
PRep: A Probabilistic Reputation Model for Biased
Societies

Yasaman Haghpanah
University of Maryland Baltimore County
1000 Hilltop Circle, Baltimore, MD 21250

yasamanhj@umbc.edu

Marie desJardins
University of Maryland Baltimore County
1000 Hilltop Circle, Baltimore, MD 21250

mariedj@umbc.edu

ABSTRACT
Several reputation models have been introduced to deal withthe
problem of biased reputation providers. Most of these models dis-
count or discard biased information received from the reputation
providers, and most of them are not appropriate when a large pop-
ulation of information providers are biased or dishonest. In this
paper, we present a probabilistic approach for reputation modeling,
the Probabilistic Reputation model (PRep). PRep models a repu-
tation provider’s behavior, and uses this model to re-interpret the
reported information, thus making use of the entire reputation re-
ports effectively, even if they are biased. The re-interpreted data
is combined with the agent’s direct experiences to determine an
overall level of trust in the third-party agent. We show thatPRep
significantly outperforms two state-of-the-art trust and reputation
models—HAPTIC and TRAVOS—and improves the overall pay-
off in a game-theoretic environment.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence ]: multiagent systems

General Terms
Human Factors, Design, Experimentation

Keywords
Reputation, Trust, Bayesian learning, Behavioral modeling

1. INTRODUCTION
Researchers have used reputation to model the trustworthiness

of individuals in online markets, such as eBay, Amazon, and Ya-
hoo [2, 4, 7]. eBay’s tremendous success as an online auction
site stems largely from its powerful yet simple reputation system,
Feedback Forum [7]. The importance of reputation systems in
Internet-mediated service provision has been widely recognized
by researchers in various disciplines, such as multi-agentsystems,
economics, and information systems [4].

In the literature, reputation has been referred mostly to the ag-
gregation of people’s opinion about one person. In this paper, we
use reputation as the perception of one person (or agent) about an-
other person’s behavior, intention, or reliability of service. This
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perception depends directly on the reputation reporter’s character-
istics, such as their level of uncertainty, whether they arebiased or
realistic, and/or cultural biases they may have. Differentreputation
characteristics can be dominant in specific domains. For example,
the buyers’ behavior in eBay can be modeled as biased towardsgiv-
ing positive or negative reviews. In reality, eBay’s feedback forum
has been observed to be surprisingly positive: among all ratings
provided in eBay’s feedback forum, 99% are positive [2, 7].

Avoiding unfair ratings while obtaining unbiased and honest re-
views and ratings has been shown to be problematic and extremely
hard to achieve [2]. Researchers in this area have explored different
solutions to this problem. Some have tried to solve it by identify-
ing unbiased reviews and using models that discount or discard the
biased information [10, 12, 13]. Another proposed approachis to
define a measure of review helpfulness, and identify the helpful re-
views among a set of candidate reviews [3]. These approacheshelp
to reduce the effect of biased and non-realistic reviews, and there-
fore highlight unbiased information that can be used for decision
making. However, these proposed models are also throwing away
data by filtering, discounting, and discarding, despite thefact that
reviews are costly and in general not easily obtainable. Addition-
ally, some products have few reviews, providing too little data to
identify the fair reviews and discount the rest [3].

We propose the Probabilistic Reputation (PRep) model, a novel
solution grounded in probabilistic modeling that learns the review-
ers’ behavior using Bayesian learning and then adjusts their reviews
or ratings, as opposed to finding the unbiased reviews and discard-
ing the rest. In the PRep framework, an agent first gathers informa-
tion about a target agent through both direct interactions with that
target and a reviewer’s report about the target. Then, it learns the
reporting agent’s behavior by comparing these two sources (i.e., re-
ports and direct experiences). After the learning phase is complete,
the PRep agent can interpret other reports about other targets com-
ing from the same report provider. As a result of this interpretation,
it uses the entire report effectively, even if the report provider is
biased (i.e., even if its reports are based on faulty perceptions or on
dishonest reporting).

The key benefits of PRep are:
• The PRep reputation mechanism uses biased information as

well as unbiased information; it therefore benefits from all
available data.

• PRep agents obtain a tailored view of the reviewer (or re-
porter) according to their own behavior and preferences, re-
sulting in customized aggregation of reviews.

• PRep is still effective in cases with very few observations or
reviews. Most current models are unable to find usable feed-
back or generate a meaningful reputation level when only a
few ratings are available [3].



In this paper, we describe our approach and its application in a
game-theoretic environment. Our experimental results show that
PRep is able to learn the reporting behavior of a report provider,
and consequently to interpret other reports of that provider, result-
ing in better decision making and higher payoffs in its future inter-
actions. Also, our results show that PRep identifies other agents’
trustworthiness faster and more accurately than two other state-of-
the-art trust and reputation models (TRAVOS and HAPTIC), even
when reported information is biased.

2. RELATED WORK
Reputation has been widely studied [2, 4, 7, 8]. Several reputa-

tion models and mechanisms have been proposed in the literature
to deal with the problem of biased and unfair ratings.

The BRS [13] and TRAVOS [10] approaches construct Bayesian
models, using the number of satisfactory and unsatisfactory inter-
actions with the sellers as ratings, and then use outlier detection or
relevance analysis to filter out unreliable ratings. A drawback of
these approaches is that a significant amount of informationmay
be considered unreliable, and therefore discarded or discounted.
BLADE [6] uses a Bayesian model reputation framework. In con-
trast to BRS and TRAVOS, it does not discard all unreliable ratings;
rather, it learns an evaluation function for advisors who provide
ratings close to their direct experience. Therefore, BLADEonly
performs well if the advisors are extremely honest or extremely
dishonest. For example, BLADE discounts the ratings even ifthe
advisor provides 70% honest reports. In the real world, advisors are
not purely good or bad and could have various levels of honesty.

Vogiatzis et al. [11] proposed a probabilistic trust and reputa-
tion model that focuses on modeling service providers whosebe-
havior is not static with time. Their model does not work wellin
the presence of biased advisors. Additionally, Vogiatzis’s model
and TRAVOS both assume that there has been a history of interac-
tions between the agent (i.e, the reputation requester) anda service
provider. Noorian et al. [5] categorize an advisor’s “unfairness” be-
havior into two groups: intentional and unintentional. Their model,
Prob-Cog, uses a two-layer filtering approach to detect and disqual-
ify unfair advisors. Prob-Cog mainly targets and filters outadvisors
who are intentionally biased. Their model does not perform well
when there is a large population of intentionally unfair advisors.

Zhang and Cohen [15] proposed a personalized approach to han-
dle unfair ratings. They use private and public reputation informa-
tion to evaluate the trustworthiness of advisors. They estimate the
credibility of advisors using a time window to calculate therecency
of ratings, and then estimate the trustworthiness of advisors based
on the ratings. Their model does not interpret unfair ratings. As
a result, when the proportion of unfair ratings increases, the trust-
worthiness of advisors decreases; this results in the system relying
heavily on private reputation (i.e., agent’s direct experiences). Yu
and Singh [14] measure how much the advisor’s rating deviates
from the consumer’s experience. Their model identifies accurate
advisors, and discards deceptive advisors.

Another area of research is focused on sentiment analysis and
review helpfulness. For example, Kim et. al. [3] propose a method
for automatically determining the quality of reviews. Theyuse re-
gression to rank different sets of reviews on Amazon.com, based
on their helpfulness. They do not customize the reviews based on
a user’s experiences or preferences. Also, since many products re-
ceive very few reviews, their approach is not helpful for such cases.

In contrast to these mentioned models, PRep uses and customizes
reviews (or reports) even when they are biased. Without prior inter-
actions with a service provider, a PRep agent can form a view about
the service provider by requesting and interpreting the opinion of an

Figure 1: Basic scenario. Requester stands for Reputation Re-
quester, Reporter stands for Reputation Reporter, and Targets
are agents that Requester would like to know about.

advisor, if it has previously observed the advisor’s behavior. This
allows PRep agents to form a view about service providers that
have very few reviews and ratings or for whom the majority of the
reviews is biased. Other reputation models do not work effectively
in such cases.

3. THE PREP MODEL
In this section, we explain our reputation mechanism, PRep,

which is based on probabilistic modeling and Bayesian learning.
PRep has two main steps: learning the reporter’s behavior (Section
3.3) and interpreting the later reports coming from that reporter for
use in decision making (Section 3.4).

Figure 1 explains our model using a two-step scenario involving
a reputationRequester, a reputation (review or opinion)Reporter
(advisor), and severalTargets (service providers). In this scenario,
Requester is new to a society of agents, but Reporter has beenin
this society for some time and has had direct interactions with sev-
eral agents (Target1, Target2, Target3, etc.). Requester first starts to
interact with Target1 directly, then asks Reporter for someinforma-
tion about Target1. By comparing its own direct experience to the
reported experience of Target1, Requester learns Reporter’s report-
ing behavior. At this point, Requester can interpret acquired reports
from Reporter about other agents (e.g., Target2) and can usethis in-
formation to interact more effectively with those agents. Note that
Target1 does not know that Requester is new and has requestedrep-
utation information from Reporter. This assumption prevents Tar-
get1 from deliberately misleading the Reporter in order to mislead
the Requester. Also, Reporter does not know whether Requester
has already interacted with Target1. The latter assumptionprevents
Reporter from deliberately misleading Requester about itsreport-
ing behavior.

Trust and reputation have generally been modeled using two sources:
direct and reported experiences. PRep interprets reportedexpe-
riences in its reputation model and uses a direct-experience trust
model to evaluate the trustworthiness of agents. In this paper, we
use HAPTIC [9] as the trust model. However, PRep is general and
can be combined with other existing direct-experience trust models.

3.1 Direct-Experience Trust Model
Harsanyi Agents Pursuing Trust in Integrity and Competence

(HAPTIC), a trust-based decision framework, is among the few ex-
isting models with a strong theoretical basis: HAPTIC is grounded
in game theory and probabilistic modeling. It has been shownthat
HAPTIC agents are able to learn other agents’ behaviors reliably
using direct experiences. One shortcoming of HAPTIC is thatit
does not support reported experiences.



The HAPTIC model allows an agent to predict a partner’s ac-
tions and use these predictions to decide whether or not to trust that
partner. The key insight in HAPTIC is that it separately models
trust using two components ofcompetence andintegrity. Compe-
tence is modeled as the probability that a given agent will beable
to execute an action in a particular situation. Integrity isan agent’s
attitude towards honoring its commitments (or equivalently as the
agent’s belief in a discount factor), and is affected by the perceived
probability of future interactions. This distinction is useful when
an agent defects. It is important for the other agent to understand
whether the defection was due to the incompetence of an honest
agent, or was the result of cheating by a competent agent withlow
integrity. HAPTIC identifies a discrete set of player types,denoted
byΘ, and maps each agent’s competence and integrityθ to a value
from this set. A HAPTIC agent observes the behavior of other
agents and estimates their competence and integrity, then uses this
data for decision making in future interactions with each agent.

HAPTIC has been applied to a modified two-player Iterated Pris-
oner’s Dilemma (IPD), in which the payoff matrix in each round is
scaled using a random multiplier. As a result, the payoffs differ
from one round to the next. HAPTIC assumes that agents know the
current round’s multiplier before selecting their actions. With vari-
able payoffs, a failure due to low competence can be distinguished
from a failure that results from low integrity. An honest butin-
competent agent defects randomly, irrespective of the payoff. By
contrast, a cheating agent shows a pattern in its defectionsthat is
correlated with the expected payoffs. A HAPTIC agent computes
expected payoffs (as defined in the classic Prisoner’s Dilemma pay-
off matrix) and decides rationally whether to cooperate or defect.
Equation 1 definesδ, a threshold for cooperation and defection. If
the agent’s integrity is greater thanδ, it will cooperate; otherwise, it
will defect. δ can be computed for each agent and each game using
the current round’s payoff multiplierm, the average payoffM, and
the estimates of the payoffs of the four possible outcomes (P̂ , Ŝ,
R̂, andT̂ ).1

δ =
1

M(P̂−R̂)

m(R̂−T̂ )
+ 1

. (1)

A learning HAPTIC player considers the outcome of each round
as either a Success (expected action) or a Failure (unexpected ac-
tion), based on its hypothesis about that agent’s type. Iterative
games between two agents allow HAPTIC players to reduce the set
of probable types being considered. The HAPTIC learning method
uses observations of agent behavior to estimate the competence and
integrity for each agent.

3.2 Types of Reporters
One of the dominant recognized reviewer behaviors (including

eBay’s Feedback Forum) is being positively or negatively biased.
In the real world, some reviewers are realistic (and honest), truth-
fully providing the requested information, reviews, or rates. Others
tend to hide people’s defects because they are afraid of retaliation
[7], they are hopeful of getting a good rate in return [1], or they gain
personal or economic rewards or incentives by doing so. Still oth-
ers may change the results with pessimism, because they are pes-
simistic people by nature, or because they want to ruin a competi-
tor’s reputation and discredit them. Note that reporting negatively
about a service can be completely realistic and not pessimistic, if
the service was actually bad.

To address the consequences of these behaviors in the real world,
we model the behavior of reporters in PRep as being potentially
biased. We define the reporters’ behavior using three types:realis-
tic, optimistic, andpessimistic, similar to Noorian et al.’s approach
1R, T, S, and P are the standard PD payoffs from the payoff matrix.

Figure 2: Report generation from a game between Reporter
and Target.

[5]. A realistic Reporter always reports truthful information, corre-
sponding directly to the experiences that it has had in the past with
other agents. A pessimistic Reporter underestimates otheragents’
behavior, and an optimistic Reporter overestimates other agents’
behavior. The level of optimism (or pessimism) is modeled byan
ordered pair,ω = (ωopt, ωpess), which may be based on the Re-
porter’s innate characteristic or could depend on Reporter’s incen-
tives for honesty/dishonesty. Specifically, with probability ωopt,
Reporter will change some of the Defect actions of the targetinto
Cooperates in its reports. Similarly,ωpess defines the probability of
changing Cooperate actions into Defects. For optimistic reporters,
ωopt represents the degree of optimism (probability of aD → C

“flip”), and ωpess is zero. Likewise, for pessimistic reporters,ωpess

is the degree of pessimism, andωopt is zero.
Figure 2 shows how a report is generated in an IPD environment,

and how it will be changed by different reporters. We denote the
actual result of the series of games between Reporter and Target as
R. R is a sequence of Cooperate and Defect actions by Target in
the series of games played with Reporter. The interactions and re-
porting process are as follows. Target makes its decisions based on
its competence and integrity,θ, and the payoff multiplierm of each
game, as modeled in HAPTIC. When Reporter wants to submitR

to Requester, it will first changeR to R′ based on its type,ω, and
then deliverR′ to Requester. For example, ifω is 30% optimistic,
then Reporter will change each Defect (inR) to a Cooperate (in
R′) with probability 0.3 (Figure 2).

In the real world, a Reporter could have various perceptions
of interacting with different targets, based on its relationship with
those targets, e.g., as a collaborator or competitor. Here,however,
we assume that Reporter has the same perception of plays withdif-
ferent Targets, so its reporting behavior will be the same for various
Targets. Since HAPTIC assumes that agents know the current mul-
tiplier of the round, we maintain this assumption here: all agents
know the multipliers of the games. We intend to relax both of these
assumptions in our future work.

3.3 Learn Reporter’s Type
We now explain how Requester learns Reporter’s type using Bayesian

model averaging by comparing direct and reported experiences.
Consider our basic scenario, shown in Figure 1, in which Requester
and Reporter have played separately with Target1. Suppose that
Requester asks Reporter for some information about Target1. We
denote the actual results of the play between Reporter and Target1
byR, and between Requester and Target1 byD. Reporter changes
the true results,R, based on its type,ω, toR′ for reporting to Re-
quester.

We define a set of discrete reporter types,Ω.2 Each typeωi ∈ Ω

2Using a discrete set of possible agent types is simpler and less



is a pair of values (ωopt, ωpess). Realistic agents are modeled by
ω = (0, 0). The probability of a type hypothesisωi is denoted by
P (ωi). Requester has also learned a probability distribution over
the possible player types for Target1, which are denoted byθj . The
probability of each player type is denoted byP (θj).

To find the probability of each type of Reporter, given the results
R′ andD, i.e., P (ωi|R

′, D) for each Reporter type,ωi, we use
Bayesian model averaging over all possible Target1 types,θj :

P (ωi|R
′,D) =

∑

θj∈Θ

P (ωi|R
′, D, θj) × P (θj |R

′,D). (2)

The second term,P (θj |R
′, D), is the probability of Target1’s type

being θj , given R′ and D. In this case,D, the direct experi-
ence, is more reliable thanR′, the reported experience. There-
fore, PRep conditionsθj only onD, and this term is simplified as
P (θj |D), which is Requester’s probability distribution of Target1’s
type, learned using the HAPTIC model.

The first term,P (ωi|R
′, D, θj), is the probability of a Reporter’s

type, given Target1’s typeθj , R′, andD. Sinceωi is condition-
ally independent of the results of Requester and Target1’s play (D)
givenθj andR′, this term can be simplified toP (ωi|R

′, θj). Using
Bayes’s rule, we can rewrite this term as:

P (ωi|R
′, θj) =

P (R′, θj |ωi) × P (ωi)

P (R′, θj)
. (3)

We assume a uniform prior on the Reporter’s type, soP (ωi) is
just the reciprocal of the number of defined types for Reporter
(P (ωi) = 1

|Ω|
). Also, P (R′, θj) is a normalizing factor, so we

only need to computeP (R′, θj |ωi). Using the definition of condi-
tional probability, this term can be rewritten as:

P (R′, θj |ωi) = P (R′|θj , ωi)× P (θj |ωi). (4)

Sinceθj andωi are independent, the second term in Equation 4
is P (θj), a prior uniform distribution over the player types. The
expected value ofP (R′|θj , ωi) is defined by a weighted sum over
all possible values ofR:

E(P (R′|θj , ωi)) =
∑

R

P (R′|R, θj , ωi)× P (R|θj , ωi). (5)

Since computing this full expectation is computationally very ex-
pensive, one can instead approximateP (R′|θj , ωi) using the max-
imum likelihood value forR. Denoting the most likelyR asR∗,
this maximum likelihood can be written and expanded as:

P (R′|R∗, θj , ωi) = P (R′
C , R′

D|R∗, θj , ωi), (6)

whereR′
C are all the cooperates andR′

D are all the defects in the
report. Since each round played is assumed to be independentof
the others, the probabilities of the observed defects and cooperates
in the report are independent of each other, yielding:

P (R′
C , R′

D |R∗, θj , ωi) = P (R′
C |R∗, θj , ωi)× P (R′

D |R∗, θj , ωi).
(7)

Each term in Equation 7 represents a series of i.i.d. (independent
and identically distributed) observations from a Bernoulli distribu-
tion, so a binomial distribution can be used to compute the overall
probability of each reporter type. The first binomial is the prob-
ability of observing a certain number of optimistic flips (i.e., the
case where the intentionR∗ of Target1 is Defect and the report of
that round,R′, is Cooperate). The second binomial likelihood is
the probability of seeing the observed number of pessimistic flips
in the report. (when the intentionR∗ is Cooperate, but is reported

computationally expensive than modeling agent types with acon-
tinuous variable. We experimented with a continuous version, and
the results are very close to what we obtain with discrete sets.

as a Defect inR′). The expected success rate for the first binomial
is the number ofD → C flips over total number of Cooperates in
the results,R′

C , that would be expected from a reporter with type
ωi. Similarly, the expected success rate for the second binomial is
the number ofC → D flips overR′

D . Note that a success in this
context is a “flip”: that is, when Reporter changes a Cooperate to a
Defect, or vice versa. We multiply these two binomial likelihoods
to computeP (R′|ωi, θj) in Equation 7. By averaging over all pos-
sible Target1 types, Requester can calculate the probability of each
type of Reporter (Equation 2).

In more complicated environments, the Requester may have mul-
tiple reports from the same Reporter. In this case, we first learn the
Reporter’s behavior in each set of reports, and then use a weighted
averaging function over all possible Reporter types, i.e.,for N re-
ports. In fact, to estimate the credibility of the learnedω in each
transaction, we use the length of each report, i.e., the number of
rounds for which two agents interacted with each other in each run:

P (ωi|R
′
1, D1, ..,R

′
N ,DN ) =

∑N
j=1 P (ωi|R

′
j ,Dj)× length(R′

j)∑N
k=1 length(R

′
k
)

,

(8)
wherelength(R′

j) is the number of interactions reported inRj .
Note that as the number of rounds increases, the statistics become
more accurate, leading to better results (see Section 4).

3.4 Report Interpretation
In the previous subsection, Requester learned Reporter’s type. In

this section, the maximum likelihood of the possible Reporter types
(i.e.,P (ωi|R

′, D)) will be used to interpret the reported results for
new Targets. We illustrate how agents can use this interpretation to
learn the player types (competence and integrity) of other targets
with whom they have not previously interacted.

After learning Reporter’s type, Requester asks Reporter for in-
formation about Target2, and uses its learned knowledge of Re-
porter’s type to interpret the reported results (which are denoted by
R′

2). Without loss of generality, we explain how to interpret the
reports when Reporter’s type is optimistic. Recall thatωopt rep-
resents the probability of optimistic flips in the report andωpess

represents the probability of pessimistic flips in the report. Using
Equation 9, an “interpret” function estimates the total number of
Cooperates (countR2C

in the actual resultsR2) usingcountR′

2C
,

as the total number of reported Cooperates in the sequenceR′
2,

length(R2) as the number of rounds in the play, andωopt. The
difference betweencountR2C

andcountR′

2C
is the number of Co-

operates that should be changed back to Defects to produce more
accurate results, and saving the result asR∗

2.

countR′

2C
= countR2C

+ ωi_opt × (length(R2)− countR2C
). (9)

Requester now plays back the new results,R∗
2—generating an

action as it would do if it were actually playing with Target2—and
uses HAPTIC to updateP (θj) for each possible Target2 player
type,θj = (C, I). This distribution will continue to be updated in
the online learning process between Requester and Target2,when
they start their direct interactions. This knowledge will increase
Requester’s overall and mean payoff.

4. EXPERIMENTS
In this section, we present our experimental results. We show

the performance of the learning and report interpretation compo-
nents of PRep. We also compare the overall performance of PRep,
HAPTIC, and TRAVOS in terms of learning accuracy and payoffs.



Figure 3: Step1 and Step2 of basic scenario. Req is Requester;
Rep is Reporter; T1 & T2 are Targets.

As an overview, in the first two experiments, Exp1 and Exp2,
we evaluate PRep’s learning and interpretation components, re-
spectively. In the third experiment, Exp3, we compare PRep with
HAPTIC, and verify the results with a t-test. Finally, in Exp4, a
TRAVOS Requester competes with a PRep Requester in finding
Target1’s behavior. We compare their mean error in finding Tar-
get1’s behavior and the mean and cumulative game payoffs.

4.1 Simulation Parameters
Distribution of Reporter Types: In these experiments, the re-

porter type is chosen randomly using either a uniform distribution
or a capped Gaussian distribution. These functions randomly gen-
erate numbers in the range (-0.7, 0.7), based on the type of distri-
bution. A negative number represents a pessimistic reporter; a pos-
itive number is an optimistic reporter; and zero is realistic. We de-
fine the Gaussian distribution function with zero mean and a spec-
ified variance. Various demographics of realistic, pessimistic, and
optimistic agents will be achieved by changing the varianceof the
Gaussian function.

PRep represents the set of possible reporters using a discrete set
of types (ωopt, ωpess). Fifteen reporter types are considered by
PRep: (0.1, 0), (0.2, 0)..(0.7,0) as optimistic reporter types; (0,
0.1), (0, 0.2),..(0,0.7) as pessimistic reporter types; and (0, 0) as
a realistic reporter type. The uncertainty associated withthe re-
porter’s type is described by a multinomial probability distribution
over these possible types. Learning ofω occurs by updating this
probability distribution based on the observed behavior ofthat re-
porter after each reporting interaction.

Agent Strategies:Requester and Reporter are HAPTIC agents
that have competence and integrity.3 Targets are selected from clas-
sic strategies from the IPD literature in our experiments: ALLC,
ALLD, TFT, and TFTT. An ALLC Target always cooperates in its
play with any opponent. An ALLD Target always defects. A TFT
(Tit-for-Tat) initially cooperates and then copies its counterpart’s
action from the previous round. A TFTT (Tit-for-Two-Tat) agent is
forgiving and defects only if the opponent agent has defected twice
in a row. We also use two variable-payoff strategies from Smith
and desJardins [9]: DHP (Defect on High Payoff) and DMP (De-
fect on Medium Payoff). A DHP Target defects only on high-payoff
games, and a DMP defects on medium and high payoffs, and coop-
erates on low payoffs.4Among these strategies, TFT and TFTT are
the only ones who behave in reaction to their opponent’s actions.
The rest select their actions based on their type and regardless of
their opponent’s move.

We also introduce a noise factor for each of these strategic types,
corresponding to HAPTIC’s notion of competence. This factor,
which is the probability of the actual action to be equal to the in-
tended action, is selected from this set: {0.7, 0.8, 0.9, 1}.

3As in Smith and desJardins, competence of agents are selected
from {0.7, 0.8, 0.9, 1}; and integrity is a number from 0 to 1.
4Multipliers of the rounds are selected from {0.4,1,4}. A DHP
defects on rounds with m=4 and DMP defects on m=1 and 0.4 [9].

4.2 Exp1: PRep Learning
In our first experiment, we show the performance of PRep’s learn-

ing component for different reporter types. We compare the given
Reporter type distribution with the learned distribution and measure
the accuracy of the learned Reporter types.

Design:We evaluate PRep in two steps, shown in Figure 3 (which
follows our basic scenario presented in Figure 1). In the first step,
PRep learnsω; in the second step, it uses the learnedω to inter-
pret the reports in its successive plays. In step one, Requester and
Reporter each play20 rounds with Target1. Then, Requester asks
Reporter about its experience with Target1. Reporter converts the
actual results,R, to R′ based on its typeω, and passes the report,
R′, to Requester. Requester then learns the Reporter’s type,ω,
givenR′ andR (using the approach described in Section 3.3). In
step two, Reporter plays20 rounds with Target2 (results =R2).
Then, Requester asks Reporter about Target2. Reporter converts
the actual resultsR2 to R′

2 based on its typeω, and passes the re-
sults to Requester. Requester interpretsR′

2 based on the learnedω,
and generatesR∗

2.5 Requester plays backR∗
2 and learns Target2’s

competence and integrity, denoted by(C, I). Finally, Requester
plays for20 rounds with Target2, starting with its learned values
for Target2’s(C, I).

In Exp1, 100 Reporter types,ω, are selected randomly from a
uniform or Gaussian distribution. Requester and Reporter player
types (Competence, and Integrity) values are (1, 0.9). Target1 and
Target2 types are selected randomly from a set of 16 strategic types:
namely, the cross products of 4 player types (ALLC, ALLD, DHP,
and DMP) and 4 competence values (0.7, 0.8, 0.9, 1).

As a performance metric, we use the mean error, which is the
difference between the identified Reporter type,ω, and the correct
type. All results are averaged over 100 runs.6

Results:Figure 4(a) shows the distribution of true reporter types
and most likely learned types in 100 runs of the experiment over
100 reporter types, when the true reporter types are selected using a
uniform distribution. PRep is able to identify the uniform distribu-
tion, since the values are almost equally spread over the optimistic
and pessimistic ranges, except for the realistic type (which will be
explained next). The mean error for this experiment is 0.14.Part of
this error arises from using discrete types in the learning process:
the discrete steps are 0.1, so inherently an error up to 0.05 will be
introduced during learning (0.025 on average).

Another source of error is the population of learned realistic re-
porters (ω = 0), which is much higher (about 28) than the true num-
ber of realistic reporters value (100/15 or around 7). The explana-
tion for this disparity is that optimistic reporters cannotbe identi-
fied when they are reporting about ALLC players. An ALLC player
always cooperates, so an optimistic reporter makes no changes in
the report, and PRep detects such reporters as realistic. This prob-
lem can be solved when a PRep agent has multiple encounters with
the same reporter (see Section 4.5). The same is true for pessimistic
reporters when reporting about ALLD players. The population of
ALLC players is 25, and roughly half those will face an optimistic
reporter, which is 12 in the population. Similarly, another12 false
positives are generated from the ALLD players. Therefore, the pop-
ulation of realistic reporters will be estimated as 24 more than the
true number. Since these misidentified realistic Reportershave a
true value between 0.1 and 0.7, the average error for each of these

5R∗
2 is Requester’s estimation of what actually happened between

Reporter and Target2, asR2 is not available to Requester.
6Note that a “run” is different than a “round.” A “round” is a single
play between two agents in PD game, with single Cooperate or
Defect as outcome. A “run” is a combination of several “rounds”
in games between the agents in a scenario.



(a) Original distribution: uniform

(b) Original distribution: Gaussian with variance 0.3

(c) Original distribution: Gaussian with variance 0.1

Figure 4: Exp1; The probability associated with Reporter’s
true reporting type.

24 Reporters will be 0.4. This will cause an additional 0.096(i.e.,
0.4×24/100) error, making the estimated overall error to be 0.121
( 0.025 + 0.096), which is very close to the actual error.

Figures 4(b) and 4(c) show the distribution of true agent types
and most likely learned types over 100 reporter types,ω, selected
from a Gaussian distribution, with variances of 0.3 (15% realistic)
and 0.1 (41% realistic reporters), respectively. PRep is able to iden-
tify different distributions of reporters and the learned population is
close to the original population for both large and small variances
in the Gaussian function. The mean error for variance 0.3 is 0.11
and for variance 0.1 is 0.077. As the number of realistic reporters
increases in the population, the mean error decreases; thisoccurs
in part partially because fewer ALLC and ALLD targets will face
optimistic or pessimistic reporters, respectively.

4.3 Exp2: PRep Interpretation
In the second experiment, our goal is to show the importance

of correct interpretations when a reporter is biased. We design an
experiment with fixed values (as a snapshot of Exp1), averageit
over 100 runs, and focus on finding the correct Reporter’s type,
ω and the Target’s type, (C, I), after report interpretation and the
resulting cumulative payoff.

Design: We follow the scenario shown in Figure 3. In the first
step, Requester and Reporter play30 rounds with Target1. In the
second step, Requester and Reporter play20 rounds with Target2.

In this experiment, we use HAPTIC as a baseline. Also, to show
the negative effect of not re-interpreting reports, we define another
baseline, PRep-NoInterp. This baseline uses PRep model with-
out the interpretation component. A third baseline, PRep-Perfect,
shows the upper limit benefit of reported experiences when the re-
porter is realistic and there are no flips in the report.

In Exp2, Reporter’s true type is optimistic 0.4. Requester and

Reporter player types values are fixed at (1, 0.9). Target1’s(C, I)
is: (1, 0.6), and Target2’s true value is (0.7, 0.6).

Our performance metrics are the accuracy of the learned Re-
porter’sω and Target2’s player types (by looking at the probability
assigned to the true player types, i.e., (C, I)) and the cumulative
payoff. The results are averaged over 100 runs.

Results: Figure 5(a) shows the results of learning Reporter’sω

in Exp2, averaged over 100 runs, whereω is optimistic 0.4. This
graph shows that Player1 was able to identify Reporter’s type as
having an optimistic behavior. The probability of the levels of op-
timism is spread over different values; the maximum likelihood of
these values, is optimistic 0.4, with probability 0.22. This result
illustrates the correctness of PRep’s learning component.

Figure 5(b) displays the results of learning Target2’s (C, I). The
possible hypotheses for Player4 are shown by small cross signs; the
correct hypothesis is (0.7, 0.6), which is the true value of Target2
type. The circles’ sizes represent the learned probabilityof each
hypothesis for Target2. The top left graph shows the resultsfor
HAPTIC. In this case, Requester uses only direct experiences. Af-
ter 20 rounds of play, the hypothesis probabilities are spread among
four values: (0.7, 0.9), (0.7, 0.6), (0.7, 0.35), and (0.7, 0.1), which
means that Requester is getting close but has not yet correctly iden-
tified Target2’s true type. The PRep-NoInterp graph shows that us-
ing the non-interpreted reports still yields a moderate probability
of finding the correct hypothesis. The results for PRep are shown
in the bottom left graph, where the highest probability is assigned
to (0.7, 0.6). This is the correct hypothesis; therefore, Requester
can achieve higher payoffs with this learned model than using di-
rect experience alone. If Reporter was a realistic reporterinstead of
being 40% optimistic in Exp2, Requester would have been ableto
identify Target2’s actual (C, I) with a higher probability,as shown
in PRep-Perfect graph in Figure 5(b).

Another interesting view of the learning process is how the learned
probabilities changes over a series of rounds for Target2’strue type.
As seen in Figure 5(c), PRep starts high (near 0.56) from the be-
ginning, while HAPTIC’s probability of the true type remains at a
lower level and needs several more rounds to increase. The main
reason for this behavior is that PRep has learned Target2’s type us-
ing reported experiences that it has received from Reporter.

The corresponding payoffs resulting from the four approaches
are shown in Figure 5(d). As expected, PRep-Perfect has the high-
est payoff; PRep (that interprets biased reports) ranks second and
yields payoffs close to PRep-Perfect. HAPTIC places third;PRep-
NoInterp is in the fourth place and behaves very similarly toHAP-
TIC. Since the reporter in this experiment alters Defects inthe re-
sults with a 40% probability, using reports without interpretations
will result in a performance close to HAPTIC, which is hindered
by its belief in the incorrect reports.

4.4 Exp3: HAPTIC Vs. PRep
To verify the effectiveness of PRep over different player and re-

porter types, we performed Exp3, repeating a game for 100 times.
In each run, we use the scenario in Figure 3. Requester’s typeis
fixed at (1, 0.9), and the reporters’ types are selected basedon a
Gaussian distribution with 0.3 variance (15% realistic reporters)
centered on zero. The Target1 and Target2 types are selectedran-
domly among 16 strategic types: the cross product of four strate-
gic types (ALLC, ALLD, DHP, and DMP) with 4 competence val-
ues (0.7, 0.8, 0.9, 1). The mean payoffs for HAPTIC, PRep, and
PRep-Perfect in this experiment are 1.89, 2.17, and 2.18, respec-
tively. PRep (with biased reporters) achieves 14.8% improvement
over HAPTIC, where the upper limit is 15.3% achieved by PRep-
Perfect. A t-test confirms that the mean per-round payoffs ofHAP-



(a) Reporter’s type probabilities for correct hypothesis
of ω=(0.4,0)

(b) Target2’s type (C, I) probabilities for correct hy-
pothesis of (0.7,0.6)

(c) Target2’s probability growth over rounds

(d) Cumulative payoffs

Figure 5: Exp2; A 40% optimistic Reporter and Target2 type
actual values (C= 0.7, I = 0.6).

Figure 6: Scenario for TRAVOS and PRep. Req is Requester;
R1, R2,..R10 are Reporters; and T is the Target.

TIC and PRep are different; with 99.9% confidence, the difference
is between 0.274 and 0.276.

4.5 Exp4: TRAVOS Vs. PRep
In Exp4, we compare the performance of TRAVOS [10] and

PRep in a noisy environment with biased and unbiased reporters.
We measure the accuracy of the learned Target types, and the re-
sulting mean and cumulative payoffs for both a PRep Requester
and a TRAVOS Requester.

TRAVOS: This model uses probabilistic modeling based on a
beta distribution. TRAVOS outperforms many other trust andrep-
utation models, including probabilistic models such as BRS[13].
TRAVOS uses the number of satisfactory and unsatisfactory inter-
actions with the sellers as ratings, and uses a weight function to
combine these ratings. Agents calculate rating weights by compar-
ing the relevance of each rating to their own opinions.

TRAVOS models the trustworthiness of each agent by a fulfill-
ment factor, which is equivalent to “competence” in PRep. How-
ever, TRAVOS does not model the integrity of an agent. In order to
compare PRep and TRAVOS, we settle this difference by providing
the integrity of an agent as an input to TRAVOS, whereas PRep is
searching in a two-dimensional space for competence and integrity.
Note that this gives an advantage to TRAVOS.

Design:To be able to compare PRep and TRAVOS in both mod-
eling and assumptions, Exp4 uses another IPD-based test frame-
work. TRAVOS assumes previous transactions between Requester
and Target, so we design this experiment with this assumption.
Also, we have several Reporters (each with different behavior) in
this experiment reporting about one Target. Therefore, theRe-
quester interprets different reporters’ reports about oneTarget.

The scenario for this experiment is shown in Figure 6. Requester
plays with Target for 10 rounds. Ten Reporters play 10 roundswith
Target. Each Reporter changes the outcome of its play based on its
type and then reports the changed results to Requester, who updates
its belief about that specific Reporter. We repeat the same process
100 times; in each run, a Reporter’s type,ω, is learned. In PRep,
this value will be averaged over the so far learnedω (as seen in
Equation 8) and later will be used in interpreting reports.

In this experiment, Requesters use either TRAVOS or PRep for
modeling their trust and reputation; target types are selected ran-
domly from the cross product of six strategic types (ALLC, ALLD,
DHP, DMP, TFT and TFTT) with 4 competence values (0.7, 0.8,
0.9, 1). Requester and Reporter’s competences and integrities are
fixed at (0.8, 0.9). The population of Reporters consists of realistic
and biased reporters (pessimistic/optimistic up to 0.7 andrealistic),
selected from a Gaussian distribution with 0.1 variance (41% real-
istic reporters) centered on zero.

We compare the accuracy of Target player types (competence in
this experiment) learned by TRAVOS and PRep. As a performance
metric, we use the mean error, which is the difference between the
identified type and the correct type. Also, we compare PRep and
TRAVOS in terms of the mean and cumulative payoff. All results
are averaged over 100 runs.

Results: Despite the fact that we have provided TRAVOS with
the correct integrity, as we can see in Figure 7(a), PRep outperforms
TRAVOS in identifying the Target’s type (competence). Thiserror
for TRAVOS has converged to 0.078 and for PRep to 0.043 (a 45%
improvement over TRAVOS). The reason is that TRAVOS heavily
discounts the biased reports, while PRep interprets and uses that
data to learn more about the behavior of the Target. As a result
of correctly identifying the behavior of the Reporter, the cumula-
tive payoff is increased from 2085 to 2264 (Figure 7(b)) and the
average payoff per round is increased from 2.09 to 2.26 (a 9% im-



(a) (b) (c)
Figure 7: Exp4; TRAVOS vs. PRep; (a) Mean error in identifying true Target’s competence, (b) Cumulative, and (c) Mean payoffs
for Requester in its play with Target.

provement), as shown in Figure 7(c). The results passed the t-test,
which verifies the mean values of TRAVOS and PRep are different;
with 99.9% confidence, the mean payoff difference is between0.16
and 0.17.

We repeated this experiment with various number of rounds of
direct experiences (i.e., “D” in Figure 6). The results showthat
TRAVOS is performing as well as PRep when the number of direct
experiences is high. Figure 8 shows that the mean error of both
models converges to the same value if we increase the number of
direct interactions up to 30. This means that TRAVOS is heavily
relying on direct experiences, and PRep is performing better when
there are only a few direct interactions available. Additionally, it
shows that mean error decreases for both TRAVOS and PRep when
the number of realistic reporters increases in the population.

Figure 8: Exp4; Performance of TRAVOS vs. PRep using a
variable number of direct experiences.

5. CONCLUSIONS AND FUTURE WORK
We presented PRep, a reputation mechanism that is capable of

re-interpreting and adjusting reported experiences by learning the
reporters’ behavior. PRep works well in regular and noisy envi-
ronments, even with the presence of a large population of biased
reporters, and when there are only a few direct interactionsavail-
able. Our results show that a PRep agent identifies agents’ reporting
behavior correctly; therefore, it recognizes other agents’ trustwor-
thiness more rapidly and accurately than a HAPTIC or TRAVOS
agent, resulting in better decision making. For example, with 10
direct interactions, PRep’s mean error for predicting an agent’s be-
havior is 45% lower than that of TRAVOS, due to PRep’s ability
to correctly interpret the reports. As a result, the averagepayoff
improves by 9%.

An interesting direction for future work would be to furthereval-
uate this model in a risky and non-deterministic environment, such
as a marketplace application. Also, we plan to explore the use of
context-dependent Reporter types that can cause agents to behave
differently in various situations (e.g., when reporting toa competi-
tor versus a collaborator). We will also investigate multidimen-
sional trust models that can be applied when a Reporter can have
varying degrees of trust for different aspects of a Target’sbehavior
(e.g., quality and price in a supply chain management context).
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