
Measuring Plan Coverage and Overlap for Agent
Reasoning

John Thangarajah
RMIT University

Melbourne, Australia
john.thangarajah@rmit.edu.au

Sebastian Sardina
RMIT University

Melbourne, Australia
sebastian.sardina@rmit.edu.au

Lin Padgham
RMIT University

Melbourne, Australia
lin.padgham@rmit.edu.au

ABSTRACT
In Belief Desire Intention (BDI) agent systems it is usual for goals
to have a number of plans that are possible ways of achieving the
goal, applicable in different situations, usually captured by a con-
text condition. In Agent Oriented Software Engineering it has been
suggested that a designer should be conscious of whether a goal has
complete coverage, that is, is there some plan that is applicable for
every situation. Similarly a designer should be conscious of over-
lap, that is, for a given goal, are there situations where more than
one plan could be applicable for achieving that goal. In this paper
we further develop these notions in two ways, and then describe
how they can be used both in agent reasoning and agent system de-
velopment. Firstly we replace the boolean value for basic coverage
and overlap with numerical measures, and explain how these may
be calculated. Secondly we describe a measure that combines these
basic measures, with the characteristics of the coverage/overlap in
the goal-plan tree below a given goal. We then describe how these
domain independent measures can be used for both plan selection
and intention selection, as well as for guidance in agent system de-
velopment.

Categories and Subject Descriptors
I Computing Methodologies [I.2 Artificial Intelligence]: I.2.11 Dis-
tributed Artificial Intelligence—Intelligent Agents

General Terms
Algorithms, Measurement, Design

Keywords
Agent reasoning, intention selection, coverage, overlap, goals, plans

1. INTRODUCTION
In this paper we explore and refine the notions of coverage and

overlap as used in Agent Oriented Software Engineering [8] and
describe how they can be used for domain independent agent rea-
soning. The primary motivation for this work was the search for
general purpose characteristics that could sensibly be used to guide
intention selection in a BDI (Belief, Desire, Intention) agent sys-
tem. Typically an agent may well be pursuing multiple goals, and
at any point in time it must decide which intention it will progress

Appears in: Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2012),
Conitzer, Winikoff, Padgham, and van der Hoek (eds.), June, 4–8, 2012,
Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

in the next step. Importantly, the approach we take allows all com-
plex computations to be done at compile time, thus retaining the
important soft real-time aspect of agent systems.

Existing agent platforms such as JACKT M1 offer a choice be-
tween round robin which does a fixed number of steps on each in-
tention in turn, or FIFO which basically uses a queue, finishing one
intention and then moving to the next. Some systems such as JAM
[6] also allow a priority or utility on goals and/or plans which can
be used to order the intention queue. AgentSpeak(XL) [1], AgentS-
peak(RT) [13] and TAEMS [5] all use time related information to
prioritise the scheduling of intentions, while [15] explores dynamic
changes to the priority depending on temporal information. How-
ever many standard agent programming languages do not include
temporal information - neither when a goal should be achieved by,
nor how long a plan or goal can be expected to take. Utility infor-
mation is also typically unavailable, and requiring a programmer
to provide this can be problematic. To our knowledge there is no
work which provides any non-temporal general purpose heuristic
for intention selection, which does not require user provided prior-
ities or utilities. Agent programming language definitions such as
AgentSpeak [9] or CANPLAN [10] typically define only how to
step individual intentions and remain agnostic about how to select
the particular intention to be progressed.

The intuition behind this piece of work is that (all else being
equal) if we have a number of intentions which we are able to
progress at any time point, we will prefer to progress the one which
we believe has fewest possible successful executions. That is, the
one most vulnerable to becoming unable to be successfully exe-
cuted due to decisions taken in executing other intentions. Prefer-
ring such intentions ensures that choices made in pursuing an alter-
native intention do not eliminate the relatively fewer available ways
to achieve such an intention. In order to realise this intuition we use
the concept of coverage. In the Agent Oriented Software Engineer-
ing context, the Prometheus methodology [8] encourages develop-
ers to specify whether a goal has full coverage or not by considering
whether for any situation, there can be no applicable plan. In this
work we specify coverage as a fraction of the space of all possible
models – that portion of the state space for which there is some
applicable plan. We calculate this fraction using model counting to
ascertain firstly the total number of models in the domain of con-
cern; and secondly the number of models in which a single plan
and a set of plans are applicable in using the context conditions of
the relevant plans.

As we will discuss in section 3, this Basic Coverage must be
further refined to give a Coverage Measure based on the hierarchy
below the goal as well as the immediate relevant plans. As plans
are selected, and paths followed, it may be the case that additional

1http://aosgrp.com/products/jack/

constraints are introduced in sub-plans which in fact means that the
applicability space indicated by the context of a plan is reduced fur-
ther. For example (see figure 2), consider a goal to Travel, with 3
plans: WalkPlan, TramPlan and FlyPlan. Walk has the context con-
dition distance is short and weather is fine; Tram has the context
condition distance is short and weather is not fine; Fly has the con-
text condition distance is long. Now assume the TramPlan has a
sub-goal GetTimetable which has 3 possible plans: one with con-
text that it is a weekday and not a public holiday, one with context
that it is a weekend but not Christmas or Good Friday, and another
that it is a public holiday but not Christmas or Good Friday. Here
we see that once plans are decomposed there is no decomposition
possible for the case of short distance, not-fine weather and Christ-
mas day. Thus the apparent full coverage at the top level goal is
compromised. Our Coverage Measure modifies the Basic Cover-
age to account for such compromises in the tree below.

In section 4, we define a measure of overlap to capture the in-
tuition that in the case where coverage is identical, we are more
likely to succeed if a larger part of the state space has alternative
plans available in the event that the chosen plan fails (perhaps due
to stochastic causes, or maybe because of environmental changes
outside of the agent’s control).

In section 5, we discuss how these measures can be used for
several reasoning tasks, including the intention selection which was
the original motivation for the work. The more refined approach to
coverage can also enable analysis of agent software to identify and
alert the developer to places where the apparent Basic Coverage is
substantially reduced once the Coverage Measure which takes into
account the hierarchy below is considered. Plan selection is another
task which can utilise these measures.

Identification and careful specification of domain independent
characteristics can provide the basis for additional power in the
next generation of agent systems. Coverage and overlap are im-
portant such characteristics and this work provides the foundations
for understanding both how to compute them and how they can be
used.

2. MEASURING BASIC COVERAGE
We assume the basic standard plan rules typical for agents in the

BDI paradigm where G : ψ ← P, meaning that plan P is a rea-
sonable plan for achieving goal G when (context) condition ψ is
believed true. Though different BDI languages offer different con-
structs for crafting plans, most allow for sequences of domain ac-
tions that are meant to be directly executed in the world (e.g., lifting
an aircraft’s flaps), and the posting of (intermediate) sub-goals !G′

(e.g., obtain landing permission) to be resolved. Sub-goals posted
during the execution of a plan are resolved via the plan library.
When a plan is selected for realising the achievement of a partic-
ular goal, it is placed into the intention base2 for execution. The
execution of a BDI system can be seen then as a context sensitive
sub-goal expansion, allowing agents to “act as they go” by making
plan choices at each level of abstraction with respect to the current
situation.

There are then two key decisions an intelligent BDI agent is re-
quired to make on an ongoing basis. The first is, which intention
from the intention base to progress at each execution cycle. The
second is, given a pending goal to be addressed (either completely
new or arising from an existing intention), which plan among the
available ones in the library to select for execution.

In deciding which plan to select to address a given goal, a BDI
system relies on the context condition of plans. The context con-

2we describe the structure of the intentions further in section 5.

dition ψ of a plan G : ψ ← P encodes the domain knowledge of
when procedure P is an adequate approach to address G. Context
conditions are generally formulae in some logical language. For
simplicity, at this point, we consider a BDI agent system that is
programmed relative to some finite propositional language P.

Given a goal G, let Pl(G) be the set {P1, . . . , Pn} of alternative
plans for achieving G, the so-called relevant plans for G. The first
thing we are interested in is to know, and compute the coverage of
each relevant plan (and even of the goal G itself), that is, in how
many world situations an agent will be able to use a plan (or re-
solve a goal). To make this notion concrete, we recast the cover-
age problem as that of model counting (or #SAT) problem [4], that
is, the problem of computing the number of models for a given
(propositional) formula – the number of distinct truth assignments
to variables for which the formula evaluates to true. As standard,
for a propositional formula ϕ, we will use #ϕ to denote the model
count of ϕ. The model counting problem generalizes SAT and is
the canonical #P-complete problem.

Coverage:
So, given a plan-rule G :ψ← P, we define

A(P) = #ψ

to be the number of models in which P is applicable (when no am-
biguity arises, we use the plan-body P to refer to the whole plan-
rule and ψP to refer to the corresponding context condition). For
example, for plan P1 in Figure 1,A(P) denotes the area a+e. When
P is the language in which context conditions are written, we use
S T = 2P to denote the set of all possible worlds (i.e., models), in
the domain of concern. Hence, a single plan as above has a Basic
Coverage:

C(P) =
A(P)

S T

Note that 0 ≤ C(.) ≤ 1.
The Basic Coverage can be generalized to a set of plans S in a

straightforward manner as follows (recall ψX refers to the context-
condition of plan X):

A(S) = #(
∨
P∈S

ψP).

Considering Figure 1, A({P1, P2, P3}) denotes the areas a + c +

d + e + f + g + h. As before, the Basic Coverage of a set of plans S
is defined as:

C(S) =
A(S)

S T

Overlap:
Besides the coverage, we are also interested in overlap, which in
terms of Agent Oriented Software Engineering is when there are
two or more plans applicable in the same situation to achieve a
particular goal. For example, in Figure 1 the region ‘e’ is the state
space covered by both plan P1 and P4. The greater the overlap,
the greater the chance of another plan being applicable in the event
that one fails, thus providing flexibility and robustness to the whole
system. The Basic Overlap of a set of plans can be easily defined
as:

O({P1, . . . , Pn}) = #(φ1 ∧ . . . ∧ φn)

It is not difficult to see that all above definitions for coverage
and overlap can be computed using model counting solvers. Be-
cause the reasoning we are interested in will be done offline and
not at BDI execution time, one could make use of exact counting

Figure 1: Illustration of state coverage and overlap of 4 alter-
nate plans for achieving a goal.

algorithms, either DPLL-style exhaustive search or those based on
“knowledge compilation" [4]. In addition, we observe that, unlike
in many SAT/#SAT applications, context conditions in a BDI appli-
cation are not of a combinatoric nature, and hence we expect exact
model counting algorithms to perform well enough for offline pre-
processing. Nonetheless, if time is an issue, one could always rely
on available approximate counting techniques that provide fast es-
timates. Some of those techniques come with no guarantees (e.g.,
ApproxCount [14]), while some methods provide lower or upper
bounds with a correctness guarantee, often in a probabilistic or sta-
tistical sense (e.g., SampleCount [3]).

We close this section by noting that what we have done so far is
to define the coverage and overlap of BDI plans as a model counting
problem at the basic level. That is, we have not considered the fact
that BDI plans can, and most often will, have sub-goals. This calls
for a more adequate measure that considers the plans relevant for
those sub-goals and that is defined in terms of the whole goal-plan
hierarchy implicit in every BDI plan library. This is the subject of
the next section.

3. COVERAGE MEASURE OF GOAL-PLAN
HIERARCHIES

In this section, we describe the algorithms for calculating a mea-
sure of coverage for goals (and plans) considering the goal-plan
hierarchies. By goal-plan hierarchy we refer to the implicit goal-
plan structure that is present in the plan library of BDI systems –
goals are achieved by a set of alternate plans, and each plan con-
tains sub-goals or actions,3 where each sub-goal in turn is handled
by a set of plans. Figure 2 illustrates an example of a goal-plan tree
structure based on our motivating example from Section 1. We note
we restrict our attention to plan libraries having no cycles.

We want to calculate a Coverage Measure for goals which mod-
ifies the Basic Coverage defined in the previous section based on
the goal-plan hierarchy beneath each plan of the goal. As men-
tioned previously, an apparently high Basic Coverage may be com-
promised by lower coverage in the underlying tree. We take this
into account when determining the Coverage Measure of a goal as
follows (we use the diagram illustrated in Figure 1).

Exclusive Coverage and Exclusive Overlap.
Firstly we define two notions to allow us to speak about the num-

3Messages to other agents are regarded as actions for the purpose
of this paper.

ber of models in each of the types of region a–h in Figure 1. We
define the notion of Exclusive Coverage (EC(G, P)) of a plan, P,
with respect to a goal, G, to capture the number of models in which
P is exclusively applicable (i.e. ψP is exclusively true), as defined
as in Equation 1. For example, regions ‘a’, ‘b’, ‘c’ and ‘d’ in Figure
1.

We define Exclusive Overlap(EO(G, S)) in Equation 2 to capture
the number of models in the overlapping area of all plans in some
group S with respect to a goal G. Note that the exclusive overlap for
a group of plans refers to the number of models in the region that
is exclusively covered by all of the plans in that group only and
no other plan. For example, for the group {P2,P3} the exclusive
overlap region is ‘g’ and for the group {P2,P3,P4} it is ‘h’.

Recall from the previous section thatA(P) is the number of mod-
els in which the plan P is applicable (similarly,A({P1, . . . , Pn}) for
a set of plans), and that S T is the total number of models in the
domain of concern.

EC(G, P)4 =
A(Pl(G)) −A(Pl(G) \ {P})

S T
(1)

EO(G, S)5 =
A(Pl(G))) −A(Pl(G) \ S) −

∑
P ∈ S EC(G, P)

S T
(2)

Note that if a plan has no overlap with the other plans, then its
basic and exclusive coverage measures coincide.

Coverage Measure for Goals and Plans.
We now wish to define a Coverage Measure for a goal by sum-

ming these separate regions, appropriately discounted with regard
to the Coverage Measure of the underlying tree.

The exclusive coverage areas are discounted by the Coverage
Measure of the relevant plan (which captures the Coverage Mea-
sure of its sub-goals). The exclusive overlap areas (regions ‘e’,‘f’,‘g’
and ‘h’) are discounted by the Coverage Measure of the plan with
the highest Coverage Measure of that group. This is because when
there is an overlap between plans all of them are applicable for that
space and the agent would always choose the plan with the highest
Coverage Measure (i.e. highest chance of success). The Coverage
Measure of a goal G, denotedCM(G), is therefore the addition of the
Coverage Measures of the exclusive coverage regions of each plan
of G and the Coverage Measures of the exclusive overlap regions
of each grouping of plans, with the appropriate discount factors de-
scribed above. This is defined as follows:

CM(G) =∑
P ∈ Pl(G)

EC (G, P) × CM(P) +∑
S ∈ P≥2 Pl(G)

EO (G, S) ×max ({CM (P) | P ∈ S }).
(3)

The Coverage Measure of a plan P, denoted CM(P) and shown
in Equation 4, is defined as the product of the Coverage Measures
of its sub-goals, where Sg(P) is the set of sub-goals within the body
of plan P. We take the product since for a plan to succeed all the
sub-goals must be achieved, and we assume that the success (with
respect to coverage) of each sub-goal is independent of each other’s
success. Using probability theory, the probability of two indepen-
dent events occurring together (in parallel or in sequence) is the
4In terms of model counting, as presented in Section 2, EC(G, P)
can be expressed as #(ψP ∧

∧
P′∈Pl(G)\{P} ¬ψP′).

5In terms of model counting EO(G, S) can be expressed as
#(

∧
P∈Π ψP ∧

∧
P′∈Pl(G)\Π ¬ψP′).

Figure 2: Example coverage calculation for a goal. 7

product of the individual probabilities of each event. A plan with
no sub-goals (that is, a leaf plan in a goal-plan tree with only ac-
tions) has a Coverage Measure of 1.

CM(P) =

1 if Sg(P) = {}∏
G ∈ Sg(P)

CM(G) otherwise (4)

In the above Coverage Measure for a plan, except for the case
where the sub-goals have a Coverage Measure of 1, the more sub-
goals a plan has the lower the Coverage Measure of that plan. As
stated above, this is due to the fact that the more the agent has to
achieve the lesser the chance of success. This highlights the impor-
tance that as plans are modularized into sub-goals6, it is important
to consider the individual coverage of each of the sub-goals striving
to achieve full coverage whenever possible.

Figure 2 illustrates the above calculations applied to the travel
goal example introduced in Section 1. As mentioned then, if we
only considered the coverage of the immediate plans of the top level
goal, the goal would have full coverage (0.25 + 0.25 + 0.5 = 1).
However, due to the incomplete coverage at the lower levels (there
is no ‘Tram’ plan decomposition for ChristmasDay or GoodFriday)
this value is reduced when Coverage Measures are calculated.

4. OVERLAP MEASURE OF GOAL-PLAN
HIERARCHIES

We now consider how an Overlap Measure should be calculated,
using a similar notion of influence from the underlying goal-plan
tree, as with our Coverage Measure. We recall that overlap is useful
in the case of plan failure, so an alternative plan can be tried in the
event that one fails. Hence, overlap can be seen as a measure related
to likely success of the goal with respect to failure recovery.

Recall from Section 2 that the overlap of a goal is the overlap
between the plans of the goal. That is, the models in which more
than one of the plans are applicable in. We recall also that Exclusive

6This is often the case when developing agent systems.
7Note that this is not a complete example and is a simplified ver-
sion for illustration and clarity of the Coverage Measure calcula-
tions. Similarly, we have made assumptions about the number of
public holidays in the year and the overlap of public holidays with
weekends and weekdays.

Overlap of a set of plans relative to a particular goal (EO(G, S)) is
defined in Equation 2.

In order now to calculate our Overlap Measure for a goal, taking
account of the underlying tree, we will:

1. Firstly, sum the Exclusive Overlap count of the individual re-
gions in all combinations of plans in Pl(G), relative to
A(Pl(G))8, multiplied by the average of the Coverage Mea-
sure of the plans involved. We discount using the Cover-
age Measure, as the overlap is only of value to the extent
that there is coverage, and we consider the average Coverage
Measure of the group of plans and not the maximum Cover-
age Measure, since overlap is beneficial in the event of plan
failure hence the success of all the plans needs to be consid-
ered.

2. Secondly, in order to capture the amount of overlap in the tree
below each plan of the goal, we add the sum of the Overlap
Measures of the plans of the goal (Pl(G)). The Overlap Mea-
sure of each plan (Equation 6) is determined by the sum of
the Overlap Measures of the sub-goals of the plan (if any).

This is defined as follows:

OM(G) = (5)∑
S ∈ P≥2 Pl(G)

EO(G, S)
S T

× AVG
(
{CM(P) | P ∈ S }

)
+

∑
P∈Pl(G)

OM(P)

Equation 6, defines the Overlap Measure of a plan. Unlike in
coverage, where the coverage measure of sub-goals discount the
coverage measure of the plan, in overlap we are concerned with
the total overlapping spaces in all the sub-goals (that is, the tree
beneath the plan) to provide a measure related to success in the
event of failure.

OM(P) =
∑

G ∈ Sg(P)
OM(G) (6)

We note that whereas CM is always between 0 and 1, the Overlap
Measure is ≥ 0.

In the above Overlap Measure we do not distinguish between the
number of plans that overlap a particular region of the state space
(for example, in Figure 1 region ‘e’ is overlapped by 2 plans, and
region ‘h’ is overlapped by 3 plans). Although having more plans
overlapping the same space may seem better in terms of recover-
ing from multiple failures, this depends on how much failure is
expected and it is not clear that it makes sense to consider such
a level of detail. However, if desired or considered important for
a particular application, Equation 5 can be modified to weight the
Overlap Measure of each exclusive overlap region proportionally
to the number of plans in the overlap, by replacing term EO(G, S)
with |S | × EO(G, S).

We note that a property of our definition of the Overlap Measure
is that, under the assumption of complete coverage for each goal, it
does not matter how the overlap is distributed within the tree; nor
is the Overlap Measure affected by the form of the goal-plan tree
(i.e. depth or breadth). For example, in Figure 3 we assume that
the plans P3 and P4 overlap 30% of the relevant space for G2, but
have no sub-goals. In the tree under G1 this same overall amount
of overlap is distributed with 10% overlap between P1 and P2, and

8Note that we are concerned with a measure relative to the models
covered by (the plans of) the goal, not relative to S T as in coverage.

Figure 3: Example of possible distribution of overlap.

20% overlap between P2a1 and P2a2. Applying our formulae9 we
see that OM(G1) is equal to OM(G2).

If we assume constant, but less than full coverage then the Over-
lap Measure will be affected by the shape of the tree, and the dis-
tribution of the overlap within that tree, in a similar way to how
the Coverage Measure is affected. With trees such as are shown
in Figure 3 an overlap of say 40% in the tree of G2 will give a
greater Overlap Measure than the same size overlap at G2a, when
the Overlap Measure is propagated up to G1.

5. COVERAGE & OVERLAP FOR AGENT
REASONING

In this section we discuss the usage of the Coverage and Overlap
Measures that we have introduced in the previous section in agent
reasoning. In particular, how they may be used for plan selection,
intention selection and in agent design and development.

In order to perform some of the above reasoning, the goal-plan
structures for each top level goal and the Basic Coverage counts
(as defined in Section 2) can be constructed at compile time. (For
details on constructing goal-plan trees with annotations see [11].)

5.1 Plan Selection
The most straightforward use of the Coverage and Overlap Mea-

sures at execution time would be to select between a set of appli-
cable plans, that is, when there is more than one plan applicable
in the current state to achieve a goal. Intuitively, we would pre-
fer to choose the plan with the highest Coverage Measure, and if
Coverage Measures were equal, then the one with a higher Overlap
Measure. We capture this below.

Let App(G) be set of applicable plans of G (App(G) ⊆ Pl(G))
and Pref(P) be the preference of plan P. The Pref partial ordering of
plans within an applicable plan set is then defined by the following
rules.

1. ∀P, P′ ∈ App(G) CM(P) > CM(P′) =⇒ Pref(P) > Pref(P′);

2. ∀P, P′ ∈ App(G) CM(P) = CM(P′) ∧ OM(P) > OM(P′) =⇒

Pref(P) > Pref(P′).

These can readily be incorporated into a plan selection rule of an
agent language such as that of CAN [10].

9We note that the Coverage Measure of all the plans will always
be 1, because leaf plans are 1, and under the assumption of full
coverage at each goal, there is no discounting as one goes up the
tree.

5.2 Intention Selection
Intention selection is the issue of, if an agent has a number of in-

tentions (instantiated plan structures for achieving high level goals)
that are active, how should these be interleaved, and in particular
which one should be progressed at the next step. Programming lan-
guages such as AgentSpeak [9] typically define when an intention
is in a state that it can be progressed, along with how to progress it,
but do not define how to select between multiple intentions. As one
intention is progressed and its goals realised, it is of course possi-
ble that things are changed in such a way that other intentions are
unable to be successfully realised.

Current implementations of BDI agents typically use one of sev-
eral defaults in progressing intentions. One method (“FIFO”) is
to simply place intentions in a queue, and execute each in turn -
though moving to the next if one becomes idle for some reason.
Another approach is what is known as “round robin” where each
intention in the queue is progressed a fixed number of steps be-
fore moving onto the next. An additional option is to (somehow)
assign a priority or utility to intentions and order the queue accord-
ing to that “priority”. However, using priorities or utilities typically
requires substantial information to be provided by the developer,
which is generally onerous for anything more than a simple pri-
ority on high level goals. To our knowledge there is no principled
mechanism for determining this priority, that does not rely on either
temporal information, or programmer provided utilities.

We explain below how our Coverage Measure can be used to
select which intention to work on next, when the current intention
either finishes or becomes unprogressable.

When a goal is adopted as an intention, an instance of its goal-
plan tree is created and placed into the set of intentions (Γ) that the
agent wishes to accomplish. We refer to this instantiated goal-plan
tree as the execution-tree (ExTree) of that goal. As an intention
(that is, the adopted goal) is progressed10 the nodes of its execution-
tree are annotated as follows:

• When a plan is selected.

• When a plan completes. That is, when all its sub-goals and
actions complete.

• When a goal completes. That is, when at least one of its plans
completes.

• When a plan fails. That is, for an abstract plan when one of its
actions fail, and for a concrete plan when one of its sub-goals
fail.11

Figure 4 shows an example of a goal-plan tree (a) and a corre-
sponding execution-tree (b) that is partially executed with the above
annotations.

We define the function next(I), where I = ExTree(G), to return
the next step in the execution-tree of the adopted goal G. For ex-
ample, in Figure 4(b) the next(I) function would return the action
a4.

The intention structure Γ is then a set of execution-trees of the
corresponding top level goals, each execution-tree representing an
intention. An intention is said to be progressable if the next step of
the execution is either an action or a sub-goal for which there is at
least one applicable plan in the current state.

10or executed.
11In the interest of space we do not go into a definition of the various
reasons a goal could fail. For a fully usable language this requires
language constructs which are outside the scope of this paper, such
as tests on beliefs, which in turn require updates of beliefs, etc.

Figure 4: Illustration of goal-plan tree and execution tree.

When an intention I is progressed this involves processing the
next(I) in the execution-tree. If that item is an action, it is simply
executed. If it is a goal, then a plan is selected from the applicable
plan set for that goal and the next(I) becomes the first sub-goal
or action of that plan. It is here that when more than one plan is
applicable the coverage based plan selection mechanism described
earlier in this section may be used.

An intention is said to be finished when the root goal of the
execution-tree completes as described above, or fails.12 An inten-
tion is said to be unprogressable if it is in a waiting state. This can
be due to a wait for a message response, or some action executing
externally that needs to complete before proceeding. It may also in-
clude such things as an intention being blocked [10] or suspended
for some reason [12].

Once an agent has selected an intention for execution we assume
it will continue to be progressed until it is either finished, or be-
comes unprogressable. When this happens, a new intention must
be chosen to start executing. It is here that we will use our Cover-
age Measures.

The intention selection question is then, when the current inten-
tion finishes or becomes unprogressable, which progressable inten-
tion should be made current - or which progressable intention has
the highest priority. Our intuition is that we will prefer to prioritise
things with least coverage, as these are the ones that have fewer pos-
sibilities for success. The Coverage Measure for an intention that
has not yet started to execute is simply the Coverage Measure of the
goal, relevant to that intention, as described in Section 3. However,
we also need a Coverage Measure for a partially executed intention,
that is an execution-tree that has been progressed, which we obtain
by building on our previous definitions as follows:

1. The Coverage Measure of a goal, if a plan has been selected,
is the Basic Coverage of the chosen plan (C(P)), multiplied
by the Coverage Measure of that plan (CM(P)).

CM(G) =
(
C(P)•CM(P)

)
if ∃P : chosen-plan(G, P) (7)

2. The Coverage Measure of a (possibly partially executed) plan
is the product of the Coverage Measures of the goals still to

12As with goal failure, due to space limitations and the focus of
this paper, we do not go into a precise definition of failure of an
intention.

be achieved of that plan.

CM(P) =

1 if Sg(P) = {}∏
g ∈ Sg(P) ∧ not complete(g)

CM(g) otherwise.

(8)

This Coverage Measure for partially executed intentions (Equa-
tion 7) captures our strong preference, once we have made a plan
selection, to succeed that plan without failure or backtracking. Thus
we no longer consider the coverage of alternative plans in measur-
ing the coverage of a goal, where a plan selection has been made.
It also captures the fact (in Equation 8) that coverage of sub-goals
which have already succeeded is irrelevant. For example, in Figure
4(b), the shaded region indicates the part of the goal-plan which is
considered when calculating the Coverage Measure of the partially
executed intention.

The following rules now provide a priority ordering on progress-
able intentions which can be applied as needed, but in particular
for choosing a new current intention when an intention finishes or
becomes unprogressable.

Recall Γ is the set of intentions (execution-trees) and that the next
step of an intention (progressed in the corresponding execution-
tree) is either an action or sub-goal. So, let

• Act(next(I)) be true when the next step of intention I is an
action;

• S g(next(I)) be true when the next step of intention I is a sub-
goal;

• Current(I) be true when I is the current intention being pro-
gressed;

• G(I) be the top level goal of the intention I, and Pr(I) be the
priority of intention I.

The relative priority ordering of intentions are established by the
following rules applied in the oder specified below:

1. ∀I, I′ ∈ Γ Current(I) =⇒ Pr(I) > Pr(I′).

2. ∀I, I′ ∈ Γ Act(next(I)) ∧ S g(next(I′)) =⇒ Pr(I) > Pr(I′).

3. ∀I, I′ ∈ Γ CM(G(I)) > CM(G(I′)) =⇒ Pr(I) > Pr(I′).

4. ∀I, I′ ∈ Γ OM(G(I)) > OM(G(I′)) =⇒ Pr(I) > Pr(I′).

Our first priority is then to maintain focus as long as is possi-
ble while the second is to execute any actions that are pending, as
it makes no sense to keep decomposing plans without executing
the actions in as timely manner as possible. The third priority then
captures the intuition that if one has an intention that has relatively
fewer spaces/models in which it can be progressed through to com-
pletion, then we prefer to progress it when we have the opportunity,
as opposed to an intention which has a higher Coverage Measure,
representing a larger number of models incorporating successful
completion. Finally, if other things are equal, we prioritise doing
first the one that has a smaller Overlap Measure - i.e. the one with
fewer options for recovery.

5.3 Agent Design and Development
When specifying events (goals) within an agent design, using

the Prometheus methodology [8] and the supporting Prometheus
Design Tool (PDT) [7] developers specify (amongst other things)
the goal-plan trees for each agent. During this process they are

prompted to consider the coverage and overlap properties of the
goal. It is suggested developers note if there is overlap, on what
basis one of the overlapping plans will be chosen, and if there is
not full coverage, which are the situations where there will be no
applicable plan. This is because both lack of full coverage, and un-
intended overlap are common causes of bugs in implementations
of BDI agents systems. In this section we identify areas in which
the the coverage and Overlap Measures we have defined may be
beneficial.

Coverage Measures to identify potential flaws in the design:
With the new measures defined in this paper it is now possible to
alert developers to cases where lack of coverage elsewhere in the
goal-plan tree compromises full (or a partial high level) coverage
at a top level goal. Areas where there is a significant difference
between the Basic Coverage of a goal, and the Coverage Measure
would be candidates for further investigation.

Overlap as a measure of robustness of goals:
Overlap, as discussed, is related to the potential to recover from
failure during execution, selecting an alternative plan to try to achieve
some failed sub-goal. Once overlap figures are obtained, at compile
time, it becomes possible to report which goals have a relatively
low Basic Overlap and/or Overlap Measure. Alternative overlap-
ping plans are one way of making a system robust to stochastic
failure. While an important high level goal may have a high Basic
Overlap to support such failure recovery, a low Overlap Measure
may indicate potential for increasing robustness in the tree below.

Overlap for debugging:
Overlap measures can also be useful in potential debugging. As
noted previously, the reason for prompting developers to consider
overlap is partly because unintended overlap is a common cause of
error. If a system is failing at some top level goal, a non-zero Over-
lap Measure may indicate that the tree below that goal is a potential
place to examine for error.

5.3.1 Abstract Coverage Measures
As mentioned above during the detailed design phase of develop-

ing agent systems, the developer specifies the goal-plan tree and for
each goal indicate whether full coverage and overlap is expected.
However, currently these attributes are not used for any automated
reasoning during design, although they are used for testing and de-
bugging. The coverage and overlap measures as we have defined
them in this paper require at least a precise specification of context
conditions, along with the domain and range of all variables used,
which is not necessarily available at design time.

However, the Coverage Measure that we have defined can be
abstracted to give some useful information at design time, using
only boolean values (True, False as currently provided by the
developer) for initial measures, and three values (True, False,
Uncertain) for calculated measures. These measures can then in-
dicate places where full Basic Coverage is compromised by the
tree below and can call the designer’s attention to possible areas for
further examination prior to any implementation. We describe this
abstraction below.

In order to specify the rules for this more Abstract Coverage
Measure (CA

M(.)) we first define an ordering over the three values
we will use:

True > Uncertain > False

The rules are then as follows:

1. The Abstract Basic Coverage of a goal is True, for full cov-

Figure 5: Example Abstract Coverage Measures for design

erage or False otherwise.

CA(G) =

True if there is full coverage indicated
False otherwise

(9)

2. The Abstract Coverage Measure of an plan is the minimum
of the Coverage Measure of its sub-goals or True if the plan
has no sub-goals.

CA
M(P) =

True if Sg(P) = {}

MIN
{
CA

M(g) | g ∈ S g(PA)
}

otherwise
(10)

3. The Coverage Measure of a goal is as follows (here, T=True,
F=False, and U=Uncertain):

CA
M(G) =

T if ∀P ∈ Pl(G) C

A
M(P) = T ∧ CA(G) = T

F if ∀P ∈ Pl(G) C
A
M(P) = F ∨ CA(G) = F

U otherwise
(11)

Figure 5 illustrates the propagation of these simplified Coverage
Measures in a goal-plan tree. The Uncertain Coverage Measure
value thus identifies the case where there is some path(s) with full
coverage through the entire tree, but ensuring full plan coverage
is dependent on plan selections. For example, in Figure 5 the path
containing plan P2 has full coverage.

6. CONCLUSION
BDI Agent programming languages provide a powerful platform

for developing complex applications. They support the use of do-
main specific information, which makes them very suitable for real
and complex applications. However, their value also lies in the
generic reasoning that is incorporated into the execution engine,
independently from the domain based program. The key standard
features on which much of the success of the paradigm is based,
are hierarchical plan selection based on context conditions and per-
sistent goals with failure recovery. Additional generic mechanism
that can be incorporated into the execution engine to make these
systems smarter, without requiring application specific coding, are
of interest to the agent development community. In trying to iden-
tify such opportunities it is also important to be cognisant of the

need to avoid overloading the developer with requirements to pro-
vide details which are not readily available.

In this work we have taken the concepts of coverage and overlap
that have been used in Agent Oriented Software Engineering and
refined these to support smarter agent systems. Importantly we do
not require any additional information from the developer or the
domain, beyond what is required in typical BDI agent development.
Also importantly, all the complex calculation can be done offline at
compile time, leaving only simple computational update processes
during execution.

The basis of our approach is the process to calculate, using model
counting, a numerical measure of the extent to which the set of
plans for a goal cover the relevant state space. We recognise how-
ever that apparently high coverage at the immediate level can be
compromised by lack of coverage in the sub-goals below. Conse-
quently we define a measure which takes account of this factor,
and discounts the immediate coverage based on the characteristics
of the underlying goal-plan tree. We apply a similar approach to
measuring overlap.

Having defined these measures we then show how they can be
used for both plan selection and intention selection at execution
time. In addition, we indicate how the measures can be used to
identify potential Software Engineering issues. Based on the quan-
titative approach developed we then abstract back to a qualitative
approach suitable for use during design, prior to full details being
available to calculate numerical Coverage Measures. This provides
better information than what is currently provided in agent design
methodologies.

In this work we use an idealised and simplified agent program-
ming language, and in particular we do not account for any de-
cisions coded within plan bodies. Consequently it is possible that
actual coverage is less than what is calculated with our method.
However, we do not consider this a substantial disadvantage, as it is
possible to replace test and action steps with new sub-goals whose
plans have the test condition and action precondition, respectively,
as context conditions. This would allow the coverage measure to
detect the otherwise hidden constraints. Under certain assumptions,
also, constraints in plan bodies could be automatically regressed to
plans’ context conditions (e.g., see [2]), though this is an orthogo-
nal problem and is out of the scope of this work.

We also acknowledge that we have not yet implemented the rea-
soning described, based on these measures, and so do not yet have
experience of their value in practice. Nevertheless, based on many
years practical experience, and work with industry partners, we are
convinced that these measures provide valuable information which,
either alone, or in combination with additional aspects, can further
improve the behaviour of autonomous intelligent agents.

Acknowledgments
We acknowledge the support of the Australian Research Council
under Discovery grant DP1094627.

7. REFERENCES
[1] R. H. Bordini, A. L. C. Bazzan, R. de Oliveira Jannone,

D. M. Basso, R. M. Vicari, and V. R. Lesser.
AgentSpeak(XL): Efficient intention selection in BDI agents
via decision-theoretic task scheduling. In Proceedings of
Autonomous Agents and Multi-Agent Systems (AAMAS),
pages 1294–1302. ACM Press, 2002.

[2] L. P. de Silva, S. Sardina, and L. Padgham. First principles
planning in BDI systems. In C. Sierra, C. Castelfranchi, K. S.
Decker, and J. S. Sichman, editors, Proceedings of
Autonomous Agents and Multi-Agent Systems (AAMAS),

volume 2, pages 1001–1008, Budapest, Hungary, May 2009.
IFAAMAS.

[3] C. P. Gomes, J. Hoffmann, A. Sabharwal, and B. Selman.
From sampling to model counting. In Proceedings of the
International Joint Conference on Artificial Intelligence
(IJCAI), pages 2293–2299, 2007.

[4] C. P. Gomes, A. Sabharwal, and B. Selman. Model counting.
In A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors,
Handbook of Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications, pages 633–654. IOS
Press, 2009.

[5] B. Horling, V. Lesser, R. Vincent, and T. Wagner. The Soft
Real-Time Agent Control Architecture. Autonomous Agents
and Multi-Agent Systems, 12(1):35–92, 2006.

[6] M. J. Huber. JAM: A BDI-theoretic mobile agent
architecture. In Proceedings of the Annual Conference on
Autonomous Agents (AGENTS), pages 236–243, New York,
NY, USA, 1999. ACM Press.

[7] L. Padgham, J. Thangarajah, and M. Winikoff. Prometheus
design tool. In Proceedings of the National Conference on
Artificial Intelligence (AAAI), pages 1882–1883, 2008.

[8] L. Padgham and M. Winikoff. Developing Intelligent Agent
Systems: A Practical Guide. Wiley Series in Agent
Technology. John Wiley and Sons, NY, USA, 2004.

[9] A. S. Rao. Agentspeak(L): BDI agents speak out in a logical
computable language. In W. V. Velde and J. W. Perram,
editors, Proceedings of the Seventh European Workshop on
Modelling Autonomous Agents in a Multi-Agent World.
(Agents Breaking Away), volume 1038 of Lecture Notes in
Computer Science (LNCS), pages 42–55. Springer, 1996.

[10] S. Sardina and L. Padgham. A BDI agent programming
language with failure recovery, declarative goals, and
planning. Autonomous Agents and Multi-Agent Systems,
23(1):18–70, 2011.

[11] J. Thangarajah. Managing the Concurrent Execution of
Goals in Intelligent Agents. PhD thesis, RMIT University,
Melbourne, Australia, 2004.

[12] J. Thangarajah, J. Harland, D. Moreley, and N. Yorke-Smith.
Suspending and resuming tasks in BDI agents. In
Proceedings of Autonomous Agents and Multi-Agent Systems
(AAMAS), pages 405–412, Estoril, Portugal, May 2008.

[13] K. Vikhorev, N. Alechina, and B. Logan. Agent
programming with priorities and deadlines. In Proceedings
of the Tenth International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages 397–404, 2011.

[14] W. Wei and B. Selman. A new approach to model counting.
In Proceedings of the International Conference on Theory
and Applications of Satisfiability Testing (SAT), volume 3569
of Lecture Notes in Computer Science, pages 324–339.
Springer, 2005.

[15] H. Zhang, S. Y. Huang, and Y. Chang. An agent’s activities
are controlled by his priorities. In Proceedings of the 2nd
KES International conference on Agent and multi-agent
systems: technologies and applications, KES-AMSTA’08,
pages 723–732, Berlin, Heidelberg, 2008. Springer-Verlag.

