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ABSTRACT
A principal seeks production of a good within a limited time-
frame with a hard deadline, after which any good procured
has no value. There is inherent uncertainty in the produc-
tion process, which in light of the deadline may warrant
simultaneous production of multiple goods by multiple pro-
ducers despite there being no marginal value for extra goods
beyond the maximum quality good produced. This moti-
vates a crowdsourcing model of procurement. We address ef-
ficient execution of such procurement from a social planner’s
perspective, taking account of and optimally balancing the
value to the principal with the costs to producers (modeled
as effort expenditure) while, crucially, contending with self-
interest on the part of all players. A solution to this problem
involves both an algorithmic aspect that determines an opti-
mal effort level for each producer given the principal’s value,
and also an incentive mechanism that achieves equilibrium
implementation of the socially optimal policy despite the
principal privately observing his value, producers privately
observing their skill levels and effort expenditure, and all
acting selfishly to maximize their own individual welfare. In
contrast to popular “winner take all” contests, the efficient
mechanism we propose involves a payment to every producer
that expends non-zero effort in the efficient policy.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics

General Terms
Economics, Algorithms, Human Factors

Keywords
mechanism design, crowdsourcing, contests, social welfare

1. INTRODUCTION
An increasingly common model of procurement has multi-

ple agents simultaneously produce versions of a desired good
at the behest of a principal who seeks the highest-quality ver-
sion. This model’s popularity has soared as part of the Inter-
net phenomenon known as crowdsourcing. In recent years,
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the number of websites making and facilitating open calls
for solutions to tasks such as logo design, software develop-
ment, and image labeling has grown tremendously; exam-
ples include Amazon Mechanical Turk, Taskcn, Topcoder,
99designs, Innocentive, CrowdCloud, and CrowdFlower, to
name a few. These developments have reinvigorated a line
of research in the field of microeconomics known as contest
design. The model of a contest matches the standard ap-
proach to crowdsourcing: many agents simultaneously exert
effort to submit a solution in competitive pursuit of a reward,
where the “winner” is dependent on the relative submission
qualities.1 To date, most previous research has focused on
maximizing the principal’s utility: the goal is to to procure
the best submission for the lowest possible price. In con-
trast, we here consider the crowdsourcing problem from an
efficiency standpoint, adopting the perspective of a social
planner that seeks to maximize social welfare. And in con-
trast with the standard “winner take all” contest methods,
the efficient scheme we derive involves a payment for every
agent that expends non-zero effort in the efficient policy.

To motivate the crowdsourcing paradigm from an effi-
ciency standpoint, assuming rational players,2 uncertainty
and deadlines must play a central role. If these factors were
not present then the redundant production inherent to the
paradigm would be purely wasteful; one could (and should)
alternatively order production sequentially rather than si-
multaneously, stopping further production when the costs
are no longer outweighed by the expected gains given the
“quality in hand”. So we adopt a model in which the princi-
pal seeks production of a good within a single unit of time
(corresponding to the span required for production of a sin-
gle good), after which any goods obtained are of no value.
There is inherent uncertainty in production, which may war-
rant simultaneous production of multiple goods. However,
if multiple goods are produced there is no marginal value
beyond that of the maximum quality good produced. Pro-
ducers (henceforth, “agents”) may have varying skill and also
make a choice about how much costly effort to expend on
production: higher effort and skill leads to production of a
good with greater expected quality, all else equal.

The principal and all agents are presumed to be self-

1All-pay auctions are also highly related, with the key dif-
ference being that each agent’s cost there is a payment that
generates “revenue” enjoyed by the seller, whereas in a typi-
cal contest only the highest-quality-producing agent directly
benefits the principal.
2While we make this assumption, we do not deny that in
practice“irrational”behavioral factors may contribute to the
success of many crowdsourcing marketplaces.



interested, which gives rise to a problem of incentives.
Achieving efficiency thus has two components: determining
an optimal effort policy for the agents, given the value of the
principal and the various agent skill levels; and designing a
payment mechanism in which no individual can improve his
expected utility by misreporting private information (or ex-
erting effort other than what the efficient policy prescribes,
in the case of the agents). For a setting where agents have
no private information about skill, we derive an efficient, in-
dividually rational, and budget-balanced solution—a novel
achievement to the best of our knowledge. When skill is
private we prove that extending this result is impossible,
but we show how a result from the recent mechanism design
literature can be applied to yield success if agents can be
forced to make commitment decisions prior to learning their
skill levels, i.e., if ex ante individual rationality suffices.

1.1 Related Work
There has recently been work explicitly addressing the

theory of crowdsourcing in a model, like ours, where agents
have private skill information and choose an effort level.
DiPalantino and Vojnovic [2009] make the connection to
all-pay auctions and model a market with multiple con-
tests, considering the principal’s optimization problem in
the limit-case as the number of agents and contests goes to
infinity. Archak and Sundararajan [2009] and Chawla, Hart-
line, and Sivan [2011] focus on the design of a single contest;
the problem consists of determining how many prizes should
be awarded, and of what value. Chawla et al. make the con-
nection between crowdsourcing contests and optimal auction
design, finding that the optimal crowdsourcing contest is a
virtual valuation maximizer.

However, these papers consider a deterministic model of
quality as a function of effort and skill, under which, if the
principal’s value is proportional to the maximum quality
over the produced goods, the crowdsourcing paradigm it-
self is not well-motivated from an efficiency standpoint. And
while in this paper we are concerned with social welfare, this
prior work is geared towards maximizing utility of the prin-
cipal alone and is unconcerned with the cost to the agents.
This focus is characteristic of the broader literature: in both
computer science and economics prior work has, for the most
part, focused on maximizing submission quality, whether it
be the total sum of submission qualities [Moldovanu and
Sela, 2001; 2006; Minor, 2011], the top k submissions less the
monetary reward [Archak and Sundararajan, 2009], or only
the highest quality submission [Moldovanu and Sela, 2006;
Chawla et al., 2011].

This ties in with the extensive literature in economics de-
voted to the design of optimal contests. Many of these works
consider a contest model where the prize value is known to
all players [Tullock, 1980; Moulin, 1986; Baye et al., 1996],
while others adopt a model of incomplete information with
respect to the prize [Weber, 1985; Hilman and Riley, 1989;
Krishna and Morgan, 1997]. There has also been work on
research tournaments that award a single prize. For in-
stance in [Fullerton and McAfee, 1999] agents have a cost
of production—drawn from a known distribution—that be-
comes common knowledge after a first round in which agents
simultaneously decide whether to participate; then in a sec-
ond round agents decide how much effort to exert given the
common-knowledge costs.

A related line of work uses contests to extract effort under
a hidden action [Lazear and Rosen, 1981; Green and Stokey,

1983; Nalebuff and Stiglitz, 1983]. Similar to our work, the
output is a stochastic function of the unobservable effort,
but the setting is different in that the principal obtains value
from the cumulative effort of the agents, rather than just the
maximum result.

Finally, this work overlaps with the broader agenda of
incentives in peer production systems, where there has been
work addressing incentives in question and answer forums,
human computation, etc. [Jain and Parkes, 2008; Jain et al.,
2009; Ghosh and McAfee, 2011; Ghosh and Hummel, 2011].

1.2 Preliminaries
In the crowdsourcing paradigm multiple units of a good

are simultaneously produced and submitted to a principal.
There is a set of agents I = {1, . . . , n} capable of producing
goods, where each i ∈ I has private skill level si ∈ [0, 1].
Agents can expend variable effort on production of the good.
If an agent attempts production, a good is produced with
quality that is a priori uncertain but is a function of the
agent’s skill and effort expended.

Quality is identified with value to the principal in dollar-
terms. The probability distribution over relative quality,
given any skill and effort levels, is publicly known, but the
absolute quality in terms of value to the principal is not. The
principal has private type v ∈ �+, a scale factor correspond-
ing to his value for the maximum quality good that could
possibly be produced, and this, given the known distribution
over relative qualities, defines the distribution over absolute
quality (henceforth just“quality”) corresponding to the prin-
cipal’s value.3 An effort level δi is identified with the dollar
value in costs ascribed to it by agent i. For simplicity we
assume that δi ∈ [0, 1], ∀i ∈ I .4 Then, given a v ∈ �+, skill
level si, and effort level δi ∈ [0, 1], we denote the p.d.f. and
c.d.f. over resulting quality as fv

si,δi
and F v

si,δi
, respectively.

We assume symmetry across bidders in the sense that skill
is the only differentiating factor; i.e., for two agents with
the same skill level applying the same effort, the distribu-
tion over quality is the same (though there is no presumed
correlation so the resulting quality may differ).

We will make the natural assumption that for an agent
with any given skill level, more effort has first-order stochas-
tic dominance over less effort with respect to quality, i.e.:

∀si, ∀0 ≤ δi < δ′i ≤ 1, ∀x ∈ [0, v], F v
si,δi(x) ≥ F v

si,δ
′
i
(x), (1)

and also that, given any effort level, more skill has first-order
stochastic dominance over less skill with respect to quality:

∀δi, ∀0 ≤ si < s′i ≤ 1, ∀x ∈ [0, v], F v
si,δi

(x) ≥ F v
s′
i
,δi

(x) (2)

Because agents are self-interested there is a problem of
incentives: v and si (for each i) are private information, and
expended effort is privately observed. We adopt a quasi-
linear utility model and assume all players are risk-neutral.
Given our identification of the quality of the good with the
dollar value ascribed to it by the principal, and effort level
δi with the dollar value in costs ascribed to it by agent i,
quasilinearity implies that the principal’s utility equals the
quality of the good procured minus any payments he must
make, and each agent’s utility equals any payment he re-
ceives minus the effort he expends.
3E.g., if quality q ranges in [0, 1], absolute quality is vq.
4The specific range of effort levels is not conceptually im-
portant; it is the relationship between the effort levels and
v that is relevant for determining an optimal policy.



We are concerned with the socially optimal choice of effort
level for each agent, where in light of our utility model the
appropriate optimization is the maximum quality level of
the goods produced minus total effort expended; i.e., letting
Qi(v, si, δi) be a random variable representing the quality
level produced by i ∈ I who has skill level si and expends
effort δi (with v the principal’s value), we seek to maximize:

�[max
i∈I

Qi(v, si, δi)]−
∑
i∈I

δi (3)

An effort policy is a function of the principal’s value and
the agents’ skill levels. We let δ∗(v, s) denote an efficient pol-
icy, i.e., a vector of effort levels that maximizes Eq. (3) given
values of v and s = (s1, . . . , sn); when context is clear we
will write δ∗i as shorthand for δ∗i (v, s). Given our quasilinear
utility model, a policy δ∗ that maximizes Eq. (3) maximizes
the expected sum of utilities and is Pareto efficient.

At various points we will consider a restricted setting
where skill is constant (and publicly known) throughout the
population of agents; we call this the constant skill case.

2. EFFICIENT EFFORT POLICIES
In this section we address the problem of computing an

efficient policy given full knowledge of the principal’s value
v and agent skill levels s, and given that agents will ex-
ecute the effort policy that is prescribed. We defer to
Section 3 the question of how to implement such a pol-
icy in the context of a principal and agents that are self-
interested and strategic. We will make heavy use of the
following lemma, which demonstrates sufficient conditions
under which extreme-effort policies—those that involve only
total (1) or null (0) effort by each agent—are optimal. In this
section we make the technical assumption that the cumula-
tive distribution over quality, evaluated at any particular
quality level, is differentiable with respect to effort δi.

Lemma 1. For arbitrary i ∈ I with arbitrary skill si, for
arbitrary skill and effort levels of the other agents and value
v for the principal, fixing an arbitrary effort policy for agents
other than i, amongst effort levels within arbitrary interval
[a, b] ⊆ [0, 1] it is either optimal for i to expend effort δi = a
or optimal for i to expend effort δi = b if the following holds:
∀β ∈ [0, v], ∀ε ∈ [a, b),

− ∂

∂δi

(∫ v

β

F v
si,δi(x) dx

)∣∣∣
δi=ε

≥ 1 (4)

⇒ − ∂

∂δi

(∫ v

β

F v
si,δi(x) dx

)∣∣∣
δi=k

≥ 1, ∀k ∈ [ε, b] (5)

Proof. For arbitrary agent i ∈ I , consider arbitrary β
representing the maximum quality that is to be realized by
the production of the other agents—this is a priori unknown,
but a result for arbitrary β will demonstrate that regard-
less of its realization the result holds. Then the expected
marginal impact on efficiency from i exerting effort δi equals:∫ v

β

fv
si,δi

(x)(x− β) dx− δi (6)

= (x− β)F v
si,δi

(x)
∣∣∣x=v

x=β
−

∫ v

β

F v
si,δi

(x) dx− δi (7)

= v − β −
∫ v

β

F v
si,δi

(x) dx− δi (8)

The first step above is integration by parts. To find the
maximum with respect to effort, we consider the derivative
with respect to δi, i.e.,

∂

∂δi

(
v − β −

∫ v

β

F v
si,δi

(x) dx− δi
)

(9)

= − ∂

∂δi

(∫ v

β

F v
si,δi

(x) dx
)
− 1 (10)

If as δi increases this derivative never changes from pos-
itive to negative (this is the condition of the Lemma, in
Eqs. (4) and (5)), then the maximum lies at one of the ex-
tremes, δi = a or δi = b, which completes the proof.

Corollary 1. For environments where the quality dis-
tribution functions satisfy the relationship of Eqs. (4–5) in
Lemma 1 over the full range of effort levels ([a, b] = [0, 1]),
an efficient effort policy consists of full-effort participation
by a subset of the agents and non-participation by the others.

Note that the lemma holding for the interval [0, 1] is suffi-
cient but not necessary for the optimal policy to involve only
extreme-effort (i.e., effort 0 or 1 by all agents). For instance
if the condition of the lemma (Eqs. (4) and (5)) does not
hold for some β, yet ∀δi the expected quality output for i
is less than β − δi, then the optimal policy would involve
non-participation (0 effort) by i when other agents achieve
quality β, and so it may still be the case that an optimal
policy never involves intermediate effort.

For any constant skill environment (say skill equals ŝ for
each agent) where we can establish that an extreme-effort
policy is optimal, fully determining an efficient policy is easy.
We simply need to compute:

m∗ = argmax
m∈{0,...,n}

[
m

∫ v

0

F v
ŝ,1(x)

m−1fv
ŝ,1(x)x dx−m

]
(11)

m∗ agents will participate with full-effort and the other n−
m∗ will not participate (i.e., will apply 0 effort).

When skill is not constant, by Eq. (2) having an agent par-
ticipate who has less skill than one who does not participate
could never be optimal. So more generally, for any setting
where extreme-effort has been established as efficient we can
determine a precise optimal policy by iteratively consider-
ing each agent in decreasing order of skill, accepting agents
for (full-effort) participation until stopping and accepting no
more in the ordered list.

In the rest of the section we will show that extreme-effort
policies are optimal in important canonical settings, but we
first observe that this is not universally the case. Imagine
that effort δi ∈ [0, 0.05) yields quality 0 (with certainty), δi ∈
[0.05, 0.3) yields quality 0 with probability 0.8 and quality
0.9 with probability 0.2, and δi ∈ [0.3, 1] yields quality 0.6
with probability 0.8 and quality 0.9 with probability 0.2. An
optimal policy for two agents has one agent expend effort 0.3
and the other expend effort 0.05.

2.1 Uniformly distributed quality
We now look at specific distributional settings, starting

with one in which quality is uniformly distributed between
0 and the product of the principal’s value and the agent’s
skill and effort. That is, F v

si,δi
for each i ∈ I is the uniform

distribution over [0, δisiv], i.e.,

fv
si,δi(x) =

{
1

δisiv
if x ∈ [0, δisiv]

0 otherwise
(12)



We call this the uniformly distributed quality case. The range
of possible qualities (and the expected quality) increases lin-
early with skill and effort. We can use Lemma 1 to show that
an extreme-effort policy is optimal here.

Lemma 2. For the uniformly distributed quality case, for
arbitrary skill levels, there is an efficient policy in which each
agent i ∈ I exerts either no effort δi = 0 or full effort δi = 1.

Proof. Consider arbitrary agent i ∈ I and arbitrary
β ∈ [0, siv]. If we can show that effort δi = 0 or δ1 = 1 for i
would yield optimal expected marginal efficiency even if we
knew that the other agents would achieve quality β, then
the theorem follows. Note that in the case of uniformly dis-
tributed quality no effort level less than or equal to β

siv
could

possibly be optimal because there would be 0 probability of
improving the maximum quality over β (and so if β > siv
then 0 effort by i is clearly optimal). We will now prove the
result by using Lemma 1. For arbitrary δi ∈ [ β

siv
, 1]:∫ v

β

F v
δi(x) dx =

∫ δisiv

β

x

δisiv
dx+

∫ v

δisiv

1 dx (13)

=
x2

2δisiv

∣∣∣x=δisiv

x=β
+ v − δisiv (14)

=
δ2i s

2
i v

2

2δisiv
− β2

2δisiv
+ v − δisiv (15)

= v − δisiv

2
− β2

2δisiv
(16)

Then:

− ∂

∂δi

(∫ v

β

F v
si,δi(x) dx

)
=

siv

2
− β2

2sivδ2i
, (17)

and this is at least 1 if and only if:

δ2i ≥ β2

2siv − (siv)2
(18)

If this holds for δi = ε ≥ β
siv

it holds for δi = k for all

k > ε. Therefore the distribution satisfies Lemma 1, which
tells us that the optimum over the range [ β

siv
, 1] occurs at

either β
siv

or 1. Since no effort level on the interval (0, β
siv

]

could yield positive expected utility and thus be better than
effort level 0, the global optimum lies at either δi = 0 or
δi = 1, which completes the proof.

Then in the constant skill case (with skill normalized to
1) we can compute the optimal number of participants as
follows.

Theorem 1. For the constant skill, uniformly distributed
quality case, a mechanism that elicits maximum-effort par-
ticipation by m∗ arbitrary agents (and 0-effort participation
by others) is efficient, where:

m∗ =

{
	√v� − 1 if 	√v�2 + 	√v� > v

	√v� otherwise
(19)

Proof. By Lemma 2 an optimal policy will involve full
effort by some number m ∈ {0, . . . , n} agents and 0 effort
by the other n−m agents. If m agents participate with full-
effort the expected efficiency equals the expected maximum
of m draws from U [0, v] minus m, i.e.:∫ v

0

1

v
mx

(x
v

)m−1

dx−m =
m

m+ 1
v −m (20)

Though m is discrete, imagining it as a continuous variable
yields a parabola with a single maximum. Taking the deriva-
tive with respect to m, we get v

(m+1)2
−1, which has a single

positive root at m =
√
v − 1. But since m can only take in-

teger values, when
√
v is not an integer we have to consider

both 	√v−1� and �√v−1
 (i.e., 	√v�). The expected value
increase of adding a 	√v�th agent to a group of 	√v − 1�
equals, considering Eq. (20):( 	√v�

	√v� + 1
v − 	√v�

)
−

( 	√v� − 1

	√v� v − (	√v� − 1)

)
(21)

=
1

	√v�(	√v�+ 1)
v − 1 (22)

This is at least 0 if and only if 	√v�2 + 	√v� ≤ v, and so
the maximum is as characterized by Eq. (19).

Figure 1 provides a graphic depiction of how the optimal
number of agents that should participate relates to the prin-
cipal’s value, for v ∈ [0, 100].
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Figure 1: Optimal number of agents to produce a
good (with full effort) in the uniformly distributed
quality case, as a function of the principal’s value v.

2.2 Normally distributed quality
While for more complex distributions beyond the uni-

form case we would have difficulty demonstrating similar
results analytically, we can query whether Lemma 1 holds
experimentally. We now consider quality that is normally
distributed, over a bounded interval, with mean increasing
proportional to effort and skill. Specifically, consider the
truncated normal distribution over the interval [0, v], with
location parameter µ equal to δisiv and scale parameter σ
equal to v/8; this distribution is illustrated in Figure 2 for
various effort levels.

For arbitrary v, β, and δi (assuming a fixed si = 1)
we can computationally approximate

∫ v

β
F v
si,δi

(x) dx and ac-

cordingly evaluate whether the conditions of Lemma 1 are
satisfied. But a more direct approach is equally tractable
here: we can simply compute the expected marginal effi-
ciency, given any β, of effort for arbitrarily fine discretiza-
tions of the effort space δi ∈ [0, 1]. Then, the next step is
to use this approach to check whether extreme-effort is op-
timal for all β in the range [0, v], as this would imply that
regardless of the quality obtained by agents other than ar-
bitrary i ∈ I , for i extreme-effort (0 or 1) is optimal. We
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Figure 2: Probability densities over quality for vary-
ing degrees of effort, for an agent with skill level 1.
Truncated normal with µ = δiv and σ = v/8.

checked this by again discretizing the search space; this time
the space in question is that of possible (v, β) pairs where β
is constrained to fall within [0, v]. The results suggest that
for all values of v above a very low threshold (2.8), there is
no possibility that anything other than extreme effort could
be optimal. And we emphasize that with this approach we
are only checking certain sufficient conditions for optimal-
ity of extreme-effort. Finally, given that an extreme-effort
policy is optimal, we can easily compute an optimal set of
full-effort participants. For the constant skill case this is
done according to Eq. (11); see Figure 3 for the results.
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Figure 3: Optimal number of agents that should
produce a good (with full effort) as a function of
the principal’s value v. For the constant skill (equal
to 1), truncated ([0, v]) normally distributed quality
case with µ = δiv and σ = v/8.

3. INCENTIVES
We now consider the problem of implementing an effi-

cient policy in a context of selfish players. Since utility in
our setting is quasilinear and thus transferable, we can use
monetary payments as a tool. Through payments we seek to
establish an equilibrium where no agent can gain by doing
anything other than what the mechanism asks, as follows:

Definition 1 (incentive compatibility). A mecha-
nism is incentive compatible if and only if for each player
i, given that all other players abide by the mechanism’s pre-
scriptions, i’s expected utility can never be improved by doing
other than what the mechanism prescribes.

This definition is a generalization of the standard“truthful
reporting” definition that is sufficient for mechanisms that
only involve sharing of private information. In our setting,
one player (the principal) must share private information
truthfully, while others (the agents) must behave faithfully
according to what the mechanism prescribes and will also
have to share private information truthfully if skill is vari-
able and private knowledge.5 An incentive compatible mech-
anism gives us reason to believe that the outcome the mech-
anism prescribes will occur, given rational agents. But for a
mechanism that makes payments there are additional con-
straints: the mechanism should be weakly budget-balanced,
in expectation never paying out more than it takes in, since
otherwise external subsidies would be required for its im-
plementation. The mechanism should also be individually
rational, meaning no agent should have negative expected
utility in equilibrium from truthfully participating.

3.1 Constant skill
We first consider a context of constant skill, where two

agents exerting the same effort produce quality according
to the same (known) distribution. Recall that an efficient
effort policy δ∗ = (δ∗1 , . . . , δ

∗
n) is a function of the principal’s

value and the vector of agents’ skill levels s; so in constant
skill settings the only “variable” relevant to computation of
δ∗ is v, and we omit s from all notation. The mechanism
we propose is efficient and incentive compatible in such set-
tings, without running a deficit or violating individual ra-
tionality. It defines payments that, in some cases, depend
on a priori expected quality for a given effort level. Recall
notation Qi(v, δi) for the random variable representing the
quality produced when agent i expends effort δi, given the
principal’s value v; Qi(v) denotes an actual quality level
realized by i. Q(v) denotes the vector (Q1(v), . . . , Qn(v))
andQ−i(v) denotes (Q1(v), . . . , Qn(v)) with Qi(v) excluded;
analogously Q(v, δ) denotes (Q1(v, δ1), . . . ,Qn(v, δn)) and
Q−i(v, δ−i) denotes the same excluding Qi(v, δi). For any

vector x we let x(k) denote the kth highest element of x.

Definition 2. (Constant skill efficient crowd-

sourcing (CSEC) mechanism) The principal reports v
and then efficient effort levels δ∗1 , . . . , δ

∗
n are computed.

Each agent i is instructed to expend effort δ∗i on produc-
tion, and goods are produced with quality levels Q(v) =
(Q1(v), . . . , Qn(v)). The principal is charged:∑

i∈I

δ∗i , (23)

agent h = argmaxi∈I Qi(v) is paid:

δ∗h +Qh(v)−Q(2)(v)− �[Q(1)(v, δ∗)−Q(1)
−h(v, δ

∗
−h)],

(24)
and each other agent i ∈ I \ {h} is paid:

δ∗i − �[Q(1)(v, δ∗)−Q(1)
−i (v, δ

∗
−i)] (25)

5This dual-nature incentive situation appears in many other
scenarios; see [Shneidman and Parkes, 2004] and [Cavallo
and Parkes, 2008] for precedents in the literature.



The principal pays the sum of the prescribed effort levels;
each agent is paid his prescribed effort minus the expected
difference between the highest quality level overall and the
highest quality level achieved by the other agents; each agent
is also paid the difference between the actual highest quality
level produced overall and the highest quality level produced
by the other agents—this value is 0 for all agents except he
who produces the highest quality good, and thus that agent
(h) ends up with a “bonus” (Qh(v)−Q(2)(v)).

Since to compute payments actual quality must be known,
one can either assume the quality of a produced good given
any v is publicly observable or, alternatively, in settings
where this is unrealistic the mechanism can be slightly (and
harmlessly) modified to have the principal report the quality
level of each produced good.

Theorem 2. The CSEC mechanism is efficient, incen-
tive compatible, individually rational, and budget-balanced
in expectation for constant skill settings.

Proof. We start by showing incentive compatibility.
The expected utility of the principal, given that he an-
nounces v̂ and that the agents abide by the mechanism, is:

�[Q(1)(v, δ∗(v̂))]−
∑
i∈I

δ∗i (v̂) (26)

By efficiency of the computed effort levels (see Eq. (3)), this
quantity is maximized with truthful report v̂ = v.

Now consider arbitrary agent i ∈ I , assume that the prin-
cipal is truthful and other agents abide by the mechanism
and expend effort δ∗−i, and let δi denote i’s chosen effort
level. i is paid the aggregate utility of the other agents mi-
nus a quantity completely independent of his behavior; i.e.,
omitting v from the notation with truthful v understood:[

Q(1) −
∑

j∈I\{i}
δ∗j
]
− (27)

[
Q

(1)
−i −

∑
j∈I\{i}

δ∗j − δ∗i + �[Q(1)(δ∗)−Q(1)
−i (δ

∗
−i)]

]
(28)

Recall that δ∗i is computed independent of the behavior of i
(or any other agent). Therefore i’s expected utility equals a
quantity independent of his control (−Eq. (28)), plus:

�

[
Q(1)(δi, δ

∗
−i)

]
−

∑
j∈I\{i}

δ∗j − δi (29)

By efficiency of δ∗, this is maximized by exerting effort δi =
δ∗i as prescribed by the mechanism.

Now we consider individual rationality. We now omit δ∗

from the Q notation as well since abiding by the mecha-
nism is understood. The principal’s expected utility in the
truthful equilibrium equals: �[Q(1)] − ∑

i∈I δ
∗
i , and this is

non-negative by efficiency of the policy. Each agent i’s ex-
pected utility in the truthful equilibrium equals his expected
payment minus his expended effort, i.e.:

�

[
Q(1) −

∑
j∈I\{i}

δ∗j
]
− (30)

�

[
Q(1)

−i −
∑

j∈I\{i}
δ∗j − δ∗i + �[Q(1) −Q(1)

−i ]
]
− δ∗i (31)

= �

[
Q(1) −Q(1)

−i

]
− �

[
Q(1) −Q(1)

−i

]
= 0 (32)

Finally, consider the expected aggregate payments re-
ceived by the social planner. Noting that in the truthful
equilibrium Eq. (27) minus Eq. (28) reduces to δ∗i +Q(1) −
Q

(1)
−i −�[Q(1) −Q(1)

−i ], incorporating payments received from
the principal in expectation this equals:

∑
i∈I

δ∗i −
∑
i∈I

(
δ∗i + �[Q(1) −Q(1)

−i ]− �[Q(1) −Q(1)
−i ]

)
= 0

(33)

And so the budget is exactly balanced in expectation.

Let us consider an example. Imagine there are three
agents (with constant skill equal to 1), a principal with value
v = 8, and uniformly distributed quality. We can use Theo-
rem 1 to determine an optimal policy: since 	√v�2+	√v� =
6 < v = 8, the optimal policy calls for 	√v� = 2 agents—say
agents 1 and 2—to expend effort δ1 = δ2 = 1 and the third
to expend effort δ3 = 0. Imagine that the realized quality
levels turn out to be Q1 = 3 and Q2 = 5. The mechanism
requires that the principal pay: δ1+δ2+δ3 = 2. Noting that
�[Q(1)(8, (1, 1, 0))] = 16/3 and �[Q(1)(8, (1, 0))] = 4, agent
1 is paid: 1 − (16/3 − 4) = −1/3, i.e., he is charged 1/3.
Agent 2, the maximum quality-producing agent, is paid:
1 + (5 − 3) − (16/3 − 4) = 5/3. Finally, agent 3 is paid:
0− (0− 0) = 0. Each agent’s utility equals his payment mi-
nus effort (−4/3 for agent 1, 2/3 for agent 2, and 0 for agent
3); the principal’s utility equals 5 − (1 + 1) = 3; and rev-
enue to the mechanism designer equals 2+ 1/3− 5/3 = 2/3.
No agent could have gained in expectation from deviating
from the mechanism’s prescriptions, and although agent 1
was worse off for having participated, in expectation he was
not so participation is rational given risk-neutrality.

Perhaps it could be considered a flaw of the mechanism
that agents do not have strict incentive to participate: their
expected utility from doing so is 0. First of all we note
that the effort cost δi for an agent can be understood to
incorporate opportunity costs, and can thus be construed as
the difference in cost between the given effort level and the
value of the agent’s “outside option” (which will equal 0 if
the agent has no other options).

But we can go further. Note that the principal does ob-
tain positive surplus from the mechanism; in fact he is the
only player (including the social planner) that does so in
expectation. We can seek to distribute this more broadly.
Let v be the minimum value the principal could possibly
have, i.e., the greatest value that—independent of the prin-
cipal’s announcement—the mechanism designer knows is no
greater than the true v (in the worst case v = 0, but it may
be greater). Let:

G = �[Q(1)(v, δ∗(v))]−
∑
i∈I

δ∗i (v) (34)

We can amend the CSEC mechanism by charging the prin-
cipal G and paying each agent G/n. Since G is completely
independent of the principal’s report, charging him thus will
not change his incentives. Because quality is monotonically
increasing in his value, G is a lower bound (guarantee) on
the expected surplus the principal obtains in equilibrium un-
der the CSEC mechanism, and so individual rationality will
still hold in the amended mechanism. For any v in the space



of possible values, the principal’s expected utility will equal:

�[Q(1)(v, δ∗(v))]−
∑
i∈I

δ∗i (v)−G (35)

≥ �[Q(1)(v, δ∗(v))]−
∑
i∈I

δ∗i (v)−G (36)

≥ �[Q(1)(v, δ∗(v))]−
∑
i∈I

δ∗i (v)−G = 0, (37)

where the first inequality holds by efficiency of δ∗. In expec-
tation the mechanism remains perfectly budget-balanced,
while now each agent may obtain positive utility and so will
the principal (assuming v �= v).

In using this approach we are essentially adopting the
technique of [Cavallo, 2006] in which revenue is “redis-
tributed”to the agents in an effort to maintain wealth within
the group rather than in the hands of the mechanism de-
signer, without distorting incentives. Here we are seeking
to redistribute surplus to the agents from the principal, but
the technique is identical to that of [Cavallo, 2006] except
instead of redistributing revenue we redistribute surplus.

3.2 Privately known skill
In the more general case where the principal has private

value information, the agents have privately observed effort,
and the agents have private skill information, the incentives
problem is significantly more challenging. In fact, we can use
the Myerson-Satterthwaite impossibility theorem [Myerson
and Satterthwaite, 1983] to demonstrate the impossibility
of achieving an efficient, incentive compatible, individually
rational, and budget-balanced mechanism.

Theorem 3. There exists no mechanism that—for unre-
stricted quality distributions, private value for the principal,
and private agent skill levels—is efficient, incentive compat-
ible, individually rational, and budget-balanced.

Proof. We can prove the result via a “reduction” to
efficient crowdsourcing from bilateral trade, for which we
know by [Myerson and Satterthwaite, 1983] that there is
no efficient, incentive compatible, individually rational, and
budget-balanced mechanism. Assume for contradiction that
the theorem fails. Then for any bilateral trade setting where
the seller has value θs ∈ [0, 1] and the buyer has value
θb ∈ [0, 1] consider the following crowdsourcing problem:
the principal has value v = θb, there is a single agent i who
has skill si = 1 − θs, and quality is (deterministically) dis-
tributed as follows:

Qi(v, si, δi) =

{
v if δi ≥ 1− si

0 otherwise
(38)

Assume that if the social planner chooses a policy in which
quality v would be realized with certainty (given announced
skill), the agent can be compelled to exert effort until quality
v results (despite the planner not being able to observe the
actual effort level expended). This only makes solving the
crowdsourcing problem easier, and so a solution to the full
crowdsourcing problem implies a solution to this variant.

Note that in any efficient policy i exerts effort either 0 or
1− si = 1− (1− θs) = θs. If the policy calls for production
then the principal gains utility θb and the agent loses utility
θs. Therefore in the efficient policy production occurs if and
only if θb ≥ θs. Moreover note that the strategic situations
of the principal and agent in this crowdsourcing problem are

identical to that of the buyer and seller in the bilateral trade
problem, in the sense that the expected utility of each, given
any strategy they play, for any strategy played by the other,
is identical in either problem. So a payment scheme that
is effective for the crowdsourcing problem would constitute
a solution for the bilateral trade problem, and this would
contradict the Myerson-Satterthwaite theorem.

This negative result notwithstanding, there is a way for-
ward with a weaker individual rationality concept. Though
skill is private, it is not implausible to imagine that agents
only learn their skill levels after the nature of the project
is announced, in which case ex ante individual rationality
would be sufficient to achieve participation if we force agents
to make participation decisions before announcing the na-
ture of the task. And [Cavallo, 2011] provides an efficient
mechanism—which here we will call the ex-ante-commitment
mechanism—that is incentive compatible for arbitrary pri-
vate values settings and achieves individual rationality ex
post of type realization for one player, while achieving in-
dividual rationality (and budget-balance) ex ante of type
realizations for all others. This fits our setting perfectly,
since the principal will know his value from the outset, but
commitment by the agents may potentially be arranged to
occur prior to realization of their types. Our setting has pri-
vate action (effort) as well as private information, but the
incentives provided by the mechanism extend.

The ex-ante-commitment mechanism makes payments
based on expectations with respect to a prior distribution
over agent types, assumed to be shared (a priori) by the
mechanism designer and all agents. We use notation �s̃[·] to
denote the expected value of a quantity with respect to the
prior distribution over agents’ skill levels, with s̃ a random
variable representing the skill vector. Again letting v denote
the lowest value in the principal’s value space, let:

G(s) = �[Q(1)(v, s, δ∗(v, s))]−
∑
i∈I

δ∗i (v, s) (39)

A derivative of the ex-ante-commitment mechanism for our
setting takes the following form:

Definition 3. (Private skill efficient crowd-

sourcing (PSEC) mechanism) The principal reports v,
each agent i ∈ I reports si, and then the efficient effort
levels δ∗1 , . . . , δ

∗
n are computed. Each i ∈ I is instructed to

expend effort δ∗i , and goods are produced with quality levels
Q(v) = (Q1(v), . . . , Qn(v)). The principal is charged:∑

i∈I

δ∗i +G(s), (40)

and each agent i ∈ I is paid:

Q(1)(v)−
∑

j∈I\{i}
δ∗j− (41)

�s̃

[Q(1)(v, s̃, δ∗(v, s̃))−
∑
j∈I

δ∗j (v, s̃)− 1

n
G(s̃)

]
(42)

The following theorem is essentially a consequence of the
main theorem of [Cavallo, 2011], although in that work the
strategic element is solely related to private information,
while for us there is also a hidden action (effort). But the
basic logic extends: Groves mechanisms achieve straightfor-
ward behavior, which typically consists of truthful reporting
but can also encompass other actions, e.g., production effort.



Theorem 4. The PSEC mechanism is incentive compat-
ible, individually rational for the principal, individually ra-
tional for each agent ex ante of skill level realizations, and
budget-balanced in expectation ex ante of skill realizations.

We demonstrate the workings of the mechanism on the
following uniformly distributed quality example: there are
two agents, where the prior distribution over each’s skill level
assigns probability 0.5 to skill 0 and probability 0.5 to skill
1; assume the realized skills are s1 = 0 and s2 = 1. Assume
the principal’s value space is [5, 50] (so v = 5), and that
the principal’s actual value is v = 10. In the optimal policy
agent 2 participates with full effort and agent 1 does not
participate. G(s) = 2.5−1 = 1.5 and �s̃

[Q(1)(v, s̃, δ∗(v, s̃))−∑
i∈I δ

∗
i (v, s̃) − 1

n
G(s̃)

] ≈ 2.6. Imagine that quality 6 is
realized. Then the principal pays 1 + 1.5 = 2.5, obtaining a
net utility of 3.5. Agent 1 is paid 6− 1− 2.6 = 2.4, for a net
utility of 2.4. Agent 2 is paid 6 − 0 − 2.6 = 3.4, for a net
utility of 2.4. Revenue equals 2.5− 2.4− 3.4 = −3.3.

While the social planner or some agent may end up worse
off ex post, as in the example, in expectation given the dis-
tribution over types each will gain from participation.

4. CONCLUSION
While most prior work seeks to maximize the utility of

the principal alone, in this paper we pursue a crowdsourcing
scheme that is socially optimal, maximizing the aggregate
efficiency to all stakeholders in the system; we believe this
holds the potential to bring significant added value to crowd-
sourcing marketplaces. Our findings and proposals may be
of interest from both a theoretical and practical standpoint.
From a theoretical perspective, we provide an efficient, in-
dividually rational, budget-balanced mechanism in the con-
stant skill case; while we show that this is not possible in the
general case, there we describe a mechanism that is efficient,
budget-balanced, IR for the principal, and ex-ante IR for the
producers. The results inform a designer of a crowdsourcing
contest how to compute the optimal number of participants,
given the principal’s value and the agents’ distribution over
quality, and also tell the designer how to award the pay-
ments or prizes. An interesting facet of the mechanism we
propose is that if the optimal number of participants is k,
then the mechanism should award k payments (or more in
the private skill case). This is in contrast with the winner-
take-all schemes currently prevalent in crowdsourcing, where
the participant who submits the highest quality good is the
sole recipient of a lump sum prize.
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