
Programming Norm-Aware Agents

Natasha Alechina
School of Computer Science

University of Nottingham
Nottingham NG8 1BB, UK

nza@cs.nott.ac.uk

Mehdi Dastani
Department of Information and

Computing Sciences
Universiteit Utrecht

3584CH Utrecht, The
Netherlands

M.M.Dastani@uu.nl

Brian Logan
School of Computer Science

University of Nottingham
Nottingham NG8 1BB, UK

bsl@cs.nott.ac.uk

ABSTRACT
Normative organisations provide a means to coordinate the activ-
ities of individual agents in multiagent settings. The coordina-
tion is realized at run time by creating obligations and prohibitions
(norms) for individual agents. If an agent cannot meet an obligation
or violates a prohibition, the organisation imposes a sanction on the
agent. In this paper, we consider norm-aware agents that deliberate
on their goals, norms and sanctions before deciding which plan to
select and execute. A norm-aware agent is able to violate norms
(accepting the resulting sanctions) if it is in the agent’s overall in-
terests to do so, e.g., if meeting an obligation would result in an
important goal of the agent becoming unachievable. Programming
norm-aware agents in conventional BDI-based agent programming
languages is difficult, as they lack support for deliberating about
goals, norms, sanctions and deadlines. We present the norm-aware
agent programming language N-2APL. N-2APL is based on 2APL
and provides support for beliefs, goals, plans, norms, sanctions and
deadlines. We give the syntax and semantics of N-2APL, and show
that N-2APL agents are rational in the sense of committing to a
set of plans that will achieve the agent’s most important goals and
obligations by their deadlines while respecting its most important
prohibitions.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Programming Languages and Soft-
ware

General Terms
Languages, Theory

Keywords
Agent programming languages, Normative systems

1. INTRODUCTION
Normative organisations, e.g., [5], provide a means to coordinate

the activities of individual agents in a multiagent system. In a nor-
mative organisation, coordination is realised at run time by creat-
ing obligations and prohibitions (norms) for individual agents. An
obligation requires an agent to bring about a particular state of the
environment by a specified deadline, while a prohibition requires

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

the agent to avoid bringing about a particular state before a dead-
line. If an agent cannot meet an obligation or violates a prohibition,
the organisation imposes a sanction on the agent.

In general, norms imposed on an agent by a normative organisa-
tion may conflict with the agent’s existing goals. In such a situa-
tion, a rational agent must choose between its existing goals and the
norms imposed by the organisation. We say an agent is norm-aware
if it can deliberate on its goals, norms and sanctions before deciding
which plan to select and execute. A norm-aware agent is able to vi-
olate norms (accepting the resulting sanctions) if it is in the agent’s
overall interests to do so, e.g., if meeting an obligation would re-
sult in an important goal of the agent becoming unachievable. As
an example, consider an agent that has agreed to review papers for
a conference. The normative system in this case is the conference
organisation, and the sanction for not discharging reviewing obli-
gations by the review deadline may be reputational damage (e.g.,
being put on a blacklist). Let us further assume that the reputational
damage for being late with reviews for an important conference
such as AAMAS is greater than that incurred for being late with
reviews for informal workshops. A norm-aware rational agent may
still consider defaulting on its obligations to review for AAMAS if
it acquires a more important goal with a tighter deadline, such as
attending to some family emergency. Note that while we assume
the severity of sanctions (and hence the priority or importance of
obligations and goals) can be compared, their values are not nec-
essarily commensurable in the sense that we cannot say whether
being late with AAMAS reviews incurs the same sanction as being
late with reviews for, e.g., two informal workshops.

There has recently been considerable work on programming frame-
works for developing normative organisations [5, 14, 9]. Such
frameworks are often designed to inter-operate with existing BDI-
based agent programming languages, e.g., [2, 4]. However, pro-
gramming norm-aware agents in conventional BDI-based agent pro-
gramming languages remains difficult, as such languages typically
lack support for deliberating about goals, norms, sanctions and
deadlines.

In this paper we present a BDI-based agent programming lan-
guage N-2APL for norm-aware agents. N-2APL extends 2APL
[4] with support for normative concepts including obligations, pro-
hibitions, sanctions, deadlines and durations. We give the syntax
and operational semantics of N-2APL and explain how it supports
norm-aware deliberation. We show that agents programmed in N-
2APL are norm-aware rational, and that key assumptions under-
lying the design of N-2APL are necessary in the sense that if they
are relaxed, a N-2APL agent is either no longer norm-aware ratio-
nal, or the agent’s deliberation about goals, norms and sanctions is
intractable.

2. NORMATIVE SYSTEMS
We conceive a multiagent system as consisting of a set of agents

interacting with each other and with a shared environment. In nor-
mative multiagent systems, the interaction between agents and the
environment is governed by a normative exogenous organisation,
which is specified by a set of conditional norms with their associ-
ated deadlines and sanctions. Individual agents decide which ac-
tion to perform in the environment after which the state of the en-
vironment changes. Subsequently, the organisation evaluates the
environmental changes with respect to the conditional norms to:
determine any obligations to be fulfilled or prohibitions that should
not be violated by the agents (termed detached obligations and pro-
hibitions); determine any violations based on the deadlines of the
detached obligations and prohibitions; and impose any correspond-
ing sanctions. The role of the exogenous organisation is thus to
continuously 1) monitor the behaviour of agents, 2) evaluate the ef-
fects they bring about in the environment, 3) determine norms that
should be respected, 4) check if any norm is violated, and 5) take
necessary measures (i.e., imposing sanctions) when norms are vio-
lated. This continuous process is often implemented by a so-called
control cycle [5].

A conditional obligation is expressed as a tuple

〈c,O(ι, o), d, s〉

with the intuitive reading “if condition c holds in the current state
of the environment then there is an obligation for agent ι to estab-
lish an environment state satisfying o before deadline d, otherwise
agent ι will be sanctioned by updating the environment with s”.
In the conference reviewing example, a possible norm is to return
reviews for a paper assigned to a reviewer. An instance of such a
conditional norm could be represented as:

〈collect & pidAri, O(ri, pidRev),notify , BLri〉

which indicates that when a conference is in the review collection
phase (collect) and paper pid is assigned to reviewer ri (pidAri),
then the reviewer ri is obliged to return the review of paper pid
(pidRev) before the notification phase (notify) starts. Violating
this norm results in the reviewer being put on a blacklist (BLri),
damaging its reputation.

A conditional prohibition is expressed as a tuple

〈c, F (ι, p), d, s〉

with the intuitive reading “if condition c holds in the current state
of the environment, then it is forbidden for agent ι to establish an
environment state satisfying p before deadline d, otherwise sanc-
tion s will be imposed.” Unlike obligations, where a sanction is
incurred once if the obligation is not discharged by the deadline, in
the case of prohibitions, the agent incurs a sanction each time the
prohibition is violated. For example, if it prohibited to submit a
paper longer than 8 pages, the agent will incur a sanction (e.g., the
paper being rejected without review) each time it submits a paper
longer than 8 pages. In what follows, we consider the simpler case
of prohibitions without deadlines (i.e., prohibitions with an indefi-
nite deadline or with ⊥ as deadline).

As our focus is on an agent’s decision problem when operating in
a normative multiagent system, we ignore the working of the nor-
mative exogenous organisation, and simply assume an additional
step in the control cycle through which the organisation broadcasts
detached obligations and prohibitions in the form of events (i.e., a
set of normative events) to each agent to whom the norms are di-
rected. A detached obligation event broadcast to agent ι has the
form:

obligation(ι, o, d, s)

with the intuitive reading “agent ι is obliged to establish an en-
vironment state satisfying o before deadline d, otherwise it will
be sanctioned by updating the environment with s”. For example,
when a paper is assigned to a reviewer during the collection phase,
the organisation generates and sends the following (singleton) set
of detached obligations to the corresponding reviewer ri:

{obligation(ri, pidRev,notify , BLri)}

We assume that deadlines associated with detached obligations can
be mapped to real time values expressed in some appropriate units
that specify the time by which the obligation should be discharged.
For example, notify might map to the real time value “5pm on Fri-
day” which specifies the time by which the review should be re-
turned. Similarly, a detached prohibition event broadcast to agent ι
has the form:

prohibition(ι, p, s)

with the intuitive reading “the agent ι is prohibited from establish-
ing an environment state satisfying p, otherwise it will be sanc-
tioned by updating the environment with s”

Of course, obligations or prohibitions from a normative organi-
sation may conflict with an agent’s goals or with other obligations
or prohibitions it has already received (possibly from another nor-
mative organisation). For example, if paper reviewing and family
emergencies cannot be attended to concurrently, the agent needs to
schedule its intentions in some order, such as: first deal with the
emergency, then review paper 1, then review paper 2, etc. Some
schedules will be better than others. For example, if paper 1 has
an earlier review deadline than paper 2, and the agent still has suf-
ficient time after dealing with the emergency to review paper 1,
and (after reviewing paper 1) it still has time to review paper 2, the
schedule above may be optimal. On the other hand, if the agent
does not have enough time left to review both papers by their dead-
lines and reviewing paper 2 is a more important obligation (incurs
a greater sanction), then rationally it should review paper 2 rather
than paper 1 next.

We assume that an agent has a preference or priority ordering
over goals and sanctions that determines whether it is more impor-
tant (from the point of view of the agent) to, e.g., achieve a goal g or
to avoid the sanction s associated with an obligation or prohibition.
In the case of goals, the priority indicates the importance of achiev-
ing the goal state, while in the case of sanctions, the priority indi-
cates the importance of avoiding the sanction state, i.e., sanctions
that entail a smaller penalty for the agent will have lower priority.
Sanctions thus induce an order on obligations and prohibitions: the
priority of an obligation or prohibition is determined by the prior-
ity of the sanction that would be incurred if the obligation is not
discharged by its deadline or the prohibition violated.1 We assume
that an agent’s preferences over goals and sanctions are ordered on
an ordinal scale, i.e., that it is always preferable to achieve a higher
priority goal (or avoid a high priority sanction) than to achieve any
number of lower priority goals (or avoid any number of lower pri-
ority sanctions). (As we show in section 5, if this is not the case,
the agent’s deliberation about norms is intractable.)

If the agent’s goals and obligations are not jointly achievable or
its goals cannot be achieved without violating one or more prohi-
bitions, the agent uses the relative priority of goals and sanctions
to determine which goal(s) to drop or which sanction(s) to incur.
Following BOID [3], we will consider special cases of the priority
ordering and define them as specific agent types. For example, a
1Note that we do not assume that obligations are preferred or desir-
able states for agent; rather the agent is motivated by the avoidance
of sanctions rather than the achievement of obligations.

social agent can be characterized by a priority ordering that prefers
all obligations to its goals and a selfish agent can be characterized
by a priority ordering that prefers its goals over its obligations.

If the agent’s goals and obligations are not jointly achievable, a
norm-aware rational agent should schedule its intentions so as to
achieve goal and obligation states with highest priority. Program-
ming norm-aware rational agents is non-trivial, as it depends on
the deadlines of the goals and obligations, the plans the agent has
to achieve its goals and obligations, whether its plans violate any
prohibitions, the expected execution time of the agent’s plans and
the extent to which the plans can be executed in parallel.

3. THE LANGUAGE N-2APL
In this section we present N-2APL, an agent programming lan-

guage for norm-aware rational agents. N-2APL is a modification of
the agent programming language 2APL [4] which supports norma-
tive concepts including obligations, prohibitions, sanctions, dead-
lines and durations. We first briefly present 2APL, focusing on
those elements modified in N-2APL, before describing the extended
programming constructs of N-2APL and how it supports norm-
aware deliberation.

3.1 2APL: a Brief Summary
2APL is a BDI-based agent programming language that allows

the implementation of agents in terms of cognitive concepts such
as beliefs, goals and plans. A 2APL agent program specifies an
agent’s initial beliefs, goals, plans, and the reasoning rules it uses
to select plans (PG-rules), to respond to messages and events
(PC-rules), and to repair plans whose executions have failed
(PR-rules). The initial beliefs of an agent includes the agent’s
information about itself and its surrounding environment. The ini-
tial goals of an agent consists of formulas each of which denotes
a situation the agent wants to realize (not necessarily all at once).
The initial plans of an agent consists of tasks that an agent should
initially perform.

In order to achieve its goals, an 2APL agent adopts plans. A
plan consists of basic actions composed by sequence, conditional
choice, conditional iteration and non interleaving operators. The
non interleaving operator, [π] where π is a plan, indicates that π is
an atomic plan, i.e., the execution of π should not be interleaved
with the execution of any other plan. Basic actions include exter-
nal actions (which change the state of the agent’s environment);
belief update and goal adopt actions (which change the agent’s be-
liefs and goals), and abstract actions (which provide an abstraction
mechanism similar to procedures in imperative programming).

Planning goal rules allow an agent to select an appropriate plan
given its goals and beliefs. A planning goal rule 〈pgrule〉 consists
of three parts: the head of the rule, the condition of the rule, and
the body of the rule. The body of the rule is a plan that is generated
when the head (a goal query) and the condition (a belief query) of
the rule are entailed by the agent’s goals and beliefs, respectively.
Procedure call rules are used to select a plan for an abstract action
and to handle external events. Plan repair rules are used to revise
plans whose executions have failed.

3.2 N-2APL Extensions and Restrictions
To support norm-aware agents, N-2APL extends some key con-

structs of 2APL and restricts or changes the semantics of others.
We briefly describe these changes below. The syntax of N-2APL is
shown in Figure 1 in EBNF notation. Programming constructs in
bold are exactly the same as in 2APL. Due to lack of space, we omit
the detailed specification of these programming constructs, which
can be found in [4].

Beliefs in N-2APL are exactly the same as in 2APL and consist
of Horn clause expressions. Goals in 2APL may be conjunctions of
positive literals. In N-2APL we restrict goals to single atoms and
extend their syntax to include optional deadlines. A deadline is a
real time value expressed in some appropriate units which specifies
the time by which a goal should be achieved. We write a goal g
with a deadline d as g : d. If no deadline is specified for a goal as
part of the agent’s program, we assume a deadline of infinity.

In N-2APL, non-atomic plans are the same as in 2APL and con-
sist of basic actions composed by sequence, conditional choice, and
conditional iteration operators. However in N-2APL we change the
interpretation of the non interleaving operator: [π] indicates that
the execution of π should not be interleaved with the execution
of other atomic plans (rather than not interleaved with the execu-
tion of any other plan as in 2APL). In N-2APL, atomic plans are
assumed to contain basic actions that may interfere only with the
basic actions in other atomic plans, e.g., belief update actions that
update the same belief(s), or external actions that change the posi-
tion of the agent etc. For example, for a particular agent, reviewing
a paper may require the agent’s undivided attention and cannot be
executed in parallel with reviewing another paper. However other
plans, such as having lunch and taking a train can be executed in
parallel (the agent can have a sandwich on the train while review-
ing the paper). As illustrated by the example, in N-2APL, we also
allow external actions in different non-atomic plans to be executed
in parallel, rather than interleaved as in 2APL (see section 4 for de-
tails). Lastly, we restrict the scope of the non interleaving operator
such that non-atomic plans cannot contain atomic sub-plans, either
directly or through the expansion of an abstract action, i.e., plans to
achieve top-level goals are either wholly atomic or non-atomic. As
we show in section 5, these changes are necessary for the agent’s
deliberation about norms to be tractable.

We extend the syntax of plans in the body of a PG rule to include
an optional field specifying the time required to execute the plan
proposed by the PG rule. In N-2APL, a PG rule has the form:

κ← β | π : t

where κ is a goal query, β is a belief query, π is a plan and t is
the time required to execute π. We assume that the time required
to execute a plan is primarily determined by the time required to
execute the external actions it contains, i.e., that the amount of time
required to execute internal actions (belief update, goal adopt, ab-
stract actions etc.) is small compared to the time required to exe-
cute external actions. The problem of determining t for a plan π
therefore reduces to the problem of determining the sequence of
external actions that will be executed, and estimating the time re-
quired to execute each of these external actions. For simplicity, we
assume that the time required to execute each plan π is fixed and
known in advance.

As explained in section 2, the creation of an obligation or prohi-
bition by an external organisation causes an event to be sent to the
agent. An obligation event, represented as obligation(ι, o, d, s),
specifies the time d by which the obligation o must be discharged,
i.e., its deadline, and the sanction, s, that will be applied if the
obligation is not discharged by the deadline. A prohibition event,
represented as prohibition(ι, p, s), specifies a prohibition p that
must not be violated and the sanction s that will be applied if ex-
ecution of the agent’s plans violates the prohibition. Obligations
and prohibitions are added to the agent’s goal and event bases, re-
spectively. In particular, an obligation is adopted as a goal o : d
with priority corresponding to (the importance of avoiding) s, and a
prohibition is represented by a prohibition event prohibition(p, s)
where the priority of p corresponds to (the importance of avoiding)

〈Agent_Prog〉 = ["Beliefs:" { 〈belief〉 }] ,
["Goals:" 〈goals〉] ,
["Plans:" 〈plans〉] ,
["PG-rules:" { 〈pgrule〉 }] ,
["PC-rules:" { 〈pcrule〉 }]
["PR-rules:" { 〈prrule〉 }]

〈goals〉 = 〈goal〉 { ","〈goal〉 } ;
〈goal〉 = 〈atom〉 ":" 〈deadline〉;
〈pgrule〉 = 〈goalquery〉 "<-" 〈belquery〉 "|" 〈plan〉 ":" 〈duration〉;
〈goalquery〉 = 〈goalquery〉 "and" 〈goalquery〉 | 〈goalquery〉 "or" 〈goalquery〉 | "(" 〈goalquery〉 ")" | 〈atom〉 ;
〈belquery〉 = 〈belquery〉 "and" 〈belquery〉 | 〈belquery〉 "or" 〈belquery〉 | "(" 〈belquery〉 ")" | 〈literal〉 ;
〈plan〉 = 〈atomic-plan〉 | 〈non-atomic-plan〉;
〈atomic-plan〉 = "["〈non-atomic-plan〉"]";
〈sanction〉 = 〈atom〉;
〈deadline〉 = 〈time〉;
〈duration〉 = 〈int〉;

Figure 1: EBNF syntax of N-2APL.

the sanction s (see section 4). We assume the programmer provides
a binary relation pref (x, y) where x, y may be goals, obligations
or prohibitions that returns true if the goal (sanction) x has higher
priority than the goal (sanction) y, and that the order induced by
pref is stable. Finally, we assume that it is possible to define a
function effects(π) which returns the set of literals appearing in
the postconditions of all external actions in π. A plan π violates a
prohibition p iff p ∈ effects(π), i.e., if executing the plan would
cause p to become true.

3.3 Norm-aware Deliberation
In determining which plan to adopt for a goal, a norm-aware

agent must take into account (and possibly revise) plans to which it
is currently committed. In addition it must decide when each plan
to which it is committed should be executed, i.e., it must schedule
the execution of its plans. Informally, a schedule is an assignment
of a start or next execution time to a set of plans which ensures
that: all plans complete by their deadlines, at most one atomic plan
executes at any given time, and where the goals achieved and the
prohibitions avoided are of the highest priority.2

To define a schedule, we first define a set of feasible plans. A set
of plans Π = {π1, . . . , πn} is feasible iff:

1. it is possible for each plan to complete execution before its
deadline, that is, for each plan πi ∈ Π

ne(πi) + et(πi)− ex(πi) ≤ dl(πi)

where ne(πi) is the time at which πi will next execute, et(πi)
is the time required to execute πi, ex(πi) is the time πi has
spent executing up to this point and dl(πi) is the deadline
for πi (we assume that all plans πi complete by et(πi) and
hence et(πi)− ex(πi) is always non-negative);

2. if πi is an atomic plan, then no other atomic plan is scheduled
to execute concurrently with πi, namely the set {πj ∈ Π \
{πi} | (ne(πi) < ne(πj) + et(πj))∧ (ne(πj) < ne(πi) +
et(πi))} contains no atomic plans; and

3. if πi is a currently executing atomic plan whose deadline
has not passed, for any plan πj ∈ Π \ {πi}, ne(πj) >

2In what follows, in the interests of brevity we shall often refer to
the ‘deadline’ and ‘priority’ of a plan π rather than the deadline of
the goal achieved by π or the priority of the goal achieved or the
sanction avoided by executing π.

now + et(πi)− ex(πi), i.e., an atomic plan cannot preempt
a currently executing atomic plan.

Feasibility determines which sets of plans can be executed by their
deadlines without violating atomicity constraints.

The agent commits to a feasible set of plans that is preference-
maximal. If it is not possible to execute all plans by their deadlines
it will drop plans that achieve goals of lower priority in preference
to plans which achieve goals of higher priority. Similarly, it will
drop plans that violate prohibitions of higher priority than the goal
achieved by the plan.

To make this precise, we define a preference-maximal set of
plans as follows. Consider a set of plans Π = {π1, . . . , πn} and
prohibitions ∆ = {p1, . . . , pm}. Γ ⊆ Π is preference-maximal
(with respect to Π and ∆) iff:

1. Γ is feasible;

2. ∀πi ∈ Π such that πi /∈ Γ, either

• {πi} is infeasible, or
• ∃Γ′ ⊆ Γ: the minimal priority of a plan in Γ′ is greater

than or equal to the priority of πi, and {πi} ∪ Γ′ is
infeasible; or
• ∃pj ∈ ∆, pj ∈ effects(πi) and the priority of pj is

greater than or equal to the priority of πi

Intuitively, this definition describes a subset of Π which is ‘max-
imally feasible’ (no more plans from Π can be added if the plans
are to remain feasible) and moreover, plans in Π \ Γ cannot be
scheduled together with some subset of Γ that contains plans(s) of
higher priority or they violate a prohibition in ∆ of the same or
higher priority.

A schedule is a preference-maximal set of plans together with
their start (next execution) times.

The agent uses a schedulability criterion when deliberating about
which plan to adopt for a goal, and which plans to drop. In order to
decide if a PG-rule

κ← β | π : t

is applicable, we check that: γ |=g κ (i.e., that g τ |= κ for some
g :d ∈ γ and substitution τ), σ |= β and ∃Γ ⊆ Π such that Γ∪{π}
is preference-maximal relative to Π,∆, where γ is the agent’s goal
base, σ is the agent’s belief base, Π is the agent’s plan base and ∆
is the agent’s prohibitions. The first two conditions are straightfor-
ward and simply check that the agent has a plan which will achieve

the goal and that plan is applicable in the current belief context.
The third condition is more complex: it checks whether adopting
the plan π is rational for the agent. Adopting π is rational if π to-
gether with some subset Γ of the agent’s plan base is feasible, and
any plans π′ ∈ Π\Γ that must be dropped in order to schedule π by
its deadline have strictly lower priority than the goal or obligation
achieved by π.

A N-2APL agent thus adopts an open-minded commitment strat-
egy — at any given point in its execution its plan base comprises
a preference-maximal set of plans. Observe that if an agent is ‘so-
cial’ and orders its obligations before any of its own goals, then all
obligations will be discharged by the agent provided it has feasible
plans to achieve them. On the other hand, selfish agents which pri-
oritize their own goals, may incur (in the worst case, when they do
not attend to any of the obligations and violate all prohibitions) all
the sanctions possible in the normative system.

3.4 Scheduling Algorithm

Algorithm 1 Scheduling Algorithm
1: function SCHEDULE(Π,∆)
2: Γs := ∅, Γp := ∅,
3: for all π ∈ Π in descending order of priority do
4: V := effects(π) ∩∆
5: if ¬atomic(π) then
6: if now + rt(π) ≤ dl(π) ∧
7: pr(π) ≥ argmax pr(p), p ∈ V then
8: ne(π) := now
9: Γp := Γp ∪ {π}

10: end if
11: else
12: if executing(π) then
13: ne(π) := now
14: Γ′s := Γs
15: else
16: t := now
17: Γ′s := ∅
18: for all π′ ∈ Γs do
19: if dl(π′) ≤ dl(π) then
20: Γ′s := Γ′s ∪ {π′}
21: t := max(ne(π′) + rt(π′), t)
22: else
23: ne(π′) := ne(π′) + rt(π)
24: Γ′s := Γ′s ∪ {π′}
25: end if
26: end for
27: ne(π) := t
28: end if
29: if ∀πi ∈ Γ′s∪{π} : now +

P
ne(j)≤ne(i)

rt(πj) ≤ dl(πi) ∧

30: pr(π) ≥ argmax pr(p), p ∈ V then
31: Γs = Γ′s ∪ {π}
32: end if
33: end if
34: end for
35: return Γp ∪ Γs
36: end function

Scheduling in N-2APL is pre-emptive in that the adoption of
a new plan π may prevent previously scheduled plans with prior-
ity lower than π (including currently executing plans) being added
to the new schedule. Plans that would exceed their deadline are
dropped. In the case of obligations, a sanction will necessarily be
incurred, so it is not rational for the agent to continue to attempt to
discharge the obligation. In the case of goals, it is assumed that the
deadline is hard, and there is no value in attempting to achieve the
goal after the deadline.

The scheduling algorithm is shown in Algorithm 1. ne(π) is
the time at which πi will next execute, ex(π) is the time πi has
spent executing up to this point, dl(π) is the deadline for π, and
rt(π) = et(π)− ex(π) is the remaining execution time of π.

Non-atomic and atomic plans are scheduled separately in Γp and
Γs respectively. The set of candidate plans is processed in descend-
ing order of priority. For each plan π, if π is non-atomic an attempt
is made to schedule it in parallel with other non-atomic plans in Γp
(lines 6–10). To determine feasibility for non-atomic plans it is suf-
ficient to check that the plan can be executed by its deadline. If the
plan is atomic, it is added to the schedule Γs if it can be inserted
into the schedule in deadline order while meeting its own and all
currently scheduled deadlines (lines 12–32). A set of atomic plans
is feasible iff they can be scheduled earliest deadline first [10]. If a
non-atomic or atomic plan violates a prohibition of higher priority
than the plan, the plan is dropped. The resulting schedule can be
computed in polynomial time (in fact, quadratic time) in the size of
Π, and (as we show in section 5) is preference-maximal.

4. OPERATIONAL SEMANTICS
In this section, we sketch the operational semantics of N-2APL

in terms of a transition system. Each transition transforms one
configuration into another and corresponds to a single computa-
tion/execution step. In the following subsections, we first present
the configuration of individual N-2APL agent programs (hence-
forth agent configuration) then the configuration of multiagent sys-
tem programs (henceforth multiagent system configuration), before
finally presenting transition rules from which possible execution
steps (i.e., transitions) for both individual agents as well as multia-
gent systems can be derived.

4.1 N-2APL Configuration
The configuration of an individual agent consists of its identi-

fier, beliefs, goals, prohibitions, planning goal rules, procedure call
rules, plans, events, and a preference ordering on goals and sanc-
tions. Each plan is associated with the goal and practical reasoning
rule that gave rise to the plan (in order to avoid redundant applica-
tions of practical reasoning rules, e.g., to avoid generating multiple
plans for one and the same goal). It should be noted that the belief
base and each goal in the goal base are consistent as only positive
atoms are used to represent them.

DEFINITION 1 (AGENT CONFIGURATION). The configuration
of a N-2APL agent is defined asAι = 〈ι, σ, γ,Π, ξ,�, PG, PC, PR〉
where ι is the agent’s identifier, σ is a set of belief expressions
〈belief〉 representing the agent’s belief base, γ is a list of goal ex-
pressions 〈goal〉representing the agent’s goal base, Π is the agent’s
plan base consisting of a set of plan entries (〈plan〉, 〈goal〉, 〈pgrule〉)
representing the agent’s plans together with their next execution
times, ξ is the agent’s event base containing also elements of the
form prohibition(p, s), � is the preference ordering, PG is the
set of planning goal rules, PC is a set procedure call rules, and
PR is a set of plan repair rules.

Since the agent’s practical reasoning rules and preference ordering
do not change during an agent’s execution, we do not include them
in the agent’s configuration and use Aι = 〈ι, σ, γ,Π, ξ〉 to denote
an agent’s configuration.

The configuration of a multiagent system is defined in terms of
the configuration of individual agents and the state of their organ-
isation. The state of the agents’ organisation is a set of facts that
hold in that organisation.

DEFINITION 2 (MULTIAGENT SYSTEM CONFIGURATION). Let
Aι be the configuration of agent ι and let χ be the state of the
agents’ organisation. The configuration of a N-2APL multiagent
system is defined as 〈A1, . . . , An, χ〉.

The initial configuration of a multiagent system is determined by
its corresponding multiagent system program and consists of the
initial configuration of its individual agents (determined by their
corresponding N-2APL programs) and the initial state of their or-
ganisation.

DEFINITION 3 (INITIAL CONFIGURATION). Let ι be the iden-
tifier of an agent that is implemented by a N-2APL program. Let
σ be the set of 〈belief〉-expressions specified in the N-2APL pro-
gram and γ be the list of 〈goal〉-expressions from the same pro-
gram. Then, the initial configuration of agent ι is defined as tuple
〈ι, σ, γ, ∅, ∅〉. Let also χ be a set of facts and A1, . . . , An be the
initial configurations of agents 1, . . . , n that are specified in the
multiagent system program. The initial configuration of the multi-
agent systems is defined as tuple 〈A1, . . . , An, χ〉.

4.2 Transition Rules
The execution of a N-2APL multiagent program modifies its ini-

tial configuration by means of transitions that are derivable from
the transition rules given below. Due to lack of space, we do not
provide transition rules for the execution of plans, see e.g., [4].

4.2.1 Receiving Detached Norms
As explained in section 2, a normative organisation can broad-

cast an obligation or a prohibition event to a specific agent. We
assume transition rules from which a transition of a normative or-
ganisation is derivable, i.e., we assume transition rules that can be
used to derive transitions χ n-event−−−−−→ χ′, where n-event is an event
such as obligation(ι, o, d, s) or prohibition(ι, p, s). Such transi-
tion rules specify under which conditions an obligation or a pro-
hibition should be issued for a specific agent. The study of such
conditions is out of the scope of this paper and can be found in,
e.g., [5]. The following transition rule allows a normative organi-
sation to broadcast normative events (e.g, obligation(ι, o, d, s) or
prohibition(ι, p, s)) and ensures that the events are delivered to
the appropriate agent. An obligation event is added to the agent’s
goal base and a prohibition event is added to its event base.

χ
n-event−−−−−→ χ′

〈A0, . . . , Aι, . . . , An〉 −→ 〈A0, . . . , A′ι, . . . , An〉
(1)

where
Aι = 〈ι, σ, γ,Π, ξ〉,
A′ι = 〈ι, σ, γ∪{o :d},Π, ξ,�′〉 if n-event = obligation(ι, o, d, s),
A′ι = 〈ι, σ, γ,Π, ξ∪{prohibition(p, s)},�′〉 if n-event = prohi-
bition(ι, p, s).

4.2.2 Planning Goal Rules
A N-2APL agent generates plans by applying PG-rules of the

form κ ← β | π : t. An agent can apply one of its PG-rules κ ←
β|π : t, if κ is entailed (with some substitution τ1) by one of the
agent’s goals, namely by some g such that g : d ∈ γ, β is entailed
(with substitution τ1τ2) by the agent’s belief base, and there is no
plan in the plan base that has been generated (and perhaps partially
executed) by applying the same PG-rule to achieve the same goal.
Applying the PG-rule κ ← β | π : t attempts to add π τ1τ2 with
deadline d and execution time t to the agent’s plan base.

∃ (g :d) ∈ γ : g |=g κ τ1 & σ |= β τ1τ2

& ¬∃π′ ∈ P : (π′, g :d, (κ τ1 ← β | π : t)) ∈ Π

〈ι, σ, γ,Π, ξ〉 −→ 〈ι, σ, γ,Π′, ξ〉 (2)

where τ1, τ2 are substitutions, P is the set of all possible plans
and Π′ = SCHEDULE(Π ∪ {(π τ1τ2, g : d, (κ τ1 ← β | π :
t))}, prohibitions(ξ)). Here, SCHEDULE is defined as in Algo-
rithm 1 and prohibitions is a function that takes a set of events and
returns all prohibition events in that set.

4.2.3 Concurrent Plans
The applications of planning goal rules may generate both atomic

and non atomic plans. External actions in different non-atomic
plans can be executed in parallel. Atomic plans are executed in
sequence, rather than in parallel. Actions within each plan are ex-
ecuted in strict sequence, i.e., the next action in the plan is not ex-
ecuted until the previous action has completed execution or failed.
We say a plan is executable if its next execution time is now and the
previous action in the plan has successfully completed execution,
otherwise it is not executable (i.e., an action initiated at a previ-
ous deliberation cycle is still executing, or has failed, or the plan is
atomic and scheduled for execution at a later time). Execution of
internal actions is assumed to occur in the main interpreter thread,
whereas execution of external actions is assumed to occur in sepa-
rate threads (otherwise the actual execution time of a plan π would
bear little relation to its expected execution time, et(π)) .

An agent executes its plans concurrently by interleaving the ex-
ecution of the next action (or the initiation of the execution of the
action in a separate thread in the case of external actions) of all
executable plans whose next execution time is now

〈ι, σ, γ, ρ, ξ〉 −→ 〈ι, σ′, γ′, ρ′, ξ′〉
〈ι, σ, γ,Π, ξ〉 −→ 〈ι, σ′, γ′,Π′, ξ′〉 (3)

where ρ is executable and Π′ = (Π \ ρ) ∪ ρ′.

5. NORM-AWARE RATIONALITY
In this section, we justify the adoption of a preference-maximal

set of plans as an appropriate standard of rationality for a norm-
aware agent. We show that key assumptions underlying the design
of N-2APL are necessary in the sense that if they are relaxed, a N-
2APL agent is either no longer a norm-aware rational agent, or its
deliberation about goals, norms and sanctions is intractable.

In what follows, we assume that the agent’s plans have a posi-
tive expected execution time and a deadline, and that atomic plans
are scheduled on a single processor. We also assume that plans
and prohibitions have priorities, which are either ordered by a total
preference pre-order, or have numerical values. The definition of a
feasible set of plans is given in section 3.3. Note that in order to be
able to establish whether a set of plans is feasible, the agent needs
to know expected execution times of the plans.

We call a set of plans optimal if it is feasible and has maximal
utility; namely, if the preferences over goals and sanctions are or-
dered by a preference pre-order, then it contains the highest number
of the high priority plans; if priorities are numerical, then their sum
is maximal.

DEFINITION 4. An agent is perfectly norm-aware rational if it
commits to an optimal set of plans.

The problem of finding an optimal schedule is NP-complete (e.g.,
the special case in which all tasks have the same deadline can be
reformulated as a 0-1 knapsack problem [7]).

Since the problem of scheduling an optimal set of plans is not
tractable, we have the following theorem:

THEOREM 1. A perfectly norm-aware rational agent cannot have
a tractable deliberation procedure.

In this paper, we assume a weaker definition of norm aware ratio-
nality. This definition relies on the notion of a preference-maximal
set of plans given in Section 3.3 and requires that preferences are
ordered on an ordinal scale. Note that in this case every optimal
set of plans is preference-maximal, but not vice versa. For exam-
ple, for three atomic plans with the same priority, π1, π2 and π3,
such that π1 is not feasible with either of π2 or π3 and {π2, π3}
is feasible, the only optimal set is {π2, π3}. However, {π1} is a
preference-maximal set of plans.

DEFINITION 5. An agent is norm-aware rational if it commits
to a preference-maximal set of plans.

The set of goals achieved by a norm-aware rational agent is de-
termined by its program. If the program is such that the belief con-
texts of PG rules are disjoint, then the set of goals achieved by the
successful execution of a preference-maximal set of plans is also
‘preference-maximal’, in the sense that the agent will only fail to
achieve a goal if it has no applicable plan for a goal, or the plan to
achieve the goal is not feasible together with the plans to achieve
goals of the same or higher priority.

THEOREM 2. A N-2APL agent is norm-aware rational and its
deliberation procedure is tractable.

PROOF. We show that the N-2APL scheduling algorithm returns
a preference-maximal schedule; tractability is obvious. The N-
2APL scheduling algorithm builds two separate schedules, a paral-
lel and a sequential one. The set of plans Γp in the parallel schedule
contains all non-atomic plans which are individually feasible (the
time remaining to their deadline is greater than their expected exe-
cution time) and do not violate prohibitions of higher priority. This
set of plans is clearly maximal given the prohibitions. Note that the
feasibility of Γp is not affected by the membership of the sequential
schedule Γs and vice versa.

For the sequential schedule, the algorithm constructs a sequence
of sets starting with Γ0 = ∅, and sets Γi to be Γi−1 ∪ {πi}, if
Γi−1 ∪ {πi} is feasible in deadline order, or Γi−1 otherwise. The
last set Γn is Γs. By construction, Γs is a feasible set of plans. Γ
is also clearly a maximally feasible subset of Π: there is no atomic
π ∈ Π such that π /∈ Γs and Γs ∪ {π} is feasible. To prove
that it is preference-maximal, let πi ∈ Π, {πi} feasible, and πi /∈
Γs. We need to show that πi is incompatible with some subset of
Γs which contains only plans of the same or higher priority, or is
incompatible with a higher priority prohibition. Since the plans are
added to Γs in descending order of priority, when πi is considered
and found incompatible with Γi−1, the priority of πi is at most the
lowest priority in Γi−1.

In the rest of this section, we show that the assumptions we made
concerning the normative system and the agent programming lan-
guage semantics are essential to guarantee tractability of a norm
aware rational agent’s deliberation.

THEOREM 3. If a normative system has prohibitions with real-
time deadlines, then a norm-aware rational agent cannot have a
tractable deliberation procedure.

PROOF. If prohibitions have real-time deadlines, the schedul-
ing problem is equivalent to the ‘sequencing with release times

and deadlines’ problem (SRTD), which is known to be strongly
NP-complete [7]. SRTD is intractable in the sense that it admits
no bounded approximation computable in time polynomial in the
problem size and the bound (unless P = NP).

N-2APL also places certain restrictions on the syntax of 2APL
programs, and changes the semantics of key constructs such as the
non interleaving (atomic) operator. If these assumptions are re-
laxed, the agent is no longer norm-aware rational or deliberation
about norms is intractable. We now make these assumptions pre-
cise.

THEOREM 4. If an agent’s plans may have atomic sub-plans
the agent is not norm-aware rational, or its deliberation procedure
is intractable.

PROOF. Note that if an agent’s plans may contain atomic sub-
plans π = π1; [π2];π3; [π4], the agent must schedule the atomic
sub-plans [π2] and [π4] together with its other atomic plans, but
subject to the constraint that the preceding non-atomic sub-plans π1

(in the case of [π2]) and π2 (in the case of [π4]) of π have finished
executing. If information about the execution times of each atomic
and non-atomic sub-plan is not available, the agent is not norm-
aware in the sense that it may commit to plans that it subsequently
has to abandon, even if its goals and norms do not change. In effect,
the agent is unable to tell when the execution of an atomic sub-plan
may have to be scheduled, and so may adopt a non preference-
maximal schedule. If, on the other hand, we assume that informa-
tion about the execution times of each plan segment is available
(and is used in scheduling), the scheduling problem is again equiv-
alent to SRTD and is intractable.

THEOREM 5. If atomic plans cannot be executed in parallel
with non-atomic plans, an agent is not norm-aware rational or its
deliberation procedure is intractable.

PROOF. If we adopt the 2APL semantics for the non interleav-
ing operator,3 i.e., the execution of an atomic plan should not be
interleaved with the execution of any other plan, we again get a
combinatorial scheduling problem because non-atomic plans can
be split in various groups depending on their end times. This prob-
lem reduces to the batch scheduling problem which is NP-hard
[12].

THEOREM 6. If external actions cannot be executed in parallel,
an agent is not norm-aware rational or its deliberation procedure
is intractable.

PROOF. If external actions are interleaved, the expected execu-
tion time of a plan is dependent on the other plans in the agent’s
schedule. If the execution times of each external action in a plan are
not known, the resulting schedule is not guaranteed to be preference-
maximal. If the execution time of each external action are known
(and is used in scheduling), the scheduling problem is again re-
ducible to SRTD, for both atomic and non-atomic schedules.

6. RELATED WORK
Our notion of norm-awareness is related to, e.g., [14], where it

is argued that the ability of agents to reason about the norms of an
organisation in which they operate is crucial for their decisions to
enter and leave organisations or to respect/violate norms.

There has been considerable recent work on approaches to pro-
gramming normative systems. The JaCaMo programming frame-
work combines the Jason [2], Cartago [13], and MOISE+ [8] plat-
forms. In this integrated approach, the organisational infrastruc-
ture of a multiagent system consists of organisational artefacts and
3This semantics is also used by Jason.

agents that together are responsible for the management and en-
actment of the organisation. An organisational artefact employs a
normative program which in turn implements a MOISE+ specifi-
cation. A programming language for the implementation of nor-
mative programs as well as a translation of MOISE+ specifications
into normative programs is described in [9]. JaCaMo allows Jason
agents to interact with organisational artefacts, e.g., to take on a
certain role. (As the idea of organisational artefacts based on nor-
mative programs is closely related to the 2OPL architecture for nor-
mative systems [5] used in this paper, we believe that our N-2APL
agents could also be used in the JaCaMo framework.) In contrast to
N-2APL, the Jason agents in this combined model have no explicit
mechanisms to reason about norms (obligations and prohibitions)
and their deadlines and sanctions in order to adapt their behaviour
at run time. Another approach that integrates norms in a BDI-
based agent programming architecture is proposed in [11]. This ex-
tends the AgentSpeak(L) architecture with a mechanism that allows
agents to behave in accordance with a set of non-conflicting norms.
As in N-2APL, the agents can adopt obligations and prohibitions
with deadlines, after which plans are selected to fulfil the obliga-
tions or existing plans are suppressed to avoid violating prohibi-
tions. However, unlike N-2APL, [11] does not consider scheduling
of plans with respect to their deadlines or possible sanctions.

There are also several agent languages which incorporate dead-
lines, including the Soft Real-Time Agent Architecture [16] and
AgentSpeak(XL) [1]. These architectures use the TÆMS (Task
Analysis, Environment Modelling, and Simulation) framework [6]
together with Design-To-Criteria scheduling [17] to schedule inten-
tions. TÆMS provides a high-level framework for specifying the
expected quality, cost and duration of of methods (actions) and re-
lationships between tasks (plans). Like N-2APL, tasks (and meth-
ods) can have deadlines, and TÆMS assumes that the expected ex-
ecution times (and quality and costs) of tasks are available. As in
N-2APL DTC can produce schedules which allow interleaved or
parallel execution of tasks. However the view of ‘deadline’ used in
these systems is different from that used here, in that deadlines are
not hard (tasks still have value after their deadline), and they pro-
vide no support for normative concepts such as obligations, prohi-
bitions and sanctions. To the best of our knowledge, they have not
been used to develop norm-aware agents. AgentSpeak(RT) [15] is
a version of AgentSpeak(L) which allows the specification of dead-
lines and priorities for tasks. However, as with SRTA and AgentS-
peak(XL) it provides no support for normative concepts.

7. CONCLUSIONS
We have presented N-2APL, a programming language for norm-

aware agents. N-2APL provides support for obligations with dead-
lines, prohibitions, and sanctions. N-2APL agents are guaranteed
to be norm-aware rational, that is, to commit to a set of plans of
the highest priority which do not violate higher priority prohibi-
tions, and which are feasible. We believe that N-2APL represents
a good compromise in the design of a norm-aware agent program-
ming language. If the key assumptions underlying the design of N-
2APL are relaxed, an agent either no longer satisfies norm-aware
rationality, or its deliberation about goals, norms and sanctions is
intractable. Although we have developed our ideas in the context of
the 2APL agent programming language, the extensions to support
norm-aware deliberation could be incorporated in a straightforward
way to other BDI-based agent programming languages.

8. REFERENCES
[1] R. Bordini, A. L. C. Bazzan, R. d. O. Jannone, D. M. Basso,

R. M. Vicari, and V. R. Lesser. AgentSpeak(XL): Efficient

intention selection in BDI agents via decision-theoretic task
scheduling. In Proc AAMAS’02, pages 1294–1302, 2002.

[2] R. H. Bordini, M. Wooldridge, and J. F. Hübner.
Programming Multi-Agent Systems in AgentSpeak using
Jason. John Wiley & Sons, 2007.

[3] J. Broersen, M. Dastani, J. Hulstijn, and L. van der Torre.
Goal generation in the BOID architecture. Cognitive Science
Quarterly, 2(3-4):428–447, 2002.

[4] M. Dastani. 2APL: a practical agent programming language.
Autonomous Agents and Multi-Agent Systems,
16(3):214–248, 2008.

[5] M. Dastani, D. Grossi, J.-J. C. Meyer, and N. Tinnemeier.
Normative multi-agent programs and their logics. In Proc.
KRAMAS’09, LNCS 5605, pages 16–31, 2009.

[6] K. S. Decker and V. R. Lesser. Quantitative modeling of
complex environments. International Journal of Intelligent
Systems in Accounting, Finance and Management,
2:215–234, 1993.

[7] M. R. Garvey and D. S. Johnson. Computers and
Intractability. W. H. Freeman and Company, New York,
1979.

[8] J. Hübner, J. Sichman, and O. Boissier. S −MOISE+: A
middleware for developing organised multi-agent systems. In
Proc. COIN’06, LNCS 3913, pages 64–78. Springer, 2006.

[9] J. F. Hübner, O. Boissier, and R. H. Bordini. From
organisation specification to normative programming in
multi-agent organisations. In Proc. CLIMA XI, LNCS 6245 ,
pages 117–134. Springer, 2010.

[10] C. Liu and J. Layland. Scheduling algorithms for
multiprogramming in a hard real-time environment. JACM,
20(1):46–61, 1973.

[11] F. R. Meneguzzi and M. Luck. Norm-based behaviour
modification in BDI agents. In Proc. AAMAS’09, pages
177–184. IFAAMAS, 2009.

[12] M. Pinedo. Scheduling: Theory, Algorithms, and Systems.
Prentice Hall, 2002.

[13] A. Ricci, M. Viroli, and A. Omicini. Give agents their
artifacts: the A&A approach for engineering working
environments in MAS. In Proc. AAMAS’07, IFAAMAS,
2007.

[14] M. B. van Riemsdijk, K. V. Hindriks, and C. M. Jonker.
Programming organization-aware agents: A research agenda.
In Proc. ESAW’09, LNAI 5881, pages 98–112. Springer,
2009.

[15] K. Vikhorev, N. Alechina, and B. Logan. Agent
programming with priorities and deadlines. In Proc.
AAMAS’11, pages 397–404, 2011.

[16] R. Vincent, B. Horling, V. Lesser, and T. Wagner.
Implementing soft real-time agent control. In Proc.
AGENTS’01, pages 355–362, 2001.

[17] T. Wagner, A. Garvey, and V. Lesser. Criteria-directed
heuristic task scheduling. International Journal of
Approximate Reasoning, 19:91–118, 1998.

