
Solving Non-Zero Sum Multiagent Network Flow Security
Games with Attack Costs

Steven Okamoto
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

sokamoto@cs.cmu.edu

Noam Hazon
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

noamh@cs.cmu.edu

Katia Sycara
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213
katia@cs.cmu.edu

ABSTRACT
Moving assets through a transportation network is a crucial
challenge in hostile environments such as future battlefields
where malicious adversaries have strong incentives to attack
vulnerable patrols and supply convoys. Intelligent agents
must balance network costs with the harm that can be in-
flicted by adversaries who are in turn acting rationally to
maximize harm while trading off against their own costs to
attack. Furthermore, agents must choose their strategies
even without full knowledge of their adversaries’ capabili-
ties, costs, or incentives.
In this paper we model this problem as a non-zero sum

game between two players, a sender who chooses flows through
the network and an adversary who chooses attacks on the
network. We advance the state of the art by: (1) moving be-
yond the zero-sum games previously considered to non-zero
sum games where the adversary incurs attack costs that are
not incorporated into the payoff of the sender; (2) intro-
ducing a refinement of the Stackelberg equilibrium that is
more appropriate to network security games than previous
solution concepts; and (3) using Bayesian games where the
sender is uncertain of the capabilities, payoffs, and costs of
the adversary. We provide polynomial time algorithms for
finding equilibria in each of these cases. We also show how
our approach can be applied to games where there are mul-
tiple adversaries.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Intelligent agents, Multiagent systems; J.4 [Social
and Behaviorial Sciences]: [Economics]

General Terms
Theory, Security, Economics

Keywords
network security game, communication security, multiagent
communication

1. INTRODUCTION

Appears in: Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
June, 4–8, 2012, Valencia, Spain.
Copyright c⃝ 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Many multiagent applications must utilize networks in in-
herently hostile environments where adversaries have strong
incentives to disrupt operations, as when enemies attack vul-
nerable patrols and supply convoys in transportation net-
works using asymmetric warfare techniques. Any multiagent
deployment in these environments must address the crucial
issue of strategically moving assets in a secure and effective
manner in the presence of such malicious adversaries. Game
theory offers a natural and rigorous framework for reasoning
strategically in these kinds of adversarial domains.

Such hostile network environments share six key charac-
teristics: (1) The topology of the network creates exponen-
tial sized strategy spaces that cannot be solved efficiently us-
ing standard normal form techniques. (2) Security is not the
sole criterion but must be balanced with competing perfor-
mance objectives. For example, shorter paths are preferred
by supply convoys to minimize fuel costs and by sensor net-
works to conserve battery power and reduce latency. (3)
Patterns of behavior may be learned by the adversary. For
example, the adversary may observe supply convoys in secret
before planning and executing his attack. (4) Adversaries
are rational agents who balance the harm that they can in-
flict with costs of attacking. (5) Information on the adver-
sary’s capabilities, payoffs, and costs is rarely available, and
estimates must be used instead. (6) Multiple adversaries
with differing abilities may be present.

Work in network security games has addressed the first [15,
12, 8], second [12], and third [15, 8] of these, but has left the
others largely untouched. Attack costs have largely been ig-
nored by assuming a zero-sum payoff structure, so that the
incentives of the sender and adversary are exactly opposed.
In general this leads to a computationally simpler problem,
but does not reflect the fact that the attack costs do not fac-
tor in to the payoff of the sender. Abandoning the zero-sum
assumption is also essential to addressing the fourth point
because it is known that in zero-sum games it does not mat-
ter if the adversary can observe the behavior patterns before
choosing a strategy [17]. In this paper we address each of
these characteristics, starting most importantly by allowing
non-zero sum payoffs based on attack costs.

We model the problem as a game between a sender and an
adversary. The sender chooses a flow through the network
from the source nodes to the sink. The adversary chooses
one or more attacks from a set of possible attacks, where
each attack adds penalties to one or more link in the net-
work. For example, one attack may be to jam a node in a
communication network, thereby interfering with the com-
munication with that targeted node and also (although to a

lesser extent) to all communication with neighboring nodes
as well. When the sender utilizes a link that has been at-
tacked, he suffers harm proportional to the total penalty
on the link and the amount of flow being sent on the link.
The adversary incurs a cost for each attack, and different at-
tacks may have different costs reflecting the differing degrees
of difficulty or ease of attack. The sender seeks to minimize
harm while the attacker seeks to maximize the harm minus
the attack costs.
In this paper we advance the state of the art by combin-

ing the existing approaches with three major new contribu-
tions. First, we assume non-zero sum payoffs due to attack
costs that adversary incurs in attacking the network. These
costs factor into his payoff but not the payoff of the sender.
We provide polynomial time algorithms based on linear pro-
grams (LPs) for finding Nash equilibria in these games. Sec-
ond, the non-zero sum payoffs allow the possibility of the
sender improving his payoff by committing to strategies in
a Stackelberg game. We show that the existing solution
concepts are inappropriate for network security games and
introduce a refinement of the Stackelberg equilibrium based
on the sender’s ability to affect the adversary’s strategy by
deviating from equilibrium behavior. Finally, we consider
games of incomplete information where the sender knows
only probability distributions over the maximum number of
nodes that the adversary can attack, and the adversary’s
payoffs and costs. We formulate these as Bayesian games
and provide polynomial time algorithms for finding equilib-
ria. We also show how this approach can be generalized to
model games with multiple adversaries.

2. SIMULTANEOUS GAME

2.1 Model
We start with the network flow security game with attack

costs but no uncertainty. This game is played between a
sender and an adversary taking actions on a network repre-
sented by a directed graph G = (V,E) with n = |V | nodes
and m = |E| edges. The sender chooses how to send flow
from a set S ⊂ V of source nodes to the sink node t ∈ V .
The amount of flow originating at a node v ∈ V that must
be sent to t is denoted by bv, with bv > 0 for all v ∈ S and
bv = 0 for all v /∈ S. The sender’s strategy space F is the set
of all feasible flows from the source nodes to the sink. Flows
may be divided on alternate paths from the source nodes
to the sink1, leading to a continuous strategy space for the
sender if there are at least two paths from any source node
to the sink. A sender strategy f is represented as a m × 1
vector where fe is the amount of flow sent on edge e ∈ E.
For convenience, for an edge (u, v) ∈ E, f(u,v) is denoted
simply as fuv.
The adversary chooses attacks from a set A. The adver-

sary has a cost for each attack, represented by the |A| × 1
attack cost vector c, where ca ≥ 0 is the the cost suffered by
the adversary for attack a ∈ A. The adversary can execute
up to k attacks simultaneously. Thus the adversary’s set of
pure strategies A is the set of all subsets of A of size at most

1This approach can be used even when the asset moving
through the network cannot be split, as with a convoy that
must travel intact. The flow is then an efficient polynomial-
sized representation for a mixed strategy over the exponen-
tial number of paths from the source nodes to the sink. Splits
in the flow correspond to randomization over possible paths.

k, which has size Θ(|A|k), and his set of mixed strategies
is the set of all probability distributions over A. Instead of
representing mixed strategies explicitly, we use the marginal
probability distribution represented by the 1× |A| vector p,
where pa is the marginal probability of the adversary exe-
cuting a ∈ A. This is sufficient for computing payoffs (and
hence equilibrium behavior) [12], and so we sometimes refer
to p as the adversary’s mixed strategy. Because of the size of
A, even describing a mixed strategy explicitly requires expo-
nential time in general, but it is possible to efficiently sample
a pure strategy in conformance with p using algorithms such
as comb sampling [15] or weighted random sampling [5].

The payoff for the sender in the game is quantified by the
harm suffered as a result of the adversary’s attacks. The
harm is represented by a harm matrix M with |A| rows and
m columns, where each row specifies the penalties on edges
caused by an attack so that entry Mij is the per-unit-flow
harm suffered when the adversary executes attack ai and
and the sender transmits flow on edge ej . Harm for multiple
attacks is summed, as occurs when a convoy must endure
multiple attacks on its route, or when multiple jamming
attacks in different parts of an ad hoc network additively
increase the latency of messages. This representation models
a broad range of harm functions that cannot be represented
in other network security games [12]. When the sender plays
f and the adversary plays p, the total expected harm is pMf
and so the sender’s payoff is −pMf . The payoff for the
adversary depends on the harm that the sender suffers and
the cost of the attacks, computed as pMf − pc. We refer to
the adversary’s payoff as his reward.

When the players choose their actions without any obser-
vations of the other player the game is played as a simulta-
neous move game and we use the familiar Nash equilibrium
solution concept. A strategy profile (f∗, p∗) is a Nash equi-
librium if f∗ is a best response to p∗ (for the sender) and p∗

is a best response to f∗ (for the adversary). In equilibrium,
neither player has incentive to deviate and hence both are
indifferent between their possible strategies.

To illustrate the importance of the attack costs on the
Nash equilibrium, consider the network in Figure 1. Assume
that bs = 1 and k = 1 and that the adversary can choose to
attack the top path or the bottom path with harm matrix

M =

[
102 0 0 0
0 3 0 0

]
.

Let fi denote the amount of flow on edge ei and note that
the sender’s strategy is fully specified by f1 as f2 = 1− f1.
Let p1 and p2 denote the probability of attacking the top
and bottom paths respectively.

When attack costs are zero, the adversary never has in-
centive not to attack, so p1 + p2 = 1. In equilibrium the
adversary is indifferent between the two attacks so 102f1 =
3(1 − f1) and so f1 = 3/105. Similarly, the sender is indif-
ferent between the two paths so 102p1 = 3(1 − p1) and so
p1 = 3/105. An intuitive interpretation is that the sender
sends most of his flow on the bottom path because of the
lower potential for harm, while the adversary, being able to
deduce this, attacks the bottom path with high probability
because that’s where most of the flow is.

Now suppose that attacking the top path has a cost c1 =
100. The adversary’s equilibrium strategy remains the same
because the sender’s payoff hasn’t changed, but now for the
adversary to be indifferent it must be that 102f1−100 = 3f2

s

v1

v2

t

e1

e2

e3

e4

Figure 1: An example of a network with two possible
paths.

so that f1 = 103/105. An intuitive explanation is that the
adversary attacks the top path with low probability because
of the high attack cost, and the sender, deducing this, sends
most of the flow on the top path despite the high potential
for harm because the adversary is unlikely to attack there.
The attack costs can also cause the adversary to not exe-

cute his maximum number of attacks because the cost out-
weighs the harm. For example, if c1 > 102 then the sender
can set f1 = 1 and a best response by the adversary is to
choose p1 = p2 = 0.

2.2 Computing Nash Equilibrium
Finding Nash equilibria in general non-zero games is com-

putationally more expensive than finding equilibria in zero-
sum games. In addition, there may be multiple equilibria
with different payoffs for both players, which can compli-
cate the matter of choosing a strategy. In this section we
show that these concerns do not arise in the network flow
game with attack costs, because the Nash equilibria in this
game are precisely those of the zero-sum game where both
payoffs are affected by attack cost.
To prove this we will use the following lemma:

Lemma 1. Let p be an adversary’s strategy and let f be a
sender’s strategy. Then f is a best response to p if and only
if f minimizes the adversary’s expected payoff given p.

Proof. We start with the forward direction. Assume f
is a best response to p. Because f is a best response to p,
it follows that f must minimize harm, pMf . Therefore it
must also minimize pMf+α for any α that is constant (with
respect to f). In particular, f must minimize pMf − pc,
the adversary’s expected payoff. The proof of the reverse
direction is similar.

We can now prove the theorem:

Theorem 1. (f, p) is a Nash equilibrium for the network
flow game with attack costs if and only if f minimizes the
maximum adversary payoff and p maximizes the minimum
adversary payoff.

Proof. We start with the backward direction. The fact
that p maximizes the adversary’s payoff given f follows di-
rectly from the assumption that p is a maximin strategy for
the adversary’s payoff. Thus p is a best response to f . It also
follows that f minimizes reward given p because f is a min-
imax strategy for the adversary’s payoff. Thus by Lemma 1
f is a best response to p. Therefore (f, p) are mutual best
responses and hence form a Nash equilibrium.
Now, suppose that (f, p) is a Nash equilibrium. We prove

that f must minimize the maximum adversary payoff by
contradiction. Suppose that f is not a minimax strategy

and let f ′ be a minimax strategy. Then there exists marginal
probability vector p′′ such that for all marginal probability
vectors p′, p′Mf ′ − p′c < p′′Mf − p′′c. In particular, for
p′ = p, we get

pMf ′ − pc < p′′Mf − p′′c

≤ pMf − pc (p is a best response to f)

But pMf ′−pc < pMf−pc implies that pMf ′ < pMf , which
means that f is not a best response to p (for the sender),
contradicting (f, p) being a Nash equilibrium. Hence f must
be a minimax strategy.

It then follows readily that p must be a maximin strategy,
as the adversary seeks to maximize reward.

Because of Theorem 1, finding an equilibrium sender strat-
egy reduces to finding a minimax strategy. This can be
found efficiently by using the linear program LP 1, despite
the large strategy spaces for both players:

LP 1 Equilibrium Sender Strategy with Attack Costs

Input: G, M , c, k
Output: f , R, λ

Minimize
f,R,λ

kR+
∑
a∈A

λa (1)

subject to:

R ≥ rowa[M]f − ca − λa ∀a ∈ A (2)∑
(v,u)∈E

fvu = bv +
∑

(u,v)∈E

fuv ∀v ∈ V \{t} (3)

fuv ≥ 0 ∀(u, v) ∈ E (4)

λa ≥ 0 ∀a ∈ A (5)

The adversary’s expected payoff is represented by R and
the λa variables. For a flow f , the potential reward of an at-
tack a is the amount of additional payoff that the adversary
will get if he plays a. This is calculated as rowa[M]f − ca
where “rowa[M]” denotes the row of M corresponding to at-
tack a. When k = 1, a best response by the adversary is
to play an attack with maximum potential reward. Thus
λa = 0 for all a and thus R is the amount of reward gained
and will be the maximum reward that can be gained from
any single attack, as required by Equation (2). Thus the
sender will minimize the maximum potential reward. When
k > 1, the sender no longer needs to minimize the potential
reward of a single attack, but rather must minimize the sum
of potential rewards for a set of attacks of size k. In some
cases, the sender may benefit from the adversary playing
attacks with higher potential reward if it allows other at-
tacks to have lower potential reward, thus resulting in a net
decrease in total potential reward. This idea is captured by
the λa variables, which allow an attack to“borrow”potential
reward from other nodes to form a net decrease. Variable
R now represents the minimum potential reward among the
nodes that may be attacked by the adversary in a best re-
sponse. Rewriting Equation 2 to getR+λa ≥ rowa[M]f−ca,
we see that the reward potential for a node is the minimum
plus the “borrowed” amount. Each attack a will contribute
R+ λa reward to the total, which is shown in the objective
function kR+

∑
a∈A λa. LP 1 has |A|+m+1 variables and

at most 2|A|+ n+m− 1 constraints. Thus it can be solved
in polynomial time (with respect to n and |A|).

For adversary, we take the dual to the sender’s LP and
get the following program LP 2:

LP 2 Equilibrium Adversary Strategy with Attack Costs

Input: G, M , c, k
Output: r, p

Maximize
r,p

(∑
v∈S

bvrv

)
− p cT

subject to:

ru ≤ rv + p col(u,v)[M] ∀(u, v) ∈ E

rt = 0∑
a∈A

pa ≤ k

0 ≤ pa ≤ 1 ∀a ∈ A

The vector p represents the marginal probabilities of at-
tacking nodes. The vector r encodes the sender’s best re-
sponse to p, with rv being the least harm that the sender
can suffer for each unit of flow sent from v to the sink. At
the sink, no harm can be suffered (the flow is already at
the sink). From a node u other than the sink, we observe
that the sender must send flow on one of the outgoing edges
(u, v) to a neighbor v. The harm suffered will be equal to the
harm suffered crossing (u, v), plus the harm suffered from v
to t. Thus, the least harm suffered sending from u to t will
be equal to the minimum of the harm suffered from send-
ing flow on (u, v) plus the least harm from v to t. That is,
ru = min(u,v)∈E rv + p col(u,v)[M] (where “col(u,v)[M]” de-
notes the column in M for edge (u, v)), which is captured by
the constraint in Equation ??. Because the sender needs to
send bv endogenous flow from node v to t (with bv = 0 for
v /∈ S), the reward for the adversary is (

∑
v∈S bvrv)− p cT ,

the objective that is maximized by LP 2.
We note that by the strong duality theorem, LP 2 finds the

maximin adversary payoff strategy, despite the constraint in
Equation ?? considering minimum harm (the sender’s pay-
off), not the adversary’s payoff! This phenomena is well es-
tablished by Theorem 1: when the adversary optimizes his
strategy against a sender who is trying to minimize harm,
it is the same as optimizing the adversary strategy against
a sender who is trying to minimize the adversary’s payoff.
That is, the sender’s best response behavior in the non-zero
sum game where his payoff is just based on harm and the
adversary’s payoff is reward is the same as the sender’s best
response behavior in the zero sum game where both players’
payoffs are based on reward.

3. STACKELBERG GAME
In this section we consider the Stackelberg game in which

the sender plays first, committing to a strategy. We show
how two commonly used solution concepts, the strong and
weak Stackelberg equilibria, are inappropriate for sequen-
tial network security games, and provide a polynomial time
algorithm for finding a more nuanced equilibrium.

3.1 Model
In the previous section we described the simultaneous

game where the sender and adversary act without observ-
ing each other’s actions. However, in many settings this

is not the case. For example, convoys in support of per-
sistent military or humanitarian relief missions will oper-
ate over extended periods of time and the adversary can
observe routes taken over time to build up an estimate of
the sender’s mixed strategy before choosing which attacks
to launch. These types of settings are commonly modeled
as Stackelberg games, a type of sequential game in which
one player (the “leader”) moves first, committing to a mixed
strategy. The second player (the“follower”) can then observe
that mixed strategy and choose an appropriate response. It
is known that in Stackelberg games the leader can sometimes
improve his equilibrium payoff (and cannot decrease it, un-
der mild assumptions) compared to his equilibrium payoff
in the simultaneous move game [14].

In a two-player Stackelberg game the follower’s strategy is
a function that maps mixed strategies of the leader to mixed
strategies of the follower. In the network flow security game
with attack costs, the adversary’s strategies are functions g :
F → A that map each flow to an adversary mixed strategy.
Let G denote the set of all such functions. A Stackelberg
equilibrium (f∗, g∗) is a refinement of subgame perfect Nash
equilibrium where (f∗, g∗) are mutual best responses, i.e.,

g∗(f∗)Mf∗ = min
f∈F

g∗(f)Mf

g∗(f∗)Mf∗ − g∗(f∗)c = max
g∈G

g(f∗)Mf∗ − g(f∗)c.

both hold, and g∗(f) is a best response to f for all f ∈ F
(the follower always plays optimally, even off the equilib-
rium path). Computing a best response function g for the
adversary is straightforward: given f , greedily choose up to
k attacks that have maximum payoff to the adversary, ex-
cluding any that would contribute negative payoff because
the attack cost is too high. Note that there will be multiple
best response functions if there is some f for which the set
of k attacks yielding highest adversary payoff is not unique,
and that these best response functions may yield different
payoffs to the sender because of heterogeneous attack costs.
Thus there may be multiple Stackelberg equilibria that have
the same sender strategy but different sender payoffs.

Traditionally two kinds of Stackelberg equilibrium are dis-
tinguished: strong Stackelberg equilibrium (SSE), where the
follower’s best response function always maps to a strategy
that maximizes the leader’s payoff; and weak Stackelberg
equilibrium (WSE), where the follower’s best response func-
tion always maps to a strategy that minimizes the leader’s
payoff [9]. The pessimistic WSE is the more natural solu-
tion concept for security applications, which tend to focus
on worst case behavior. Despite this, SSE, which assumes
that the malicious adversary breaks ties in the leader’s fa-
vor, has been considered more often in the literature for two
technical reasons: (1) a SSE is guaranteed to exist in every
Stackelberg game, while a WSE may not; and (2) it is often
claimed that the leader can induce the adversary to play
the desired best-case strategy by deviating by an arbitrarily
small amount from the equilibrium in order to break the ad-
versary’s indifference [14]. We will show that both of these
arguments are inappropriate for the network security game,
but first illustrate several important concepts by example.

Recall the example in Figure 1 with c1 = 100. The
adversary is indifferent when f1 = 103/105, prefers the
top path when it is f1 > 103/105, and prefers the bottom
path when f1 < 103/105. Thus all best response functions
g1 : [0, 1]→ [0, 1] mapping f1 to the probability of attacking

s v1 v2 t
e1 e2 e3

Figure 2: A network topology in which the sender
cannot induce a strong Stackelberg equilibrium.

the top path must satisfy g1(f1) = 0 when f1 < 103/105 and
g1(f1) = 1 when f1 > 103/105, and any value g1(f1) ∈ [0, 1]
is acceptable for f1 = 103/105.
In the unique simultaneous Nash equilibrium, p1 = 3/105,

so that the sender was indifferent between the top and bot-
tom paths but sent f1 = 103/105 flow on the top path
and f2 = 2/105 flow on the bottom path, suffering harm
on both paths. It follows that f1 = 103/105 is a best re-
sponse to the adversary’s best response function gNE

1 with
gNE
1 (103/105) = 3/105. Thus the simultaneous Nash equi-
librium naturally gives rise to a Stackelberg equilibrium strat-
egy, with the same payoff to the sender as in the Nash equi-
librium, −306/105. In the SSE the adversary attacks the
bottom path (i.e., gSSE

1 (103/105) = 0), resulting in a much
higher payoff to the sender, −6/105. It is easy to see that
there are no other Stackelberg equilibria for this game. For
example, there is no WSE because if the adversary played
the worst-case best response with gworst

1 (103/105) = 1, then
the sender would have incentive to deviate by decreasing f1.
The sender’s strategy is the same in both of these equilib-

ria which means that his payoff ultimately depends on the
choice of the indifferent adversary. However, note that the
sender can deviate slightly from his equilibrium strategy by
playing f1 = 103/105 − ε for some small ε > 0, in order
to incentivize the adversary to attack the bottom path. By
doing this the sender will receive a payoff of −(6/105 + 3ε)
instead of the −6/105 that he would earn in the SSE, but
as ε is made arbitrarily small his strategy converges to the
SSE strategy.
It is not always possible to induce the SSE by deviating

from an equilibrium strategy. Consider the network in Fig-
ure 2, and assume that A contains two attacks, one that
affects e1 and one that affects e2, with harm matrix

M =

[
5 0 0
0 3 0

]
,

and costs c1 = 3 and c2 = 1. The sender has no choice as his
only pure strategy is to send the full flow on the single path
from s to t. At the same time, the adversary is indifferent
to the choice of attack as they both yield him a payoff of 2
and so might choose either of them.

3.2 Inducing Locally Optimal Equilibria
Because the WSE may not exist and the SSE may not be

attainable, we address the problem of how the sender can
deviate from a Stackelberg equilibrium strategy f to induce
a Stackelberg equilibrium (f, g) that yields him maximum
payoff. We call this a locally optimal inducible Stackelberg
equilibrium (loptISE). It is locally optimal because the value
of the Stackelberg equilibrium that is induced depends on
the starting equilibrium strategy f . The starting strategy
that we use is one that arises naturally from the simultane-
ous game Nash equilibrium strategy found by LP 1, which
we now show to always be a Stackelberg equilibrium.

Lemma 2. If a strategy profile (f, p) is a Nash equilibrium

Algorithm 1 Computing deviation to find optimal in-
ducible Stackelberg equilibrium

1: Find Nash equilibrium flow f using LP1
2: Set A′ to be the set of minimum adversary payoff can-

didate attacks.
3: Set k′ ≤ k to be the number of candidate attacks that

must be chosen from A′.
4: if |A′| ≤ k′ then
5: Return.
6: Add dummy source s0 to G. Set I ′ ← ∅. Set fε to be

the empty flow.
7: while |I| < k′ do
8: Set F ← ∅.
9: for all a ∈ A′ do
10: Solve (fa, H,H ′)← LP3(G,M,A′, a)
11: if H −H ′ ≥ 0 then
12: F ← F ∪ {fa}
13: Set Y ← {a|fa ∈ F with minimum rowa[M]fa}.
14: Set Z ← {a|∃a′ ∈ Y s.t. rowa[M]fa = rowa′ [M]fa′

}
15: Set A′ ← A′\Z and I ← I ∪ Z.
16: Set fε ← fε +

∑
a∈Y fa

17: Set f ← f + εfε

18: for all s ∈ S do
19: Normalize outgoing flow.

for the network flow security game with attack costs found by
LP 1 then (f, g) is a Stackelberg equilibrium for the Stackel-
berg network flow security game with attack costs for a best
response function g with g(f) = p.

Proof. We construct g as a best response function with
g(f) = p. For f ′ ̸= f , we set g(f ′) to be the best response
that maximizes g(f ′)Mf ′. By definition of Nash equilib-
rium, f maximizes g(f)Mf . Because LP 1 finds a minimax
strategy, it follows that g(f ′)Mf ′ ≥ g(f)Mf for all f ′ ∈ F .
Thus, f is a best response to g in the Stackelberg game, and
so (f, g) is a Stackelberg equilibrium.

Algorithm 1 computes a deviation from an equilibrium
strategy that the sender can use to induce a loptISE. We
first sketch the high level approach before delving into the
details. The sender starts with a Nash equilibrium flow f
(which is also a Stackelberg equilibrium strategy according
to Lemma 2), then computes the set A′ of candidate attacks
that might be chosen by the adversary as part of a best re-
sponse to f and that the adversary is indifferent between.
The sender tries to incentivize the adversary to choose cer-
tain of these candidate attacks by adding small amounts of
flow. Intuitively this approach exploits what we observed
in the example: parallel paths allow the sender freedom to
deviate and bias the adversary’s choice toward less harm-
ful attacks, while a sequential topology does not permit
this flexibility and instead the adversary will be assumed
to choose the most harmful attack (a worst-case approach
to security). However, the process is not as obvious when
dealing with general attacks, each of which may affect an ar-
bitrary set of links with heterogeneous harm values. Instead
of choosing a simple path, the sender tries to find a flow for
each candidate attack that will cause the sender to prefer
to play that attack over all other candidate attacks. When
presented with multiple options, the sender chooses one that
causes the least harm (i.e., increases his payoff the most).
The repeats until the sender has incentivized all of the adver-

sary’s attacks, to less harmful attacks when possible and to
most harmful attacks otherwise. The deviation flows (which
may be made arbitrarily small) are then superimposed on
the original flow to generate the desired deviation.
Computing the candidate attacks is straightforward. Given

f , we compute the payoff that the adversary would receive
for each attack a ∈ A as ρa = rowa[M]f . The adversary
will choose up to k attacks with the highest ρa, and will
only choose attacks with ρa ≥ 0. If there are more than
k attacks with ρa ≥ 0, we compute the multiset of attacks
with the highest k values of ρa (with repetition). For exam-
ple, if the multiset of ρa values is {10, 10, 8, 7, 7, 7, 0,−2} and
k = 4, then there are 6 candidate attacks, {a ∈ A|ρa ≥ 7}.
The adversary’s best response will always choose the attacks
with ρa strictly greater than the minimum, so we need only
consider A′ to be those with minimum ρa values. In the
previous example, that would mean that the best response
always plays the two attacks with ρa = 10 and the one attack
with ρa = 8 (i.e., these cannot be affected by the sender), so
we are left to choose k′ = k − 3 = 1 candidate attacks from
among the three remaining with ρa = 7.
A dummy source node s0 is added to G and connected to

each source in s ∈ S, to allow deviant flows from any source.
The set of induced attacks I, is initialized as empty. The
overall deviation flow fε is initially empty.
The algorithm then iterates up to k′ times in the loop

starting at line 7. On each iteration it attempts to greedily
induce the adversary to choose attacks that maximally in-
crease the sender’s payoff. The set of best deviant flows is F .
For each a ∈ A′, we compute the deviation fa that makes
the adversary prefer to play a ∈ A′ over other candidate
attacks. This is achieved by LP 3:

LP 3 Stackelberg deviating flow for a.

Input: G, M , A′, a
Output: fa, H, H ′

Maximize
fa,H,H′

H −H ′

subject to:

H ≤ rowa[M]fa

H ′ ≥ rowa′ [M]fa ∀a′ ∈ A′\{a}∑
(v,u)∈E

fa
vu =

∑
(u,v)∈E

fa
uv ∀v ∈ V \{s0, t}

∑
(s0,u)∈E

fa
s0u = 1

fa
uv ≥ 0 ∀(u, v) ∈ E

Variable H represents the amount of harm inflicted by at-
tack a, while H ′ is the amount of harm inflicted for any
other attack a′ ∈ A′ with a′ ̸= a. LP 3 seeks to maximize
the difference H −H ′. By assumption the adversary is in-
different between candidate attacks so costs can be ignored;
relative changes in reward are solely due to relative changes
in harm. Thus if H −H ′ ≥ 0 the adversary receives at least
as much reward by choosing a and so the sender can induce
the adversary to play a (perhaps with other attacks), while
if H −H ′ < 0, the sender cannot yet induce the adversary
to prefer a over other candidate attacks.
Of the attacks that can be induced on this iteration, the

sender chooses those that cause minimum increase in harm.
These may not be unique (i.e., when H−H ′ = 0 for multiple
a), so Y is the set of all such candidate attacks with mini-
mum increase in harm that the adversary can be induced to
attack on this iteration. The deviation flows that are used
to induce these attacks may also induce other attacks (which
have the same increase in harm), so the set Z contains all
the attacks that will be induced in the current iteration.
These are removed from the candidate attacks and added to
the induced attacks in line 15, and the deviation flows for
this iteration are superimposed on the total deviation flow
fε before starting a new iteration.

The loop terminates when the requisite number of attacks
have been induced. On each iteration of the loop, I grows
and A′ shrinks. It is not possible for A′ to become empty
prior to the termination of the loop. Prior to beginning the
loop, |A′| > k′ (lines 4 – 5) and on every iteration the same
number of attacks are added to I as are removed from A′.
Thus, |I| ≥ k′ no later than the iteration when A′ = ∅.

In line 17 the deviation flow is scaled and superimposed
on the equilibrium flow, and in line 19 the amount of flow
(which increased due to the addition of the deviation flow)
is normalized at each source node so that the total amount
of flow is maintained with the addition of the deviation.

Theorem 2. Algorithm 1 runs in time polynomial in the
size of G and A.

Proof. Each line in the algorithm can clearly be exe-
cuted in polynomial time. The for loops in lines 9 – 12 and
lines 18 – 19 iterate at most Θ(|A|) and Θ(n) time, respec-
tively. In each iteration of the main loop from lines 7 – 16 at
least 1 attack is added to |I| and therefore the loop cannot
iterate more than |I| = Θ(|A|) times.

4. BAYESIAN GAMES
In many security applications, it is unrealistic to assume

that complete information on the adversary is available be-
cause adversaries are hostile and usually secretive. In mil-
itary and law enforcement domains, intelligence analysts,
criminologists, and other experts collect relevant data on
real and possible adversaries and develop inherently uncer-
tain estimates of their capabilities and motives. In this sec-
tion we represent that uncertainty as probability distribu-
tions over the maximum number of attacks that they can
execute, the harm matrices, and the attack costs. We de-
velop ways to reason strategically over this incomplete infor-
mation by adopting the Bayesian game framework and find
polynomial time algorithms for finding equilibria.

4.1 Uncertain k
In many situations it is not possible for the sender to know

the adversary’s capabilities with certainty. The sender can
act as if he has the full knowledge, but he then might perform
badly. For example, suppose that the game is the same as
in Figure 1, but now k = 2. In equilibrium, the adversary
strategy is p1 = 1/34 and p2 = 1, and the sender strategy is
f1 = 100/102 and f2 = 2/102. The expected harm for the
sender will thus be 3. However, if the sender does not know
that k = 2 now, and continue to play his strategy for k = 1,
the adversary will exploit it and will always attack v1 and v2.
The sender’s harm will thus increase to 100.116. Therefore,
when the sender is not sure about the exact value of k, he
will have to estimate it. We represent this by a probability

distribution q over possible values of k, which we assume is
known to both players. Given this distribution, we formulate
the sender’s problem as a Bayesian game. A Bayesian game
is one in which information about characteristics of the other
players is incomplete. There is a probability distribution
over possible types for each player, and the type of a player
determines that player’s payoff function. In our case, the
sender has only one type, and the type of the adversary is
determined by the value of k. We denote the probability
that the adversary is of type k as qk. The sender’s optimal
equilibrium strategy can be computed using the following
linear program:

LP 4 Equilibrium Sender Strategy in a Bayesian game (un-
certain k)

Input: G, M , A, c, k, q
Output: f , {Rk}, {λk}

Minimize
f,{Rk},{λk}

|A|∑
k=1

qk

(
kRk +

∑
a∈A

λk
a

)
subject to:

Rk ≥ rowa[M]f − ca − λk
a ∀a ∈ A, ∀k ∈ [1..|A|]∑

(v,u)∈E

fvu = bv +
∑

(u,v)∈E

fuv ∀v ∈ V \{t}

fuv ≥ 0 ∀(u, v) ∈ E

λk
a ≥ 0 ∀a ∈ A, ∀k ∈ [1..|A|]

Rk ≥ 0 ∀k ∈ [1..|A|]

This LP is similar to LP 1, except that instead of minimiz-
ing maximum adversary expected payoff for a specific value
of k, it minimizes the weighted sum of the expected rewards
over possible values of k, weighted by their probability. The
number of variables and constraints is still polynomial in n
and |A| and so this LP can be solved in polynomial time.
We must verify that in the Bayesian game, minimizing

the adversary’s maximum expected payoff also maximizes
the sender’s expected payoff.

Theorem 3. (f, {pk}) is a Nash equilibrium for the non-
zero sum game if and only if f minimizes the maximum
expected adversary payoff and {pk} maximizes the minimum
expected adversary payoff.

The proof is similar to the proof of Theorem 1, and we omit
it due to space constraints.
Even though the adversary knows his type (i.e., the cor-

rect value of k) he cannot use LP 2 to find his equilibrium
strategy since the sender does not know the exact value of
k. Instead, we can take the dual to the sender’s LP. Due to
space constraints we omit the exact description.

5. UNCERTAIN PAYOFFS
Another way in which the sender may be uncertain of the

adversary is by not knowing the payoffs and costs. Suppose
instead that he has a probability distribution r over possible
l payoff matrices and attack costs (types of adversaries).
For i ∈ [1..l], let ri be the probability that the adversary
is of type i with a harm matrix M i and cost of attacks ci.

LP 5 Equilibrium Sender Strategy in a Bayesian game (un-
certain M and c)

Input: G, M , c, k, r
Output: f , {Ri}, {λi}

Minimize
f,{Ri},{λi}

l∑
i=1

ri

(
kRi +

∑
a∈A

λi
a

)
subject to:

Ri ≥ rowa[M
i]f − cia − λi

a ∀a ∈ A, ∀i ∈ [1..l]∑
(v,u)∈E

fvu = bv +
∑

(u,v)∈E

fuv ∀v ∈ V \{t}

fuv ≥ 0 ∀(u, v) ∈ E

λi
a ≥ 0 ∀a ∈ A, ∀i ∈ [1..l]

The following linear program computes the sender’s optimal
equilibrium strategy:

As before, the adversary’s equilibrium strategy can be
computed by taking the dual of LP 5.

If we assign ri = 1 for every i ∈ [1..l] we get a linear pro-
gram which solves another interesting variant of our prob-
lem. Consider a game with one sender and multiple adver-
saries. The adversaries choose their strategies independently
of each other (i.e., no colluding). The adversaries have dif-
ferent harm matrices and costs for attacking nodes and the
total harm to the sender is the sum of the harm resulting
from each adversary’s attack. The payoff to each adversary
depends only on his own strategy and the sender’s strategy;
it does not depend on the strategies of any of the other ad-
versaries. For now, let’s assume that every adversary can
attack k nodes. By assigning ri = 1 for every i ∈ [1..l]
we get that LP4 finds the optimal equilibrium strategy for
the sender in the multiple adversaries game too! As for the
adversary’s equilibrium strategies we get an interesting ob-
servation: since the strategies can be computed by the dual
of LP4, they are in fact correlated. Even though the adver-
saries choose their strategies independently of each other,
due to the strategic consideration they behave as if they
coordinate their moves.

6. RELATED WORK
Problems similar to the one we address in this paper have

been studied in operations research [16, 7], robotics [6, 2],
and multiagent systems [15, 8]. Many of these have also
taken the perspective of the player who selects nodes or
edges in the network to impair the other player who chooses
paths through the network. The study of network interdic-
tion [16, 7] looks at problems where an interdictor chooses
edges or nodes to damage or destroy destroy (“interdict”)
in order to impair the ability of an enemy moving through
the network, for example for by forcing it to take longer
paths [7]. An early study of single source, single sink zero-
sum games where the interdictor interdicts a single edge
found that the equilibrium strategy is to only interdict edges
in the minimum cut [16]. Similar results were found in net-
work routing settings [3], and more recently in games where
multiple edges can be interdicted[15, 8]. In evader-pursuer
games [6, 2], both players move through the network. In
path disruption games [1] multiple cooperative agents work

together to interdict an adversary, in contrast to our setting
where both sides are assumed to be monolithic players.
In most of these related problems, the payoff depends on

the probability that at least one attack occurs on a pathway;
multiple attacks on the same pathway either are not possible
or incur no additional penalty. This models situations like
placing checkpoints to intercept the sender; once caught, the
sender cannot be caught again. In contrast, in our problem
the same pathway may be subject to multiple attacks or a
single attack may affect multiple edges on the same path-
way, resulting in additional harm. This is useful for settings
where the sender continues after an attack, as when convoys
fight their way through ambushes or robots clear obstacles.
Games with similar payoffs have been solved in the context
of communication networks using linear programming [12]
and Markov Decision Processes using oracle algorithms [11].
However, these approaches have assumed zero-sum games.
Stackelberg games [13, 15] have recently been a common

framework for security where patterns of behavior may be
observed and learned by the adversary, as opposed to more
traditional simultaneous games[3, 10]. Stackelberg games
generally allow the leader to find equilibrium strategies with
higher payoff than in a simultaneous game, but only in non-
zero sum games [17, 14]. Computing the optimal strategies
to commit to is solvable in polynomial time in the normal
form game [4], but this is not practical in our games which
have exponential-sized strategy spaces. The traditional so-
lution concept considered in all of these is the strong Stack-
elberg equilibrium, which is questionable for the worst-case
reasoning common in security settings and is not appropri-
ate for the network security games we consider.

7. CONCLUSIONS AND FUTURE WORK
In this paper we considered non-zero sum network secu-

rity games where the adversary incurs costs to attack the
network. We proved that the equilibria in this non-zero sum
game correspond exactly to the equilibria in a related zero-
sum game, and used this insight to develop linear programs
(LPs) to find the equilibrium strategies. While the strategies
were the same as in the zero-sum game, the payoffs were not,
which allowed the sender to benefit by committing. We in-
troduced a new Stackelberg equilibrium, the locally optimal
inducible Stackelberg equilibrium (loptISE) that is particu-
lary well suited for network security games, and provided a
polynomial time algorithm for calculating the way in which
the sender can deviate from an equilibrium strategy to get
achieve strategy profiles arbitrarily close to the loptISE. We
also found LPs to solve for equilibria in Bayesian games
where the sender is uncertain of capabilities, payoffs, and
costs of the adversary he faces.
In future work we seek to extend the Stackelberg frame-

work to our Bayesian games. Commitment is computation-
ally more difficult in Bayesian normal form games, so it will
be interesting to see if we can further leverage the payoff and
network structure to find polynomial time algorithms. We
will also try to extend our results on loptISE to a globally
optimal equilibrium, which seems possible given the relation-
ships between the simultaneous and Stackelberg equilibria in
the network flow security game.

Acknowledgments
This research has been sponsored in part by AFOSR MURI
award number FA95500810356 and in part by the U.S. Army
Research Laboratory and the U.K. Ministry of Defence un-
der Agreement Number W911NF-06-3-0001.

8. REFERENCES
[1] Y. Bachrach and E. Porat. Path disruption games. In

AAMAS’10, 2010.

[2] N. Basilico, N. Gatti, and F. Amigoni. Leader follower
strategies for robotic patrolling in environments with
arbitrary topologies. In AAMAS‘09, 2009.

[3] S. Bohacek, J. Hespanha, and K. Obraczka. Saddle
policies for secure routing in communication networks.
In Decision and Control, 2002, 2002.

[4] V. Conitzer and T. Sandholm. Computing the optimal
strategy to commit to. In EC’06, 2006.

[5] P. S. Efraimidis and P. G. Spirakis. Weighted random
sampling with a reservoir. Information Processing
Letters, 97(5):181 – 185, 2006.

[6] E. Halvorson, V. Conitzer, and R. Parr. Multi-step
Multi-sensor Hider-Seeker Games. In IJCAI’09, 2009.

[7] E. Israeli and R. K. Wood. Shortest-path network
interdiction. Networks, 40:97–111, 2002.

[8] M. Jain, D. Korzhyk, O. Vanek, V. Conitzer,
M. Pechoucek, and M. Tambe. A double oracle
algorithm for zero-sum security games on graphs. In
AAMAS’11, 2011.

[9] C. Kiekintveld, M. Jain, J. Tsai, J. Pita, F. Ordóñez,
and M. Tambe. Computing optimal randomized
resource allocations for massive security games. In
AAMAS’09, 2009.

[10] M. Mavronicolas, V. Papadopoulou, A. Philippou, and
P. Spirakis. A network game with attackers and a
defender. Operation Research, 43(2):243–251, 1995.

[11] H. B. McMahan, G. J. Gordon, and A. Blum.
Planning in the presence of cost functions controlled
by an adversary. In ICML-2003, 2003.

[12] S. Okamoto, P. Paruchuri, Y. Wang, K. Sycara,
M. Srivatsa, and J. Marecki. Multiagent
communication security in adversarial settings. In
IAT’11, 2011.

[13] P. Paruchuri, J. Pearce, J. Marecki, M. Tambe,
F. Ordoñez, and S. Kraus. Playing games with
security: An efficient exact algorithm for Bayesian
Stackelberg games. In AAMAS’08, 2008.

[14] B. V. Stengel and S. Zamir. Leadership with
commitment to mixed strategies. Technical report,
London School of Economics, 2004.

[15] J. Tsai, Z. Yin, J. Kwak, D. Kempe, C. Kiekintveld,
and M. Tambe. Urban Security: Game-Theoretic
Resource Allocation in Networked Physical Domains.
In AAAI’10, 2010.

[16] A. Washburn and K. Wood. Two-person zero-sum
games for network interdiction. Operation Research,
43(2):243–251, 1995.

[17] Z. Yin, D. Korzhyk, C. Kiekintveld, V. Conitzer, and
M. Tambe. Stackelberg vs. nash in security games:
Interchangeability, equivalence, and uniqueness. In
AAMAS’10, 2010.

