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ABSTRACT
We propose a novel method for assessing the reputation of
agents in multiagent systems that is capable of exploiting
the structure and semantics of rich agent interaction pro-
tocols and agent communication languages. Our method is
based on using so-called conversation models, i.e. succinct,
qualitative models of agents’ behaviours derived from the
application of data mining techniques on protocol execution
data in a way that takes advantage of the semantics of inter-
agent communication available in many multiagent systems.
Contrary to existing systems, which only allow for querying
agents regarding their assessment of others’ reputation in an
outcome-based way (often limited to distinguishing between
“successful” and “unsuccessful” interactions), our method al-
lows for contextualised queries regarding the structure of
past interactions, the values of content variables, and the
behaviour of agents across different protocols. Moreover,
this is achieved while preserving maximum privacy for the
reputation querying agent and the witnesses queried, and
without requiring a common definition of reputation, trust
or reliability among the agents exchanging reputation in-
formation. A case study shows that, even with relatively
simple reputation measures, our qualitative method outper-
forms quantitative approaches, proving that we can mean-
ingfully exploit the additional information afforded by rich
interaction protocols and agent communication semantics.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Algorithms, Theory, Design

Keywords
Trust and reputation, agent communication, data mining

1. INTRODUCTION
Reputation, i.e. the beliefs or opinions generally held about

other agents in a society, is one of the main means of eval-
uating the trustworthiness and reliability of individuals in
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multiagent systems (MASs). In the trust and reputation lit-
erature [5], trust is usually taken to denote the belief that
a party will act cooperatively and not fraudulently, while
reputation normally refers to trust information propagated
through a social network of individuals [6]. The autonomy
and heterogeneity of agents in open MASs makes the use of
reputation in MASs particularly challenging, and often im-
pedes the use of centralised trustworthy authorities such as
the reputation models implemented in some internet-based
markets, e.g. Amazon [1] or eBay [2] (although such rep-
utation mechanisms are certainly most popular in the real
world [5]). Yet, from the point of view of an agent, a correct
assessment of others’ reputation may greatly enhance per-
formance, as it can be used to make appropriate decisions
regarding which agents to interact with and how to behave
in these interactions.

Existing trust and reputation approaches [5, 11, 8, 12]
mostly focus on a purely quantitative assessment of trust,
based on witness reports regarding positive/successful and
negative/unsuccessful interaction experiences, usually only
making binary (or one-dimensional numerical) distinctions
resulting focussing on a single property of interactions that
describes the trustworthiness or reliability of the target (i.e.
reputation-evaluated) agent. Even when these methods al-
low for queries with a more“semantic”content (to ask for the
reputation of an agent with regard to particular products,
types of services, etc) [8], the assessment is always entirely
outcome-oriented, and allows no assessment of the qualita-
tive properties of the interaction process, i.e. the content
and sequence of messages exchanged and physical actions
observed.

Adopting this quantitative perspective effectively ignores
the interaction mechanisms provided by many multiagent
systems, in particular complex structure-rich interaction pro-
tocols that use agent communication languages (ACLs) with
formal semantics. As opposed to low-level interaction mech-
anisms in other distributed systems, these languages and
protocols attempt to capture shared meaning for messages
exchanged in MASs, and the structure and“knowledge-level”
assumptions captured in ACLs and interaction protocols is
semantically rich and can be used to extract qualitative prop-
erties of observed conversations among agents.

In this paper, we introduce a novel reputation system
based on the qualitative context mining approach proposed
by Serrano et al [10], which allows us to exploit the seman-
tics and structure of agent interactions, in order to produce
better, contextualised assessments of reputation that can be
tailored to the needs of the reputation-evaluating agent and



inform her interaction decisions. Our method is based on ex-
tracting succinct models of the evaluated agents’ behaviour
from previous interaction data. These can be queried by the
evaluating agent (whether or not she is the modelling agent
who has constructed the conversation model) with respect
to specific protocols, paths within these protocols, or values
of constraint arguments that are part of the protocol defini-
tion. Our approach minimises information disclosure among
agents: The evaluating agent might request the entire con-
versation model from the modelling agent (which does not
require the modelling agent to share her original interac-
tion data, and thus also limits the bandwidth needed for
data exchange) and perform queries herself on it (to avoid
sharing definitions of what counts as “trustworthy” or “un-
trustworthy”to her). Alternatively, the evaluating agent can
share these definitions of trustworthiness and query a mod-
elling agent unwilling to transmit her conversation model,
and only obtain reputation assessments in return, without
access to the full conversation model.

What is more, through experiments in an example e-com-
merce scenario, we show that our reputation system is ca-
pable of effectively utilising the additional information pro-
vided by rich interaction protocols and ACLs, and results
both in better predictions of future interaction behaviour of
evaluated agents, and in improved responsiveness to unex-
pected changes in others’ behaviours. This can be achieved
by defining relatively straightforward reputation measures
on top of the qualitative reputation assessment mechanism.

The remainder of the paper is structured as follows: Sec-
tion 2 reviews the qualitative context mining approach sug-
gested in [10] and describes how it is used as a basis for
interaction data analysis in our system. In section 3, we
introduce the proposed reputation measures that can be de-
fined on top of our qualitative data analysis method. An
empirical analysis of our method is presented in section 4.
Section 5 discusses related work, and section 6 concludes.

2. MINING AGENT CONVERSATIONS
As described above, our reputation system uses the frame-

work proposed in [10] as a base method for interaction anal-
ysis. The context mining approach presented there does not
assume a specific protocol or agent communication language
for MASs, but represents protocols in a very general way as
graphs whose nodes are speech-act like messages placehold-
ers, and whose edges define transitions among messages that
give rise to message sequences specified as admissible ac-
cording to the protocol. The edges are labelled with logical
constraints, i.e. formulate logical conditions that the agent
using the protocol is able to verify. These act as guards
on a given transition, so that the message corresponding to
a child node can only be sent if the constraint(s) along its
incoming edge from the parent node (the message just ob-
served) can be satisfied.

[10] defines a protocol model as a graph G = (V,E) where
nodes v ∈ V are labelled with messages m(v) = q(X,Y, Z),
q is a performative and X, Y , and Z are sender/receiver/-
content variables, respectively. Edges are labelled with a
(conjunctive) list of logical constraints

c(e) = {c1(t1, . . . , tk1), . . . , cn(t1, . . . tkn)}

where each constraint ci(. . .) has arity ki, head ci and ar-
guments tj . Constraints can be arbitrary logical formulas
composed of predicates which may contain constants, func-

tions or variables, with all variables implicitly universally
quantified. It is assumed that all outgoing edges of a node
result in messages with distinct performatives, i.e. for all
(v, v′) ∈ E, (v, v′′) ∈ E

(m(v′) = q(. . .) ∧m(v′′) = q(. . .))⇒ v′ = v′′

so that each observed message sequence corresponds to (at
most) one path in G by virtue of its performatives. Figure 1
shows an example protocol model in this generic format.

The semantics of a protocol model G is based on con-

sidering finite paths π = v1
e1→ v2

e2→ . . .
en−1→ vn in the

graph G (which may include unfoldings of cycles, assum-
ing fresh variable names each time a node is revisited). If
m = 〈m1, . . . ,mn〉 are the ground messages observed in a
run, G(m) = 〈π, θ〉 returns the (unique) path π that can be
traced in G following the observed messages, and θ is the
most general unifier of the set

{m1, . . . ,mn} ∪ {m(vi)|1 ≤ i ≤ n}

and π = v1
e1→ . . .

en−1→ vn. In other words, the pair 〈π, θ〉
returns the path and variable substitution the message se-
quence m corresponds to in protocol model G. While con-
text models are defined in [10] based on an analysis of the
logical formula resulting from constraints along a path, for
our purposes it is sufficient to consider pairs 〈π, θ〉 that corre-
spond to message sequences m of past observed interactions
as samples for data mining algorithms.

To explain how we proceed in collecting and processing
samples of protocol executions, consider the protocol model
shown in figure 1. An execution run using this model will
consist of a sequence of messages and constraints satisfied
along that path (or, at least, presumably satisfied, assum-
ing that the other agent only utters a message when its pre-
conditions are satisfied) and will be translated to a list of
feature-value pairs where the features are variables used in
the messages, and the values their respective ground instan-
tiations. In terms of actual data mining methods used, we
restrict ourselves here to decision tree learning (we use J48,
an open source implementation of the C4.5 algorithm [3]).
Though [10] compares several other techniques, our system
operates on trees like the one shown in the example of fig-
ure 2 obtained from the protocol in figure 1. As in our
evaluation in section 4, this is derived from a scenario where
agents use the protocol to negotiate over cars using a well-
known database for car evaluation [4]. In this scenario, the
modelling agent (who builds the tree from past data) is a
potential customer (role A) who has requested offers from
a car selling agent (role B) where T specifies the technical
characteristics of the car, including number of doors, capac-
ity in terms of persons to carry, the size of the luggage boot,
the estimated safety of the car, price and maintenance cost.
We assume that a feature vector for terms is of the form

T = (doors, persons, lug boot , safety , price,maint)

where

doors ∈ {2 , 3 , 4 , 5 -more} persons ∈ {2 , 4 ,more}
maint ∈ {v -high, high,med , low} safety ∈ {low ,med , high}
price ∈ {v -high, high,med , low} lug boot ∈ {small ,med , big}

The conversation model shown in figure 2, for example,
shows that seller S8, for instance, performed 44 successful
negotiations but also that these involved cars with a low
maintenance cost, medium safety, and a low buying price.



request(A,B,T)

cannotOffer(B,A,T)

termsWantedA(T) inStockB(T)

alternativeB(T)

provide(B,A,T)

alternative(B,A,T)
acceptableA(T)

keepNegotiatingA(T)

acceptableA(T) ^ keepNegotiatingA(T)

accept(A,B,T)

quit(A,B,T)

saleDoneB(T)

succeed(B,A,T)

fail(B,A,T)

Figure 1: A simple negotiation protocol model: A requests a product with description T (the terms) from
B. The initial response from B depends on availability: if terms T cannot be satisfied, A and B go through
an iterative process of negotiating new terms for the item, depending on the keepNegotiating, acceptable, and
alternative predicates (for simplicity, we use a fixed variable T in the diagram, although in the course of a
negotiation its value may change). In case of acceptance (which implies payment), B may succeed or fail in
delivering the product. Edge constraints are annotated with the variable representing the agent that has to
validate them. Additional (redundant) shorthand notation ci/mj is introduced. Different out-edges represent
XOR if constraints are mutually exclusive.

maint = v−high : F ( 4 7 . 0 )
maint = high : F ( 4 8 . 0 )
maint = med : F (299 . 0 )
maint = low
| s a f e t y = low : F ( 8 8 . 0 / 2 . 0 )
| s a f e t y = med
| | B = S 1 : F ( 1 7 . 0 / 1 . 0 )
| | B = S 2 : F ( 1 5 . 0 )
| | B = S 3
| | | p r i c e = v−high : S ( 0 . 0 )
| | | p r i c e = high : S ( 0 . 0 )
| | | p r i c e = med : F ( 3 . 0 )
| | | p r i c e = low : S ( 5 6 . 0 )
| | B = S 4 : F ( 2 1 . 0 )
| | B = S 5 : F ( 1 3 . 0 )
| | B = S 6 : F ( 1 3 . 0 )
| | B = S 7 : S ( 6 2 . 0 / 1 . 0 )
| | B = S 8
| | | p r i c e = v−high : S ( 0 . 0 )
| | | p r i c e = high : S ( 0 . 0 )
| | | p r i c e = med : F ( 4 . 0 )
| | | p r i c e = low : S ( 4 4 . 0 )

Figure 2: J48 output for 1000 negotiations. The
notation a =v : S/F denotes that “if a has value v

the target predicate has value S/F”. Every leaf in-
cludes the number of instances classified in paren-
theses (the second number appearing to the right
of the “/” in some cases is the incorrectly classified
instances.

In what follows we shall assume, somewhat informally, that
a conversation model has the form of such a tree which can
provide path information for (potentially incomplete) sets of
variable-value pairs, and denote such tree structures gener-
ically as conversation models CM . In principle, many other
formalisms can be conceived of that achieve the same, such
as a relational database, a set of Horn clauses, a Bayesian
classifier, etc.

3. REPUTATION SYSTEM
As suggested in the introduction, our reputation system

includes an evaluating agent a who is trying to assess the

reputation of the target agent b using a conversation model
provided by a modelling agent (or witness) m, who may, but
need not be, the same agent as a.

3.1 Querying the modelling agent
Three modes of reputation calculation are possible in prin-

ciple: (i) a obtains the entire conversation model from m
which has been built by m based on a’s definitions of suc-
cess and failure, and then makes specific queries for specific
instances (i.e. lists of variable substitutions) in the model,
(ii) a is not granted access to the conversation model, but
instead sends only information about its definition of success
and failure to m and then m answers particular queries of a
regarding specific instances, or (iii) a receives the interaction
data from m and builds the conversation model herself.

In our system, we use a method that allows for a uniform
treatment of all three cases. This is achieved by splitting the
querying process into two steps: providing path classifica-
tion, where a informs m of which paths in the protocol model
it considers successful and which are deemed unsuccessful,
and m builds its classifier using the methods described in
the previous section to build the conversation model; and
instance querying, where a sends m a specific (though po-
tentially partial) substitution for variables occurring in the
model, and m returns a success/failure prediction based on
the conversation model previously constructed. With this,
whether case (i) or (ii) applies makes no difference from an
algorithmic point of view – the same two processing steps
are performed regardless of who holds the model. More-
over, since the path classification of a is probably stable
over time, whereas instance queries vary (and occur more
often), it makes sense to avoid rebuilding the conversation
model unless path classification changes, and issue instance
queries to the model that only rarely changes (except when
m wants to rebuild it based on new data, or is asked for
updating it by a). Case (iii) can be basically ignored, as it
simply amounts to a = m (in all other cases nothing can be
really gained from sending around the entire dataset, meth-
ods (i) or (ii) are preferable, at least as long as m is trusted).

Path classification requires that a send m a set of suc-
cessful paths S ⊆ (E × V )+ in protocol model G = (V,E),



and we write CM (G,S) (or simply CM , where G and S are
assumed to be specified) for the conversation model derived
by m adding an additional Outcome to each path s ∈ S with
value S (for success) and F (for failure) to all paths s 6∈ S.
The reason we allow for a set of paths to be specified as
successful, is that various types of untrustworthy behaviour
might occur. In our example protocol, B might claim to
provide terms that are not in stock, she might propose al-
ternatives unrelated to the terms proposed by A, might pro-
vide terms in the final message unrelated to those accepted
by A, or simply offer unacceptable terms such as an exces-
sive price. Even in simpler cases, e.g. when identifying those
paths as successful which terminate with a succeed message,
one may need to specify relatively complex rules that involve
entire sets of paths like the following:

if (
c1→ m1(((

¬c2∧c3→ m3
¬c4∧c5→ m1)

∗ ¬c2∧c3→ m3
c4→)|

(
c2→ m2 →))m5

c6→ m7) then Outcome = S
else Outcome = F

Instances i queried for are lists of attribute-value pairs i =
{V1 = g1, . . . , Vn = gn,Outcome = g} for variables Vi oc-
curring in the messages and constraints of protocol model G
with ground values gi from their respective domains in previ-
ous interactions, extended by the outcome value g ∈ {S, F}
for the queried instance. Querying for i basically amounts to
asking “if V1, . . . , Vn have values g1, . . . , gn, will the outcome
of the interaction be g?”

In our example conversation model, an instance query
about target agent b concerning a successful outcome in a
negotiation after asking for a a car with high safety assess-
ment and low price is:

i = {B = b, safety(T ) = high, price(T ) = low,Outcome = S}

where we use functions like safety(T ), and price(T ) to return
the respective values of the “terms” variable T . It should be
noted that such queries neither need to contain all variables
on the paths involved, nor that those paths provided in S
need to terminate in leaves. Using CM instead of a simple
database of past interaction data provides this flexibility.

3.2 Reputation and reliability
The basic reputation measure used by evaluating agents

a in our system is defined as follows:

R(CM , i) =

{
1 if prediction(CM , i) = i.Outcome
−1 else

where prediction(CM , i) returns the classification value (S/F )
from the conversation model CM given i. For this, the con-
versation model CM is used to classify the expected result
of the interaction in i and if the predicted class matches
the outcomes queried for by i, the prediction 1 (=correct)
is returned. Note that, while we have assumed a binary
good/bad classification in our formalisation, using a larger
number of distinctive labels is straightforward, and even a
numerical assessment would be possible using alternative
data mining methods (such as a Bayes’ Net). Note also
that this simple measure already allows a to specify what it
views precisely as “trustworthy”, and that the same interac-
tion data store can be queried by different evaluating agents
easily without a shared notion of reputation. Moreover, G
may contain a number of different (independent) protocols,
and if different variables or constraints occur across several
of these, all past interaction experience will be taken into

account when building CM and can be queried simultane-
ously.

It is straightforward to generalise this measure to return
values for a set of target agents T simply by extending the
above function canonically to return a vector of values, tak-
ing into account appropriate substitutions:

R(CM , V, i, T ) = 〈R(CM , iV/b1), . . . , R(CM , iV/bn)〉

where T = {b1, b2, . . . , bn} are the possible target agents and
iV/bj is the extension of the instance query i by the assign-
ment V = bj and V is the variable in G that refers to the
role for which we want to evaluate the reputation of agent bj .
In our example above, if i = {maint(T ) = low , safety(T ) =
med , price(T ) = low ,Outcome = S} and T = {s1, s2, s3},
we would obtain R(CM , V, i, T ) = 〈−1,−1, 1〉 as a predic-
tion vector for the three agents in the seller’s (B’s) role. Such
a query can be easily used to pick appropriate interaction
partners from a set of agents.

To assess the reliability of a prediction provided by the
conversation model, we also need to take into account how
many past experiences match the query and what proportion
of them has been correctly or incorrectly classified according
to a rule in the conversation model. Here, it is important to
restrict the set of correct/incorrect classifications to those
queried by the evaluating agent. For example, assume the
queried instance is

i = {B = b, safety(T ) = high, price(T ) = low ,Outcome = S},

and the result of the prediction is S. The result of the rep-
utation query would be R(CM , i) = 1, and a possible rule
in the tree used for this prediction may have been “if B = b
and safety(T ) = high) then Outcome = S”. However, the
instances that match the antecedent are a superset of those
considered by the query, so that the number of correctly
classified instances for this rule is an upper bound for those
matching the query. To account for this, let CM (i) the set
of all rules in CM that match at least query i (i.e. they may
contain more, but no less attribute-value pairs), and define
the reliability of a reputation assessment as

r(CM , i) =

{ ∑
ρ∈CM(i) cci(ρ)∑
ρ∈CM(i) ci(ρ)

if
∑
ρ∈CM (i) ci(ρ) 6= 0

0 else

where ci(ρ) are the instances classified by rule ρ, and cci(ρ)
returns the number of correctly classified instances by the
same rule. In figure 2 these numbers are shown adjacent
to the leaves of the tree. This effectively evaluates the con-
fidence of CM in its prediction by calculating the ratio of
correctly classified samples that match the query compared
to all matching samples in the modelling agent’s data set.

3.3 Individual and collective reputation
Next, we can easily combine reputation and reliability to

obtain the reputation by personal experience and by group
experience measures used in reputation systems like [8]

PE(CM , i) = R(CM , i) · r(CM , i)

as the product of reputation and reliability obtained for a
simple query. If the instance i does not include an instanti-
ation of the target agent, we can extend this, as before, to
sets T = {b1, . . . , bn} of target agents:

PE(CM , i, V, T ) = 〈R(CM ,iV/b1) · r(CM , iV/b1), . . . ,

R(CM , iV/bn) · r(CM , iV/bn)〉



Considering |M| modelling agents m1,m2, . . . ,m|M|, each
of whom has a respective CM j at her disposal built using
the classification requirements provided by the evaluating
agent, reputation by group experience is defined as1:

GE(M, i) =

∑
1≤j≤|M| PE(CM j , i)∑
1≤j≤|M| r(CM j , i)

Here the modelling agents are used as witnesses who each
provide a personal experience for the target query, and the
evaluating agent normalises their individual reports by their
respective reliabilities. Again, this can be extended to return
a vector of values if the target agent is not specified in i:

GE(M, i, V, T )[k] =

∑
1≤j≤|M| PE(CM j , i)[k]∑

1≤j≤|M| r(CM j , i)

where 1 ≤ k ≤ |T |.
With these, we can now define our main measure of social

reputation as follows:

SR(M, i) = ξ · PE(CM a, i) + (1− ξ) ·GE(M, i)

where ξ can be used to weight the impact of personal vs.
group experience in the overall judgement. As above, in its
vector form covering a set of target agents T , social reputa-
tion is defined as

SR(M, i, V, T )[j] =ξ · PE(CM a, i, V, T )[j]+

(1− ξ) ·GE(M, i, V, T )[j]

for 1 ≤ j ≤ |T |. Note that ξ is effectively the only parameter
introduced in our system that may be specific to a particular
implementation. All other elements of the measures intro-
duced above are generic. It should be remarked that as some
popular rival approaches [5, 8], we do not include measures
in the calculation of SR that take into account how much
the witnesses are trusted (in terms of past interactions with
them, not assessments of third parties), or the opinion to-
ward a “group” the target agent belongs to. These could be
easily defined in our framework, as discussed in section 5.
As we show below, we can achieve good predictability with-
out them, by focussing more on the structure and semantics
of interactions in analysing past interactions.

4. EVALUATION
To illustrate the usefulness of our approach, we conducted

a number of experiments in the simulated car selling domain
introduced in section 2. Our scenario contains six preference
profiles Pi for customer agents regarding T . These are used
to define what cars are considered acceptable by the cus-
tomers, and are specified as disjunctions of combinations of
product properties, e.g.

P1(T ) = (persons = more ∧ lug boot = big ∧ price =
low ∧ maint = low) ∨ (persons = more ∧ lug boot =
big ∧price = med ∧maint = med)∨ (doors = 5-more∧
persons = more ∧ price = low ∧ maint = low) ∨
(doors = 5-more ∧ persons = more ∧ price = med ∧
maint = med)

1As in the definitions of other measures below, we set this
quantity to 0 when the denominator is 0 and omit this case
for brevity.

We implement fifty customer agents C1 to C50 with associ-
ated profiles Ci ← Pi mod 6, so that agents C1 and C7 use
P1, C2 and C8 use P2, and so on.

Similarly, we specify three seller agent preference profiles
Qj , again specified in terms of T . These describe what types
of cars a seller can offer. Additionally, every disjunction is
labelled with tb or ub to indicate in which cases the seller
will behave in a trustworthy or untrustworthy way when it
negotiates those products. Again, we only show one of these
profiles for illustration:

Q1(T ) = (safety = med ∧ price = low ∧maint = low)→ tb

∨ (safety = high ∧ price = low ∧maint = low)→ tb

∨ (safety = high ∧ price = med ∧maint = med)→ ub

This profile specifies that the seller will respond positively
to a request for terms (safety = med∧price = low∧maint =
low), and that she will then also comply with all subsequent
steps until the sale is completed. In those cases labelled
ub, the seller will initially agree to the terms, but will then
choose a random “failure” path in her subsequent behaviour.
Our system implements 10 sellers S1 to S10, with associated
profiles Sj ← Qj mod 3.

4.1 Model construction and reputation mea-
surement

To convert raw sequences of message exchanges to training
data samples, we make the following design choices: As far
as variables occurring in constraints are concerned, we uni-
formly record all attributes contained in“terms”descriptions
T , including a “?” (unknown) value for those not mentioned
in a given execution trace. This is feasible in the given proto-
col model as the amount of unspecified data is manageable.
Our strategy to deal with loops is to only record the last
value of every variable occurring in multiple iterations over
the alternative-request sub-sequence for negotiation, as
we are primarily interested in the final offer accepted or re-
jected by the customer.

The strategy that customer agents follow using our repu-
tation system is explained below:

1. Each customer from M∈ {C1, . . . , C50} computes

SR(M, i, B, {S1, . . . , S10})

with ξ = 1/50 (i.e. equal weight is given to personal ex-
perience as to each of the 49 witnesses) and for a query
i complying with one of their acceptable preferences in
Pi. Each Ci thereby uses her own conversation model,
built using only own the agent’s own interaction expe-
rience.

2. Each customer chooses the seller Sj with the high-
est positive reputation value and interacts with that
agent in the current negotiation. If the prediction of
the model does not match the observed interaction ex-
perience, the agent re-builds her model from scratch.

3. If there is no such agent, the terms i are updated ac-
cording to the customer’s preferences, and we repeat
from 1 (the disjunctive clauses in the Pi profiles are in-
complete and can be easily randomly extended to ob-
tain a specific requested car). If no seller with positive
reputation can be identified after up to 100 attempts,
the customer will interact with a random seller.



It should be observed that we deliberately test our system in
a very “heavy” form of its usage, repeating the data mining
step over all past interaction data, posing up to 100 queries
until a positive prediction is returned, and using each cus-
tomer agent as an independent modelling agent and wit-
ness for every other agent. This approach is chosen to il-
lustrate that even this resource-intensive way of employing
our method results in reasonable computation times, as will
be shown below. This configuration also allows us to show
the workings of our method in the “optimal” case, i.e. when
investing a maximum effort of computation.

We compare the prediction accuracy of our system against
a number of alternative reputation strategies, measured as
the percentage of successful interactions over time:

Random. The seller is chosen randomly – this provides a
baseline for the minimum performance that could be
achieved without any use of reputation. An optimal
strategy is not included, as 100% success constitutes
the upper bound of what can be achieved in this sce-
nario (we ensure that there are always sellers in the
system who can provide the requested items in a trust-
worthy way).

Quantitative. The seller is chosen using a distance function
based on the number of past successes and failures with
them in the customer’s personal experience. The func-
tion used is D(s, f) = 1− (1 + s

2f+1
)−1, where s is the

number of successes and f the number of failures with
a particular seller, and the seller to interact with is
chosen with probability corresponding to D(s, f) [9].

Personal experience only. Our reputation system is used as
described above but with ξ = 1, i.e. the customer only
takes her own interaction experiences into account.
This method is chosen for comparison to assess the rel-
ative importance of witness information as compared
to local interaction experience.

Restricted qualitative. Instead of structural and semantic in-
formation we use only A, B, and the Outcome label (S
or F ) in combination with the data mining technique.
This serves to illustrate the performance of using the
same data mining technique without any in-depth in-
formation about the content of interactions.

4.2 Static seller behaviour
As figure 3 shows, the results show that after 100 nego-

tiations (2 negotiations per customer) all strategies exhibit
similar performance. After 1000 negotiations (20 negotia-
tions per customer) our reputation system greatly outper-
forms all other strategies, with the social reputation strat-
egy converging much faster to optimal performance than the
strategy based on personal experience only. This difference
is understandable, as the conversation models combined in
the social reputation strategy are based on a much broader
variety of data earlier on in the process. However, later
convergence of the “personal experience only” strategy also
shows that it performs equally well in the long term, pro-
vided sufficient data becomes available. The plot also shows
that a data mining approach without an analysis of the de-
tailed structure of interactions does not perform any better
than the purely quantitative approach, thus proving that the
advantage of our method is indeed brought about by the in-
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Figure 3: Average number of successful negotia-
tions over number of total negotiations across all
customers (100 experiments); error bars show stan-
dard deviation
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Figure 4: Time per negotiation, log scale (aver-
aged over 100 experiments); the standard deviation
across experiments is negligible

clusion of qualitative interaction properties rather than by
the effectiveness of the data mining algorithm itself.

The downside of our method is of course increased run-
time, at least when, as above, conversation models are re-
built every time a customer obtains a wrong prediction,
which happens very often, while also the datasets over which
the models are built increase over time. Figure 4 shows the
time taken on average per negotiation, which reaches around
150 seconds after 25000 negotiations for the personal and
group experience methods. While this is clearly a short-
coming of our method, it is highly customisable in that the
maximum amount of data processed or the frequency with
which models are re-built can be adapted as suits the sys-
tem designer (albeit at the cost of lower accuracy). Also,
the runtime per negotiation is still much lower than the
over 2000 seconds required by the restricted qualitative ap-
proach, which has to rebuild the model very often due to its
failures. This also shows that a data mining-based analysis
which doesn’t take the semantic and structural dimension
of communication into account actually combines the worst
of both the quantitative (low performance, hence constant
need to re-build model) and qualitative (high computational
effort to rebuild model) worlds. It would only work well if a
given seller behaved well or badly in every interaction.



4.3 Dynamic seller behaviour
The ability to respond to dynamic changes in others’ be-

haviours is an important performance characteristic of rep-
utation systems. In our second experiment, we introduce
seller agents who suddenly switch their behaviour (from
trustworthy to untrustworthy and vice versa) as specified
in their original profiles (each rule resulting in tb will be
modified to ub and vice versa). We compare the success
rate of the following strategies for responding to dynamic
behaviour change against the extreme cases (“no change” in
seller behaviour to respond to, and “no strategy” to respond
to changes in seller behaviour, i.e. fixed social reputation):

1. Incongruence detection. This method is based on eras-
ing all previously collected data samples if a new pre-
diction result is incorrect and there is past experience
for same instance which provided the correct predic-
tion. The idea behind this is that this should not hap-
pen unless evidence shows that the behaviour of the
target agent(s) has changed drastically. The method
requires that past queries are remembered, and may
also lead to removal of many past data samples.

2. Timestamp weighting. The second strategy is based
on weighting past samples according to their recency
during model construction. A weight function W :
N2 → [0, 1] ⊂ R is employed which uses the current
time stamp t and the time t′ an instance was observed
as a weight W (t, t′) for an interaction observed in the
past. We use the same weight function as [8], i.e.
W (t, t′) = t′/t to give more weight to samples closer
to t.

3. Weighted resampling. Similar to the previous method,
this strategy applies a re-sampling step after fixing the
weights, i.e. it produces a random subsample of the
dataset using sampling with replacement to produce a
constant-sized dataset, where the selection probability
is proportional to the sample weight [3].

4. Fixed window. This strategy simply retains a win-
dow with the last 1000 samples for model construc-
tion, omitting all previous samples. Another strategy
has been added for a window with 500 samples instead
of 1000.

The results for the different strategies are shown in figure
5. The plot shows that the incongruence detection strategy
achieves the fastest recovery from the intermittent drop in
success rate after the seller’s behaviour change and manages
to return to near-optimal performance very soon. As incon-
gruence recovery strongly relies on an understanding of the
structure of qualitative queries, this result illustrates that
our reputation system not only manages to exhibit respon-
siveness (which can aid agents much in adapting to shifting
behaviour of malicious agents who try to “massage” them
into thinking they are trustworthy) with relatively simple
dynamic re-evaluation strategies, but also that the qualita-
tive approach we take is essential to enable such strategies.

5. RELATED WORK
Apart from systems that rely on a purely centralised repu-

tation mechanism such as [1, 2, 13], popular and comparable
recent distributed approaches include TRAVOS [11], Refer-
ral System [12] and FIRE [5]. All of them use two main
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Figure 5: Success probability against number of ne-
gotiations, with dynamic seller behaviour change in
round 1000 (average over 100 experiments).

information sources to compute reputation values, the per-
sonal experience, and witness’ experience. FIRE [5] also uses
additional dimensions, i.e. role-based rules and third-party
references provided by the target agents. We argue that the
major limitation of these approaches is that their definitions
of reputation do not depend on the semantics of the domain
and the structure of interactions. As a consequence, reputa-
tion values are only relevant when all evaluating agents are
interested in the same aspect or type of interaction, and the
modelling agent(s) calculate reputation based on precisely
this information. To use the example of [6], if agents buy
something on eBay, trusting a seller agent implies that she
will send the right product to the right place at the right
time. While some buyers will accept a small delay, they are
not able to query the reputation system for such specific de-
tails. However, when all providers offer the same product
with the same characteristics, as in the trading system used
to assess FIRE, these approaches work well.

A notable exception to the lack of semantics in reputation
approaches is the REGRET model proposed by Sabater and
Sierra [8]. REGRET uses ontologies to detail the type of
trust required by the evaluating agent, which can be used to
query witnesses. REGRET’s contribution is that, since the
meaning of trust can be different for each agent, the evaluat-
ing agent must be able to ask to what extent witness agents
trust the target agent concerning specific aspects of the in-
teractions. Following our eBay example, this means that an
agent can query the seller’s reputation with regard to getting
a low price, quick delivery, etc. Based on these values, the
evaluating agent can define its own concept of global trust,
e.g. giving less weight to price than to delivery. The main im-
provement of our approach over REGRET is that reputation
is defined as a model of behaviour with arbitrarily complex
properties, modelled on the basis of the interaction proce-
dures used by the agents in a system. This allows agents
to make much more informed decisions based on more fine-
grained and flexible queries, makes a priori agreement on a
set of specific ontological dimensions of trust across the sys-
tem unnecessary, and also implies more concise reputation
models that are not merely constantly growing databases
of past interactions, but store regularities in observed be-
haviour in succinct data structures.

A limitation that we share with other approaches is that
witnesses are assumed to be trustworthy. Although dealing



with untrustworthy witnesses is beyond the scope of this pa-
per, our method provides improved capabilities which could
be used to address this issue: When complete reputation
models are exchanged between modelling and evaluating
agent, the evaluating agent can assess the long-term reliabil-
ity of a model by evaluating its reliability over its own past
interaction experiences prior to using a prediction provided
by this model to make concrete interaction decisions. Con-
trary to non-qualitative methods, this can be done without
requiring access to the original interaction data the model
was built with. Another possible strategy which illustrates
the generality of our approach would be to model interac-
tions with witnesses themselves as protocols, and build a
trust model for them in much the same way as this is done
for target agents.

The obvious weakness of our contribution are its complex-
ity and requirement for additional knowledge. The definition
of protocols, application of data mining algorithms, manip-
ulation of conversation models, etc are much more elabo-
rate and less efficient than the application of polynomial-
time mathematical operations used in quantitative reputa-
tion systems. Possible measures to reduce the number of
conversation models created are: (i) the use of data mining
techniques which incorporate new experiences without re-
building the entire model (incremental learning algorithms)
[7], and (ii) not creating a new conversation model if this
model is not expected to be better than the previous one.
With this respect, one way of limiting the amount of com-
putation performed is to rebuilds a conversation model only
if a new experience is incorrectly classified by the old con-
versation model, or if the evaluating agent changes the set
of classification rules which determine the classes of the in-
stances before obtaining the conversation model.

6. CONCLUSION
In this paper, we have proposed a novel qualitative ap-

proach to reputation systems based on mining “deep mod-
els” of protocol-based agent interactions. Contrary to most
existing methods, the reputation measures we define do not
solely rely on the assessment of the predicted outcome of an
interaction, but take the complex, knowledge- and content-
rich structure and semantics of multiagent protocols and
agent communication languages into account. On the side
of the reputation-evaluating agent, this allows us to intro-
duce more complex, fine-grained, and contextualised queries
that can be posed to a reputation-modelling (collection of)
witness(es), which results in higher prediction accuracy than
quantitative methods as the queries are tailored to the needs
of the agent. As a side-effect, our system also allows more
intelligent and rationally reasoning agents to exploit the
expressiveness our framework affords: As our case study
shows, if agents have preferences and objectives specified in
a language that can be related to the semantics of a proto-
col language, the reputation queries can be seamlessly con-
structed on the basis of their internal beliefs and mental
states. On the side of the witness, our method leads to more
concise, generalised models of target agents’ behaviours, re-
ducing the need to store huge amounts of past interaction
data in what would otherwise be a “flat” database of past
interactions, allows for disclosure of the model instead of
transmission of primary interaction experience (which may
also be subject to confidentiality restrictions), and enables
different levels of privacy toward a reputation-querying agent

without the need to modify the algorithms used to measure
reputation. Our empirical results show that our method is
capable of exploiting the additional structure and seman-
tics we provide it with, both in terms of achieving higher
prediction accuracy (sooner), and in terms of responding to
unexpected changes in target agents’ behaviours.

In the future, we would like to explore more elaborate
data mining techniques, in particular to learn logical theories
of the constraint definitions other agents apply from past
interaction data, to evaluate our system in larger scenarios
with a broader variety of interaction protocols and behaviour
types, and to explore issues of trust in witnesses in order to
be able to accommodate scenarios where witnesses are not
necessarily trustworthy, or might even collude with target
agents 2.
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