number of reasonable
assumptions about the misreports an agent may make, which typi-
cally hold in practice. First, it may not report earlier arrivals and it
may not report later departures, i.e., it must hold thatâi ≥ ai and
d̂i ≤ di. This is reasonable, because the agent must typically be
physically present during its active interval to receive the resource,
and so its presence can be verified (in the EV setting, a car cannot
be plugged in before it physically arrives and, similarly, unplug-
ging earlier than the reported departure could be detected). How-
ever, delaying the agent’s arrival in the system or departing earlier
than necessary are possible manipulations. Second, we assume that
agents cannot overstate their maximum consumption rate, i.e., it
must hold that̂ri ≤ ri.2

Since a scheduling mechanism now uses the reports of all agents
as input, denoted bŷθI , we write the schedule produced by it as
π(θ̂I , s). Furthermore, to examine and engineer the agents’ indi-
vidual incentives, we also define apayment functionxi(θ̂I), which
determines how much agenti should pay the mechanism on its de-
parture, given the reports of all agents. As is common in mecha-
nism design, we use this payment function to ensure truthfulness.
Given this notation, theutility of an agenti is ui(π, x, θi, θ̂I , s) =

δi(π(θ̂I , s), θi) · vi − xi(θ̂I), where we note thatδi here depends
on the real typeθi.

Now, to address potential manipulation by the agents, we are
interested in a property calleddominant strategy incentive com-
patibility (DSIC). Briefly, if a mechanismπ and payment func-
tion x are DSIC, this means that it is best for every agent to re-
port their true type, i.e.,̂θi = θi, regardless of what everyone
else reports. Formally, DSIC holds forπ andx if and only if it is

2This is justified in settings where receiving the resource at a higher
rate thanri either carries a high intrinsic penalty (as is the case in
the EV charging setting, where it may damage the expensive bat-
tery) or can be detected by the mechanism, for example if not all
of the allocated resource is consumed. In these settings, schedules
can be constructed in such a way that every agent receives the re-
source at its maximum rate for some time. However, to simplify the
exposition, we do not include such a scheduling mechanism here.

true thatui(π, x, θi, θ̂−i ∪ {θi}, s) ≥ ui(π, x, θi, θ̂−i ∪ {θ̂i}, s),
∀θi, θ̂i, θ̂−i, s, where we usêθ−i to denote the reports of all agents
apart fromi. Additionally, to ensure participation, we also want
π andx to beindividually rational(IR), which means agents never
make a loss when participating. Formally, it must hold thatui(π, x,

θi, θ̂−i ∪ {θi}, s) ≥ 0, ∀θi, θ̂−i, s.
To achieve DSIC and IR, there are a number of results we can

draw upon [9]. Specifically, in single-valued domains like ours, the
mechanismπ must bemonotonicfor DSIC and IR to hold, pro-
vided unallocated agents are not paid. To define monotonicity in
the context of our work, let� be a partial order over the types
with θi � θj ≡ (ai ≥ aj) ∧ (di ≤ dj) ∧ (ri ≤ rj) ∧ (qi ≥
qj) ∧ (vi ≤ vj). Then, we sayπ is monotonic if and only if
δi(π({θi} ∪ θ−i, s), θi) = 1 ⇒ δi(π({θ

′
i} ∪ θ−i, s), θ

′
i) = 1,

∀θi � θ′i, θ−i, s. This means if an agentθi is allocated by an allo-
cation mechanismπ, it would remain allocated byπ if its type was
θ′i, whereθi � θ′i.

Furthermore, [9] shows that, for a mechanism to satisfy DSIC
and IR, the payment for each allocated agent must be equal to its
critical value. Essentially, this is the lowest value an agent could
report to the mechanism and still remain allocated. More formally,
the payment of agenti must bexi({θ̂i} ∪ θ̂−i) = min v′i, such
that δi(π({θ′i} ∪ θ−i, s), θ

′
i) = 1, with θ′i = 〈qi, v

′
i, ri, ai, di〉

(xi({θ̂i} ∪ θ̂−i) = ∞ if there is no suchv′i). Unfortunately, we
now show that Consensus, as presented in the previous section, is
not monotonic.

4.2 Failure of Monotonicity
The key problem with Consensus (and the other algorithms pre-
sented in Section 3) is that it does not preserve monotonicity for
agents with regard to their departure time. Often, more patient
agents are delayed in favour of more constrained agents, but new
arrivals may mean they are no longer allocated in the future. As
a concrete example, assume there are two agents with typesθ1 =
〈1, 1, 1, 0, 1〉 andθ2 = 〈1, 100, 1, 0, 2〉, and the supply iss(t) = 1.
For sake of argument, assume that none of the scenarios sampled
by Consensus expect more arrivals before time 2, so that, when re-
porting truthfully, both agents 1 and 2 are included in the set of
selected agents,C. However, due to its tighter time constraints, the
less valuable but also less patient agent 1 is scheduled first in the
interval[0, 1].

Now assume that a new agent arrives at time 1 withθ3 = 〈1, 200,
1, 1, 2〉 (which may possibly represent an extremely rare event that
was not anticipated by Consensus). Due to its higher value, this
is now included inC and scheduled in the interval[1, 2], prevent-
ing agent 2 from being allocated. Given this outcome, had agent
2 lied about its patience by misreporting its own type asθ̂2 =
〈1, 100, 1, 0, 1〉, it would have been allocated. This breaks mono-
tonicity, asθ̂2 ≺ θ2, and it is also clear that it does not satisfy DSIC.
In more detail, using critical value payments, the utility for agent 2
when misreportinĝθ2 is u2(π, x, θ2, {θ1, θ̂2, θ3}, s) = 100− 1 =
99, while a truthful report would result in being unallocated, with
u2(π, x, θ2, {θ1, θ2, θ3}, s) = 0.

To address this issue, we now proceed to introduce a number of
modifications to Consensus that achieve monotonicity.

4.3 Truthful Allocation
As discussed in Section 1, one approach to making the allocation
policy π monotonic is to apply ironing. This involves identifying
cases where an allocation is made, but where the allocated agent’s
type might have been a misreport that violates monotonicity. In
this case, the agent remains unallocated and the resource is dis-

carded. For example, if agent 2 from the example above had re-
portedd̂2 = 1, it would be left unallocated and no resource would
be allocated in the interval[0, 1]. Clearly, this can be highly ineffi-
cient, especially since it means that had agent 2’s type really been
θ2 = 〈1, 100, 1, 0, 1〉, it would still remain unallocated. A second
disadvantage of ironing is that testing for monotonicity violations
is computationally expensive, as a large set of possible misreports
has to be considered.

For this reason, we adopt a different approach. Specifically, we
ensure that our Consensus algorithm,π, is monotonic in the first
place, avoiding the need for ironing. We achieve this through the
following modifications.

4.3.1 Pre-Commitments
First, to address the intrinsic disadvantage for patient agents in the
current algorithm, we propose the notion ofpre-commitments. To
this end, we modify Consensus to make a firm commitment to
schedule agents if they, at any point, receive a majority vote in the
offline scenarios. Once this happens, the agent is pre-committed,
which means that it is now guaranteed to receive its required re-
source (specifically, this is added as an additional constraint to all
future scheduling decisions). We achieve this by moving the set
of selected agents,C, into the state of the Consensus algorithm,
instead of re-initialising it at every invocation of Consensus.

In a sense, while ironing punishes impatient agents, using pre-
commitments rewards patient agents instead, because their larger
flexibility means they are more likely to be included in the sampled
scenarios. However, it is important to note that the commitment
decisions still depend on the sampled scenarios, and so even a very
patient agent may not receive a pre-commitment until it is highly
likely that no better agents will arrive in the future. Furthermore,
while a commitment to satisfy the agent is made, the time of when
to schedule the agent is initially left open. This allows Consensus to
flexibly interrupt or re-schedule the agent as necessary, e.g., when
an impatient agent with a high value arrives, as long as the pre-
committed agent is still satisfied eventually.

4.3.2 Re-evaluation Points
While pre-commitments ensure monotonicity with regard to de-
parture times, agents may still strategically misreport their arrival
times to be allocated (thus breaking monotonicity with regard to ar-
rival times). This is because the decision of Consensus is sensitive
to the time it is invoked. Whenever a virtual agent is removed from
an offline scenario (line 10 of Algorithm 1), this may change the
votes of that particular scenario. As a result, an agent might benefit
from misreporting its arrival time to exactly the time where the ma-
jority of offline solutions would vote in its favour. To address this,
we need to re-run the Consensus decision at every possible time
where the solution might change for any unallocated agents. As
just discussed, this can happen any time a virtual agent is removed
from the scenarios, and, for this reason, we introduce additional
re-evaluation pointswhenever this happens. More specifically, we
re-run Consensus for every arrival time of a virtual agent acrossall
scenarios.3

4.3.3 Partly-Fixed Schedules
However, simply re-evaluating Consensus regularly is not sufficient
for monotonicity. Since the scheduleρ′ produced by FINDFEA-
SIBLE does not necessarily correspond to the schedules produced

3In fact, the set of pre-committed agents cannot change at all re-
evaluation points, since more than one vote change is required in
most cases. However, for space reasons, we do not discuss this in
more detail.

Algorithm 2 CONSENSUS-PC with Pre-Commitments.
1: C ← ∅ ⊲ Pre-committed agents
2: tnext← min{ai | θi ∈ θj

I
, ∀j} ⊲ Re-evaluation time

3: procedure SIGNAL ARRIVAL (θ〈t〉
I

, t)

4: ρ← MODIFIEDCONSENSUS(θ
〈t〉
I

, C, ρ[t,tnext), t)

5: procedure REEVALUATE (θ〈t〉
I

, t) ⊲ Called at timet = tnext

6: tnext← min{ai | θi ∈ θj

I
, ∀j}

7: ρ← MODIFIEDCONSENSUS(θ
〈t〉
I

, C, ∅, t)

8: procedure RUNMODIFIEDCONSENSUS(θ〈t〉
I

, ρc, t)
9: repeat

10: ρ′
c ← ρc ⊲ Old partly-fixed schedule

11: ρ′ ← RUNCONSENSUS(θ
〈t〉
I

, C, ρc, t)

12: ρc ← ρ′
[t,tnext)

13: until ρc = ρ′
c ⊲ No more changes

14: ρ← ρ(−∞,t) ∪ ρc

15: return ρ

by the offline scenarios, following it may cause some of the of-
fline solutions to change even before the re-evaluation point. To
address this, we force Consensus to nowpartly fix the schedule
over the next interval,ρ[t,tnext), wheretnext is the next re-evaluation
point, and then immediately re-run Consensus, this time forcing
any scheduling solution to allocate at least as much of the resource
to the agents as dictated byρ[t,tnext) (this is the additional inputρc

to the GREEDY function). This continues until no more changes
are made to the set of pre-committed agents. In effect, this gives
each offline scenario foresight over what will happen over the next
time interval and thereby forces them to make any changes in their
votes immediately rather than during the interval. For this reason,
ρ′[t,tnext)

needs to remain fixed over this interval, although any spare
resource may still be allocated, e.g., to new agents that arrive dur-
ing [t, tnext). While this restricts the flexibility of the scheduling
algorithm slightly, it is possible to add arbitrary new re-evaluation
points, which lead to higher flexibility, but also require more eval-
uations of the Consensus algorithm.

A sketch of our modified Consensus algorithm is given in Al-
gorithm 2, which only shows the main differences to Algorithm 1.
Here, an additional function REEVALUATE is called for every re-
evaluation pointtnext. Note, also, when the scenarios contain no
agents, this algorithm constitutes a truthful version of the model-
free algorithm from Section 3.2.1. We will now show that our
new Consensus mechanism (along with critical value payments) is
DSIC and IR.

THEOREM 1. Consensus with pre-commitments, re-evaluation
points and partly-fixed schedules is DSIC and IR with critical value
payments.

PROOF. We prove this by using the results from [9] and showing
that the modified Consensus is monotonic. To this end, we need to
show that if an agent with typeθi is allocated, it would also be
allocated if it had a higher typeθ′i ≻ θi. We do this by assumingθ′i
differs fromθi in exactly one dimension:

Required amount (q′i < qi): Consider the timet that typeθi
is pre-committed. Ifθ′i is not yet pre-committed beforet, we will
show that it will also be pre-committed att. In more detail, this is
because it is always considered at the same time or earlier thanθi
in the order given by GREEDYORDER (both within Consensus and
the Greedy algorithm). Since an active uncommitted agent’s pres-
ence has no effect on other scheduling decisions up to the point it
is pre-committed (due to the serial voting procedure we use, which
considers active agents independently of each other), each time fea-
sibility is tested in the offline greedy algorithm,θ′i will be tested
with the same set or a subset of the agents thatθi was tested with.

As θ′i requires a lower amount of the resource, it will therefore ap-
pear in at least as many feasible schedules asθi, thus receiving at
least the same amount of votes in Consensus.

Value (v′i > vi): The same argument as above applies.
Rate (r′i > ri): This follows a similar argument as above. Here,

feasibility forθ′i is tested against the same set of constraints when-
everθi is tested (as their position given by the greedy order is the
same). Thus, whenθi is pre-committed by being selected by the
majority of offline scenarios, so willθ′i (at the latest), because any
schedule that is feasible forθi will also be feasible forθ′i.

Arrival time (a′
i < ai): Consider the timet at whichθi arrives.

If it is not pre-committed immediately, it will be at some future re-
evaluation pointt′. Since future re-evaluation points are indepen-
dent ofai or a′

i, θ
′
i would also be pre-committed at the same time

t′. On the other hand, ifθi is pre-committed immediately, we can
show thatθ′i would have been pre-committed earlier. To show this,
we note thatθi arrives between two re-evaluation points,α andβ,
for which the schedule will have been partly fixed. Now, assumeθ′i
was present at re-evaluation pointα and is still not pre-committed.
At the latest, it will now be pre-committed once the schedule over
ρ[α,β) has been partly-fixed. This is because it competes against
exactly the same set of virtual agents asθi does at timet (by defini-
tion of the re-evaluation points), with the same constraints, and so
any time an offline solution containsθi at timet, it will also con-
tain θ′i at timeα. A similar argument can be made whenθ′i arrives
betweenα andt, where the same conditions hold.

Departure time (d′i > di): This follows a similar argument as
for the maximum rate.θ′i is considered at the same position asθi
within the greedy solution of each offline scenario. As any feasible
schedule forθi is feasible forθ′i, it will be pre-committed at the
same time asθi at the latest.

We can now show that monotonicity holds also across several di-
mensions. For this, consider anyθi � θ′i that vary inx dimensions.
Then, we can find a set of intermediate typesθi � θ1i � . . . �
θx−1
i � θ′i, where each type varies in at most one dimension with

its predecessor. Using the reasoning above, ifθi is allocated, so
mustθ′i.

4.4 Practical Considerations
For space reasons, we do not give a detailed algorithm for calculat-
ing the critical payments here. However, this is relatively straight-
forward to implement and can be done using similar techniques
as in [5, 8]. To give the reader an intuition,xi can be calculated
by simulating the system without agenti’s presence in the interval
[t, d̂i], wheret is the time agenti is first pre-committed. At each
iteration of Consensus in the simulated system, we then first find
the minimum valuev′i agenti would need to report to be included
by the majority of offline scenarios (this can be done using a binary
search on the greedily ordered virtual agents). Then, we calculate
the minimum valuev′′i the agent would need to report to be consid-
ered before the agentj that is pre-committed during that iteration
(v′′i = 0 if none is pre-committed). The critical value for this par-
ticular iteration of Consensus is thenmax(v′i, v

′′
i). This is repeated

for every iteration and every re-evaluation point and the final pay-
mentxi is then simply the minimum of these critical values.

An attractive feature of calculating the payments in this way is
that they can be used also when agents depart earlier than antici-
pated. Rather than charge them arbitrary penalties,xi can be cal-
culated for the actual interval the agent was present and for the
actual resource received. This allows agents to leave the system
when necessary (e.g., in case of an unforeseen emergency), with-
out imposing heavy fines.

5. EXPERIMENTAL EVALUATION
In this section, we apply our mechanism to scheduling the charg-
ing of EVs, using data from the first large-scale real-world trial of
EVs in the UK. The purpose of this is two-fold. First, we are inter-
ested in quantifying the benefit of using a model of future arrivals
in these settings. Second, we wish to determine how an incentive-
compatible mechanism compares to one that assumes cooperative
agents.

5.1 Experimental Setup
To evaluate our mechanisms in a realistic setting, we utilise data
gathered during the CABLED (Coventry And Birmingham Low
Emissions Demonstration) project.4 As part of this project, EVs
fitted with data loggers were given to the public, in order to study
their daily travel and charging patterns. In our experiments, we
sample actual recorded journeys from this data set to yield realis-
tic agent arrival and departure times, and we use the actual battery
charges consumed during journeys to determine an agent’s required
amount of electricity. We also use these distributions to (indepen-
dently) sample scenarios for the Consensus-based mechanisms. Fi-
nally, we set all maximum charging rates to 3kW to reflect the ca-
pabilities of the EVs used in the trial.

Regarding an agent’s value, we distinguish between two types
of agents. The first,low-valueagents, are willing to pay between
£0.05 and £0.15 per kWh in their required amount (determined uni-
formly at random). These would rather remain uncharged by their
departure time than pay much more than the usual price of electric-
ity. The second,high-valueagents, are willing to pay up to £1.50 –
£2.50 per mile that they are planning to travel (as given by the sam-
pled CABLED data). These constitute agents that have to travel
at their departure time, for example to reach their place of work,
and so their valuation represents the approximate cost of having to
take a taxi instead. We will vary the relative proportions between
the groups to represent varying levels of heterogeneity in the agent
population.

Finally, to simulate the production rates(t), we use the average
electricity consumption profile of a small neighbourhood consist-
ing of 50 households, and allow any spare electricity to be used
for EV charging whenever consumption drops to below 80% of the
peak consumption. This simulates the constraints of the local trans-
former (with an additional safety margin to account for unexpected
fluctuations in consumption), and means that no electricity is avail-
able during the peak hours of the early evening, but considerable
spare capacity is available during the night.5

5.2 Benchmarks
To evaluate our mechanism, we use several benchmarks:

• FAIRCONTENTION: This mechanism divides the available
electricity equally between all present uncharged agents. We
assume agents unplug as soon as their required amountqi is
reached. As such, this represents a naïve scheduling mecha-
nism that can be easily implemented without requiring agents
to report their types.

• ONLINEGREEDY: This model-free, non-truthfulmechanism
uses the heuristic greedy algorithm to schedule the present
agents (as described in Section 3.2.1).

• CONSENSUS: Thismodel-based, non-truthfulmechanism uses

4Seehttp://cabled.org.uk
5We use real consumption data of domestic households published
by SCE for June 2010 (http://www.sce.com/).

Consensus, as given by Algorithm 1. We generate 20 scenar-
ios, as this obtains good results in practice.

• ONLINEGREEDY-PC: Thismodel-free, truthfulmechanism
uses the ONLINEGREEDY algorithm to schedule the present
agents, along with pre-commitments to ensure DSIC.

• CONSENSUS-PC: Thismodel-based, truthfulmechanism uses
our modified Consensus algorithm (Algorithm 2).

5.3 Results
The full results of our experiments are shown in Figure 1. Here, we
vary the number of EVs within the neighbourhood from 0 to 100 to
represent different levels of demand,6 and we show the results for
different proportions of high-value agents,ν = 0.0, ν = 0.25 and
ν = 0.75. For statistical significance, we repeat all experiments
1000 times and plot 95% confidence intervals. We chose average
social welfare (excluding payments) as the key performance met-
ric, as this is the overall utility generated by each mechanism, and
we normalise it to the performance of the offline OPTIMAL .7 As
this uses full information about future arrivals, it serves as a useful
upper bound of any mechanism.

First, we consider the performance of FAIRCONTENTION (in
green). Clearly, this achieves a very poor performance as soon as
demand increases within the neighbourhood. When there are only
25 EVs, its performance drops to around 50% of OPTIMAL , eventu-
ally reaching an overall performance of only 5%–10%, depending
on the setting. This is because the mechanism considers neither
the deadlines nor the charging requirements of the users and so this
highlights the need to schedule EVs in a more informed manner.

The simple non-truthful mechanisms, GREEDY and CONSEN-
SUS (both shown in blue), achieve a significantly better perfor-
mance, because they greedily select a promising set of agents to
charge (guided by their value densities) and produce a feasible
schedule that considers the deadlines and charging requirements
of the agents. By doing this, they consistently achieve around 93%
of OPTIMAL . Surprisingly, there is no significant difference be-
tween the two mechanisms, implying that the use of a model is not
necessary in these settings. This is because the strategies have con-
siderable flexibility in responding to new arrivals in the system by
adapting their schedules and so there is little benefit in anticipating
these beforehand.

Finally, we consider the two truthful mechanisms, GREEDY-PC
and CONSENSUS-PC (both shown in red), which are the main fo-
cus on this paper. Here, we note that GREEDY-PC initially per-
forms well, but its performance decreases quickly in settings with
high demand. This is particularly pronounced when there are only
a few high-value agents, i.e.,ν = 0.25, where it achieves less than
35% of the optimal. This is because this strategy does not use a
model of the future when making pre-commitments. Thus, in the
setting withν = 0.25, it will pre-commit even to low-value agents,
which may then prevent it from accepting high-value agents in the
future.

6Beyond 50, this means that some households own more than one
EV. This allows us to evaluate the mechanism in settings with very
high demand, and we assume that there is no collusion between the
EVs within a household.
7As OPTIMAL is too computationally intensive in larger settings,
we also applied the offline GREEDY approach. For consistency, the
data shown in the graphs uses the GREEDY data throughout as an
approximation of the optimal, but we verified experimentally that
there is no statistically significant difference in those settings where
we ran both algorithms.

0%

20%

40%

60%

80%

100%

 25 50 75 100

 Social Welfare (% of Optimal)

ν=0.0

EVs:

Consensus−PC
Consensus

Greedy
Greedy−PC

Fair

0%

20%

40%

60%

80%

100%

 25 50 75 100

ν=0.25

EVs:
0%

20%

40%

60%

80%

100%

 25 50 75 100

ν=0.75

EVs:

Figure 1: Average social welfare as number of EVs is increased and for various levels of heterogeneity.

In contrast, the model-based truthful mechanism we propose,
CONSENSUS-PC, performs significantly better, consistently achiev-
ing 92–97% of OPTIMAL . This implies that using a model is criti-
cal, in order to make the use of pre-commitments viable in realistic
settings. This is because pre-commitments are irrevocable deci-
sions and so the mechanism must be confident that they are unlikely
to have a detrimental impact on future scheduling decisions. While
we do not consider the runtime performance of our mechanism in
detail in this paper, we note that simulating a 24-hour day with 100
cars takes only a few seconds on a standard PC, indicating that it is
feasible even in larger settings.

To conclude, we note also that CONSENSUS-PC sometimes out-
performs the non-truthful benchmarks, implying that the use of pre-
commitment can be beneficial even when DSIC is not a require-
ment. This is because it forces the algorithm to choose and con-
centrate on a set of agents, ensuring that these are fully charged. In
contrast, the more flexible GREEDY and CONSENSUSre-evaluate
their chosen set of agents each time. This means they can initially
start charging some vehicles, which are later displaced by others
with a higher value density (but not necessarily higher value). Thus,
some amount of electricity is wasted, as no value is derived from
partially charged vehicles.

6. CONCLUSIONS
In this paper, we considered an online setting where self-interested
agents compete for a limited, expiring resource that is continuously
being produced. To address shortcomings in existing work, we
modified the well-known Consensus algorithm and introduced the
novel concept of pre-commitments to ensure incentive compatibil-
ity.

Furthermore, we showed how our mechanism can be applied to
the challenging problem of scheduling the charging of electric ve-
hicles, a key bottleneck for the widespread adoption of EVs. In
experiments using real data, we demonstrated that our mechanism
considerably outperforms approaches that divide electricity equally
between cars (without considering the owners’ individual prefer-
ences), and we showed that the cost of ensuring incentive com-
patibility is small when coupled with a probabilistic model of the
future.

However, our work has implications beyond the domain of elec-
tric vehicle charging. It can be applied in many application areas
with expiring resources, including the scheduling of computational
jobs in cloud settings, the allocation of bandwidth in networks or
even allocating employees’ time to projects within a business.

In future work, we plan to deploy our mechanism in real-world
trials, which will focus particularly on the design of appropriate

interfaces to allow car owners to express their preferences and in-
teract with the mechanism in a non-obtrusive manner. Other rel-
evant extensions include dealing with multi-value domains, where
the utility an agent derives depends on the amount of resource re-
ceived, and we will explicitly explore other application areas for
our mechanism.

7. ACKNOWLEDGEMENT
This work was funded by the ORCHID (www.orchid.ac.uk)
and iDEaS projects (www.ideasproject.info).

8. REFERENCES
[1] R. Bent and P. Van Hentenryck. The value of consensus in

online stochastic scheduling. InICAPS’04, 2004.
[2] K. Clement-Nyns, E. Haesen, and J. Driesen. The impact of

charging plug-in hybrid electric vehicles on a residential
distribution grid.IEEE Transactions on Power Systems,
25(1):371–380, 2010.

[3] F. Constantin and D. Parkes. Self-correcting sampling-based
dynamic multi-unit auctions. InEC’09, pages 89–98, 2009.

[4] A. Federgruen and H. Groenevelt. Preemptive scheduling of
uniform machines by network flow techniques.Management
Science, 32(3):341–349, 1986.

[5] E. Gerding, V. Robu, S. Stein, D. Parkes, A. Rogers, and
N. Jennings. Online mechanism design for electric vehicle
charging. InAAMAS’11, pages 811–818, 2011.

[6] P. V. Hentenryck and R. Bent.Online Stochastic
Combinatorial Optimization. MIT Press, 2006.

[7] R. A. of Engineering.Electric Vehicles: Charged with
potential. Royal Academy of Engineering, 2010.

[8] D. Parkes and Q. Duong. An ironing-based approach to
adaptive online mechanism design in single-valued domains.
In AAAI’07, volume 22, page 94, 2007.

[9] D. C. Parkes.Algorithmic Game Theory, chapter Online
mechanisms, pages 411–439. Cambridge University Press,
2007.

[10] M. Pinedo.Scheduling: Theory, Algorithms, and Systems.
Springer, 3rd edition, 2008.

[11] R. Porter. Mechanism design for online real-time scheduling.
In EC’04, pages 61–70, 2004.

[12] S. Vandael, K. D. Craemer, N. Boucké, T. Holvoet, and
G. Deconinck. Decentralized coordination of plug-in hybrid
vehicles for imbalance reduction. InAAMAS’11, pages
803–810, 2011.

