
Defeasible Argumentation for Multi-Agent Planning in
Ambient Intelligence Applications

Sergio Pajares Ferrando
Dpto. de Sistemas Informáticos y Computación

Universitat Politècnica de València
Camino de Vera, s/n, 46022 Valencia, Spain

spajares@dsic.upv.es

Eva Onaindia
Dpto. de Sistemas Informáticos y Computación

Universitat Politècnica de València
Camino de Vera, s/n, 46022 Valencia, Spain

onaindia@dsic.upv.es

ABSTRACT
This contribution presents a practical extension of a theoretical model
for multi-agent planning based upon DeLP, an argumentation-based
defeasible logic. Our framework, named DeLP-MAPOP, is imple-
mented on a platform for open multi-agent systems and has been
experimentally tested, among others, in applications of ambient in-
telligence in the field of health-care. DeLP-MAPOP is based on a
multi-agent partial order planning paradigm in which agents have
diverse abilities, use an argumentation-based defeasible reasoning
to support their own beliefs and refute the beliefs of the others ac-
cording to their knowledge during the plan search process. The re-
quirements of Ambient Intelligence (AmI) environments featured
by the imperfect nature of the context information and heterogene-
ity of the involved agents make defeasible argumentation be an
ideal approach to resolve potential conflicts caused by the contra-
dictory information coming from the ambient agents. Moreover,
the ability of AmI systems to build a course of action to achieve the
user’s needs is also a claiming capability in such systems. DeLP-
MAPOP shows to be an adequate approach to tackle AmI problems
as it gathers together in a single framework the ability of planning
while it allows agents to put forward arguments that support or ar-
gue upon the accuracy, unambiguity and reliability of the context-
aware information.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Algorithms, Experimentation

Keywords
Defeasible Argumentation, Multi-Agent Planning, Ambient Intel-
ligence.

1. INTRODUCTION
Ambient Intelligence (AmI) integrates concepts ranging from

Ubiquitous Computing to Artificial Intelligence with the vision that
technology will become invisible, embedded in our natural sur-
roundings, present whenever we need it, and adaptive to users [1].

Appears in: Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2012),
Conitzer, Winikoff, Padgham, and van der Hoek (eds.), June, 4–8, 2012,
Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

In AmI environments, people are surrounded with networks of em-
bedded intelligent devices that can sense the available context infor-
mation, anticipate, and perhaps adapt to their needs. In this contri-
bution, we handle these requirements by modeling ambient agents
as entities which manage a portion of the AmI environment, i.e.
they are responsible for one or more devices. Due to the imper-
fect nature of the context and the heterogeneity of ambient agents,
whose different viewpoints lead them to infer different assumptions
about the user’s current situation, ambient agents, as distributed
autonomous software entities, are required to engage in interac-
tions, argue with one another, and make agreements, individually
or collectively, while responding to changing circumstances of the
ambient environment. For this reason, ambient agents are being
advocated as a next-generation model for engineering complex dis-
tributed systems such as AmI systems. The aim in AmI is to make
the interaction between users and the smart environment easy.

Defeasible is the opposite of irrefutable or indisputable. A de-
feasible piece of information is a non-demonstrative piece of in-
formation that is acknowledged to be able to fail or be corrected.
Defeasible reasoning is usually realized as a rule-based approach
for reasoning with incomplete and inconsistent information through
the use of rules that may be defeated by other rules. Defeasible
reasoning has been successfully used in AmI applications [2]. On
the other hand, Defeasible Argumentation, which has recently be-
come a very active research field in computer science [3], is a form
of defeasible reasoning that emphasizes the notion of argument. An
argument is a chain of reasoning that concludes one piece of infor-
mation (conclusion) on the basis of some other pieces of informa-
tion (premises). Thus, defeasible argumentation can be viewed as a
powerful tool for reasoning about inconsistent information through
a rational interaction of arguments for and against some conclusion
derived by an ambient agent. Defeasible argumentation has also
been successfully proved in AmI applications [4].

The defeasible logic programming formalism DeLP [5] is one
of the most popular approaches to build defeasible argumentation.
Our framework, DeLP-MAPOP, builds upon DeLP to implement
the defeasible argumentation mechanism. The key element of DeLP
are defeasible rules (Head −� Body), which are used to represent
a deductive relation between pieces of knowledge that could be
defeated once another piece of knowledge is considered. For in-
stance, a defeasible rule like emergency −� patient-fever denotes
that an ambient agent believes that if the monitoring system re-
turns the patient has fever then there are provable reasons to de-
clare an emergency. The defeasible rule ∼emergency −� {normal-
pulse, conscious, correct-breathing} provides reasons to believe
the contrary, in whose case we say that the first piece of infor-
mation is acknowledged to fail in case {normal-pulse, conscious,
correct-breathing} hold in the context. However, assuming that



another ambient agent knows that the patient is vomiting blood,
i.e. {bloody-vomit} holds in the context, then it might derive the
patient has not a normal pulse by following the defeasible rules
{∼normal-pulse−� internal-bleeding; internal-bleeding−� bloody-
vomit}, which represents an attack to the defeasible rule whose con-
clusion is∼emergency. Thus, arguments (combinations of defeasi-
ble rules and facts) for conflicting pieces of information are built,
and then compared to decide which one prevails.

Planning is a desired ability in AmI systems to achieve a goal-
oriented behavior, i.e. to decide the course of action to meet the
needs of the specific application, for instance, stabilizing a patient
in a home-care system. Planning has been used in some AmI ap-
plications for monitoring and responding to the needs of a diabetic
patient [6]. Particularly, the work in [6] presents a centralized plan-
ner that manages distributed capabilities as it assumes that some
agents do not have planning capabilities. In this case, an agent
is implemented as a device, which prevents the agent from taking
responsibilities in building the plan due to its limitations in pro-
cessing and communication; for example, a cell phone could not
be able to autonomously plan to call a doctor given that other de-
vices detected that a user in the environment is ill [6]. However,
in our contribution an ambient agent is executed on an independent
host and can encompass several devices. This increases the com-
munication capacity as well as autonomy and endow agents with
the necessary abilities to pose a goal and build a plan for this goal.
This approach allows us to address many real applications where
the capabilities to perceive the context and perform the actions are
distributed across agents. Multi-Agent Planning (MAP) applied
to an AmI environment is intended as the ability of a team of am-
bient agents to build collaboratively a plan of actions that, when
performed in the AmI context, meets the needs and goals of the
application.

Partial Order Planning (POP) is a suitable planning approach
to address the requirements derived from a distributed planning
thanks to the application of a non-sequential behaviour and the least
commitment principle [7]. This is evidenced by the fact that most
existing architectures for integrating planning with execution, in-
formation gathering and scheduling are based on partial order plan-
ners. In [8], authors argue that POP-based frameworks offer a more
promising approach for handling domains with durative actions and
temporal and resource constraints as compared to other planning
approaches. In fact, most of the known implementations of plan-
ning systems capable of handling temporal and durative constraints
(e.g. NASA’s RAX [9]) are based on the POP paradigm. Even for
simple planning tasks, partial order planners offer a higher degree
of execution flexibility. For these reasons, this work is based on
Multi-Agent Partial Order Planning (MAPOP).

A extension of POP with DeLP-style argumentation, denoted
as DeLP-POP, was introduced in [10], where both actions and ar-
guments may be used to enforce some goal, if their conditions (are
known to) apply and arguments are not defeated by other arguments
applying. Unlike actions, arguments are not only introduced to in-
tentionally support some step of a plan, but they are also presented
to defeat or defend other supporting arguments in the plan. When
actions and arguments are combined in a partial order plan, new
types of interferences or threats appear [10] which need to be iden-
tified and resolved to obtain valid plans. Finally, the work in [11,
12, 13] proposes an extension of the DeLP-POP to a multi-agent
environment. Specifically, it proposes a dialogue for argumentative
plan search, by which agents exchange plan proposals and argu-
ments for or against such proposals. To the best of our knowledge,
these theoretical works have neither been implemented nor tested
on real-world domains such as AmI applications.

This contribution presents DeLP-MAPOP, a system that com-
bines, implements and tests features like multi-agent defeasible ar-
gumentation and multi-agent planning in AmI applications. DeLP-
MAPOP develops and implements an extended and refined version
of the framework presented in [12]; DeLP-MAPOP is applied and
experimentally tested in an AmI environment, it extends the agents’
knowledge bases and the dialogues during the plan search and it of-
fers a new classification of planning interferences. The remainder
of this paper is divided as follows. First, we introduce the basic
elements of the system; then we present the MAP protocol applied
in an AmI scenario to deal with a person suffering from a heart dis-
ease. Next, the experiments carried out to validate the present work
are described and analyzed. Finally, we conclude and present some
directions for future work.

2. COMPONENTS OF THE SYSTEM
In this section, we provide definitions for the notions of ambient

agent, context information, planning task, argument versus action
and plan, that will be later used for the definition of the DeLP-
MAPOP protocol.

2.1 Ambient Agents
In DeLP-MAPOP, ambient agents act as planning agents with

different beliefs, capabilities and preferences. Thus, we assume
the capabilities to perceive the context, perform actions and derive
new conclusions are distributed across ambient agents. Agents are
managed and supervised by the Agent Management System (AMS)
that is responsible for the following tasks: i) Exercising supervisory
control over access to the multi-agent platform; it is responsible
for authentication of resident ambient agents and control of reg-
istrations. ii) Discovering new user’s needs generated directly by
the user or indirectly by a smart device, which provides the input
to a DeLP-MAPOP process in terms of goals to be reached. iii)
When ii) occurs, the AMS agent gathers the ambient agents who
will participate in the planning process and will return the action
plan to satisfy the user’s needs. For instance, a device that moni-
tors the patient’s heart’s rate may detect the presence of arrhythmias
by means of an electrocardiogram, a symptom that might entail a
heart attack. In this case, the monitoring system generates the goal
patient-to-be-treated, and communicates it to the AMS agent.

The knowledge of an ambient agent mainly comprises context
information encoded as defeasible rules and initial facts, and con-
text capabilities represented as planning actions.

2.2 Context information
The representation scheme used by DeLP-MAPOP to model

components of the AmI environment is based on a state-variable
representation, where variables map to a finite domain of values
which represent the problem objects. A state-variable representa-
tion is equivalent to a classical planning representation in expres-
sive power and it is also useful in non-classical planning problems
as a way to handle numbers, functions and time. In this paper,
we will restrict our attention to only non-numeric variables. Since
actions change the state of the world and defeasible rules make as-
sumptions about the state of the world, actions and defeasible rules
are most naturally modeled as elements that change the values of
the state variables. The variable-value pair 〈vi, vli〉 denotes the
value vli is assigned to the variable vi. For instance, the variable-
value pair 〈 at-amb, pH 〉 indicates that the ambulance amb is lo-
cated at the patient’s home pH , that is, the value of the variable
denoting the position of the ambulance is the patient’s home.

In what follows, we define the set of elements used to represent
the agent’s context information. (i) the set of objects O that model



the elements of the planning domain over which the actions and
defeasible rules can act. (ii) the set of state variables V that are
used to model the states of the world: each state variable vi ∈ V is
mapped to a finite domain of mutually exclusive valuesDvi , where
∀vi ∈ V ,Dvi ⊆ O. (iii) the initial state of the problem Ψ, which is
a consistent set of variable-value pairs; a variable with no assigned
value in the initial state is assumed to have an unknown value. (iv)
the set of defeasible rules ∆, where each rule δ follows the form
〈head(δ)−�body(δ)〉; if the set of variable-value pairs in body(δ)
is warranted, i.e. if variables have the specified values in the pair,
then δ is applicable and for each 〈vi, vli〉 that appears in the head
of the rule, vi is assigned the value vli. (v) A is the set of planning
actions α = 〈P(α),X(α)〉, where P(α) is a set of preconditions
encoded as variable-value pairs that must be satisfied in order to
apply the effects in X(α), also encoded as 〈vi, vli〉.

2.3 Planning task
Each ambient agent x ∈ {Ag1 . . .Agn} is initially endowed

with a planning task Mx = (Ox, Vx,Ψx,∆x, Ax, Fx, G) where:

1. Ox is the set of objects known by the agent x.
2. Vx is the set of variables managed by agent x to represent the

agent’s knowledge about the state of the world.
3. Ψx = {〈vi, vli〉 | vi ∈ Vx; vli ∈ Dvi} represents the partial

view of the initial world state of agent x, i.e. the informa-
tion that agent x knows about the initial state. We assume⋃

x∈{Ag1...Agn} Ψx is a consistent set.

4. ∆x is a set of defeasible rules known by the agent x.
5. Ax is a set of planning actions known by the agent x.
6. Fx represents a consistent set of the agent-specific prefer-

ences Fx ⊆ {(a, d) | (a ∈ Ax), d ∈ [0, 100]}, where
action a is preferred with the estimated interest degree d.

7. G is the set of global goals that represent the needs of a user
in an AmI environment. G is expressed as a set of pairs
variable-value thus indicating the value each variable is ex-
pected to assume in the final state. Unlike the rest of ele-
ments, G is known by all of the ambient agents.

2.4 Arguments versus Actions
As we saw in the Introduction section, and based on the frame-

work presented in [10], both actions and arguments may be used to
enforce some task goal in DeLP-MAPOP. As illustrated in Figure
1 (a), an argument A for 〈vi, vli〉 proposed by an ambient agent
Ag1, is denoted asAAg1 = ({concl(AAg1)}, {rules(AAg1)}), where
concl(AAg1) = 〈vi, vli〉 is the argument conclusion and rules(AAg1)
is a subset of defeasible rules such that rules(AAg1) ⊆ ∆x. AAg1

is consistent if there exists a defeasible derivation for 〈vi, vli〉 from
base(AAg1)∪rules(AAg1), where base(AAg1) is the argument base,
the set of <variable,value> that must be warranted in the agent’s
context information. The existence of an argument AAg1 does not
suffice to warrant its conclusion 〈vi, vli〉, this depends on the inter-
actions among arguments as we will see in Section 3.3. We seman-
tically distinguish between supporting arguments (also known as
argument steps) as the arguments specifically used to support some
goal of the plan, and attacking arguments (also known as de-
featers) which are only introduced to attack some argument step
previously introduced in the plan.

The difference between assigning a value to a variable by an ar-
gument or by an action is that in the case of a planning action the
value is indisputable because it reflects a modification stated in the
problem domain modelling; however, the confirmation of a value
assigned to a variable by an argument depends on the interaction
with other attacking arguments.

2.5 Plans
In POP, a partial order plan Π is a set of partially ordered actions

(denoted by the relation ≺) which actually encodes multiple linear
plans. More specifically, a plan Π is a tuple Π = (A(Π),AR(Π),
G(Π), OC(Π), CL(Π),SL(Π)), where A(Π) denotes the set of
action steps, AR(Π) represents the set of argument steps, G(Π)
is the task’s common goals (the user’s needs), OC(Π) is a set of
ordering constraints, and CL(Π) and SL(Π) represent the sets of
causal and support links, respectively. In POP, Ψ and G are en-
coded as dummy actions {αΨ ≺ αG} where αΨ is also refereed to
as the initial step of the plan and αG to as the final step of the plan,
with X(αΨ) = Ψ, P(αG) = G, and P(αΨ) = X(αG) = ∅.

Let 〈vi, vli〉 be an open goal in Figure 1(b), motivated by some
action step αG ∈ A(Π), i.e. 〈vi, vli〉 ∈ P(αG); let 〈vk, vlk〉
be another open goal, motivated by some argument step AAg1 , i.e.
〈vk, vlk〉 ∈ base(AAg1). Then, the goal 〈vi, vli〉 ∈ P(αG) must
be supported by an argument, argumentAAg1 in Figure 1(b), which
introduces a support link (AAg1 , 〈vi, vli〉, αG) ∈ SL(Π), where
SL(Π) ⊆ ∆ × G(Π) × A. In contrast, the goal 〈vk, vlk〉 must
be supported by an action, α1 in Figure 1(b), which introduces
a causal link (α1, 〈vk, vlk〉,AAg1) ∈ CL(Π), where CL(Π) ⊆
A×G(Π)×∆. Triangles in Figure 1(b) represent argument steps
(i.e. arguments that support preconditions of action steps), while
rectangles represent action steps (i.e. actions that support the basis
of an argument step). Therefore, in this approach, goals must al-
ways be initially derived by some argument step, and an argument
base must be satisfied by another action step (including the initial
step). This way, a typical causal link in POP is now replaced by a
causal link and a support link. Note this representation allows us to
implicitly address the qualification problem [14] as every precon-
dition of a planning action is now supported by an argument step
rather than directly by an action effect. This way, agents may attack
the fulfillment of such precondition if they believe that there ex-
ist other non-explicit conditions that prevent the supporting action
from having its intended effects. This new conception of mandato-
rily supporting preconditions through argument steps gives rise to
a new and unique notion of threat. Under this new perspective, the
concept of argument-argument threat in [10, 12] is now replaced
by a broader notion of argument-argument threat that covers all the
interferences that arise between the elements of a plan in which
the qualification problem is addressed through the use of argument
steps. Depending on where these argument-argument threats occur
in the plan, we will distinguish between threats (Section 3.2) and
attacks (Section 3.3).

Su
p

p
o

rt
 L

in
k 

C
au

sa
l L

in
k 

(b) (a) 

Figure 1: (a) An argument AAg1 for 〈vi, vli〉 by using two
defeasible rules: δ0 = {〈vi, vli〉} −�{〈vj , vlj〉} and δ1 =
{〈vj , vlj〉} −�{〈vk, vlk〉}, such that vi 6= vj and vj 6= vk and
{vi, vj , vk} ⊆ Vx; (b) An example of a partial plan.



3. MULTI-AGENT PLANNING PROTOCOL
First, we outline the procedure followed by the DeLP-MAPOP

protocol that interleaves a planning stage, an argumentation stage
and a selection stage. Given a set of global goals, G, that ad-
dress the requirements of an AmI application, agents build their
own planning task Mx so they can differently contribute to the con-
struction of the joint solution plan. The starting point of the MAP
protocol is an empty initial plan Π0 and the output is the solution
plan. Once checked the plan Π is not a solution, the first step is to
select an open goal Φ ∈ G(Π) of the planning task for resolution
(choose1 step in Algorithm 1). Then it comes the planning stage
(PROPOSALS step in Algorithm 1) where agents put forward and
exchange different partial order plans that would potentially solve
Φ. Following, agents get involved in an argumentative dialogue
(EVALUATION step in Algorithm 1) in which they expose their
arguments for or against each of the proposals. This evaluation pro-
cess performs a warranty procedure to determine which proposals
do not receive attacks or, otherwise, the received attacks do not suc-
ceed. Subsequently, ambient agents reach an agreement as to which
about the next partial plan and they continue the search exploration
(SELECTION step in Algorithm 1). The process is repeated until
a solution plan is found.

Algorithm 1: Multi-agent planning protocol overview.
input : The initial plan Π0 := {αΨ ≺ αG}.
output: The solution plan Π.

Π := Π0

while Π <> null do
if G(Π) = ∅ then

return Π [It is a plan solution.]
else

choose Φ ∈ G(Π);
Ref(Π,Φ) := PROPOSALS(Π,Φ);
[Each plan Πr of the set Ref(Π,Φ) is a choice
(partial-order plan) extending Π.]
if Ref(Π,Φ) = ∅ then

[Backtracking process.]
else

EVALUATION(Ref(Π,Φ));
Π := SELECTION();

return fail; [Not exists plan.]

The state-variable representation used in DeLP-MAPOP is based
on the latest PDDL (Planning Domain Definition Language) ver-
sion, PDDL3.1 [15], which was introduced in the context of the
2008 International Planning Competition. Here, we extend the lan-
guage PDDL3.1 for supporting the specification of defeasible rules
and the ambient agent’s preferences. Moreover, our language allow
us to specify binary variables. A state variable vi is interpreted in
PDDL3.1 as a function that represents a characteristic shared by
some of the objects that define the problem. vi is a tuple that takes
the following form vi = (vNi p1 . . . pn), where vNi is the unique
variable’s name and p1 . . . pn are the objects as input parameters
of the function. For instance, let pos-t11 be a variable that indi-
cates the current position of the medical team t11; this variable is
encoded in PDDL3.1 through the function (pos t11), where ’pos’
is the function name and t11 is the function parameter. An as-
signment of a value vli to a variable vi in PDDL3.1 is denoted by
(assign vi vli); and the comparison operation is represented by
(= vi vli). We also allow to express multi-valued variables for
1The open goal Φ is selected as the most costly open goal according
to a reachability analysis of the variables.

ease of coding, denoted by (member vi vli). For simplicity, we
will use the notation <variable,value> in the explanations and use
the PDDL3.1 language only to show the encoding of the defeasible
rules and planning actions of the planning task. All of these encod-
ings will be shown in a framed box labeled with the caption name
Listing.

3.1 Overview of the Application Scenario
This section provides a brief overview of the AmI application

upon which the framework DeLP-MAPOP is applied. The purpose
is to motivate the interest of this type of applications as well as the
utilization of a defeasible planning model to carry out the necessary
operations to fulfill the user’s need at a specific time.

Nowadays, more and more patients are suffering heart diseases
which is the main cause of premature death. The monitoring of
people suffering heart failure is currently a challenge for AmI sys-
tems. The work in [6] presents a first approach to use an AmI
system with centralized planning capabilities for assisting patients
suffering diabetics problems. Here, we assume that the patient’s
home is equipped with appropriate technologies to create the AmI
environment. The patient is monitored with a system, in the form of
a bracelet, which collects the patient’s physical activity and wire-
lessly transmits it to a device responsible for monitoring patient’s
heart rate. When a need is detected by this device, e.g. an extremely
lower level of a patient’s physical activity which may end up in a
heart attack, the AmI environment executes DeLP-MAPOP for as-
sisting the patient until the health services arrive to the patient’s
home.

In this application, we have the following ambient agents: a com-
munication agent in charge of using telecommunication devices
such as a cell telephone to call the emergency services; the assis-
tant agent, who is responsible for controlling an automated external
defibrillator, an activity tracking device, a position tracking device,
etc. to interact with both the environment and the user; and the
transport agent, whose main function is to guide the ambulance/he-
licopter to follow the best path to reach the patient’s home. Agents
have different capabilities according to their role so they contribute
to the overall plan with different actions accordingly. However, we
assume that agents’ beliefs concern any aspect of the context infor-
mation and so agents can make assumptions on the current status
of the application regarding any type of information. That is, be-
liefs are not necessarily related to the planning capabilities of the
agent, they can refer to any aspect of the AmI environment. The
hospitals’ preferences are associated with the transport-agent spe-
cific preferences, while the patient’s preferences are related to the
specific preferences of the assistant agent. For space reasons, we
omit the specification of the planning task of each ambient agents.

3.2 Plan proposals process
At the PROPOSALS stage, agents generate their refinements

Ref(Π,Φ) to solve an open goal Φ in a partial plan Π, similarly
to a plan-space planning process that builds a POP tree, except
that each refinement or successor of Π may be now generated by a
different agent. Another distinguishing characteristic of the partial
order plans generated in DeLP-MAPOP is that they also contain
argument steps, as explained in section 2.5, to support action pre-
conditions; this argument structure formed in each partial plan will
be later used in the EVALUATION process. The PROPOSALS
stage finishes when all agents have made their plan proposals at
their turn and these are communicated to the rest of agents. Then,
agents update their set of actions with the information appearing in
the refinements proposed by the other agents.

Let’s suppose an ambient agent Ag1 who has transport capabili-



ties and knows there are three hospitals in the city {H1, H2, H3}.
Each hospital disposes of two ambulances from {a11, a12 . . ., a32}
(one equipped with an Advanced Life Support (ALS) equipment,
and the other equipped with a Basic Life Support (BLS) equip-
ment) and one emergency helicopter from {h1, . . . h3}. Moreover,
Ag1 knows there are always two emergency medical teams from
the set {t11, t12 . . ., t32} on call in each hospital: one handles the
ALS emergency equipment, and is formed by an ambulance driver,
a nurse and a physician; the other handles the BLS equipment and
is formed by an ambulance driver and a nursing assistant. Ag1 also
has the defeasible rule specified in Listing 1 and the planning ac-
tion shown in Listing 2, among others. Note that the new location
of the ambulance and the medical-team are generated through the
defeasible rule moved-medical-assistance, which is embedded in
an argument whose base must be supported by the effects of the
action moving-medical-assistance. This allows agents to intervene
during the argumentative dialogue in the EVALUATION stage to
defeasibly attack the intended effects of the planning action; that
is, in case agents have beliefs that make them conclude that the
action would not achieve its expected effects.

(:def-rule moved-medical-assistance
:parameters(?a - ambulance
?a1 address-hospital ?a2 - address-patient-home
?m - medical-team)
:head (and (assign (at ?a) ?a2)

(assign (pos ?m) ?a2))
:body (and (= (moved-amb ?a ?a1) ?a2)

(= (moved-team ?m ?a1) ?a2)))

Listing 1: The body of the defeasible rule matches the effects
of the action moving-medical-assistance to deal with the quali-
fication problem.

(:action moving-medical-assistance
:parameters (?a - ambulance
?a1 address-hospital ?a2 - address-patient-home
?m - medical-team ?t - support-type)
:effect (and (assign (moved-amb ?a ?a1) ?a2)

(assign (moved-team ?m ?a1) ?a2))
:precondition (and (member (link ?a1) ?a2)

(member (type ?t) ?m)
(member (contains ?t) ?a)
(= (at ?a) ?a1)
(= (pos ?m) ?a1)))

Listing 2: An action for moving an ambulance from a location
to other one.

Let pH be the patient’s home. If Ag1 is asked to solve the open
goal P(αG) = 〈 at-?a, pH 〉 (’?a’ is an ambulance) generated by
the AMS agent to assist the patient, Ag1 generates at least 6 re-
finement plans (3 hospitals * 2 ambulances) by using Listings 1
and 2 at the PROPOSALS stage. One of these proposed refine-
ment plan generated is Π

Ag1
r , such that OC(ΠAg1

r ) = {αΨ ≺ α1;
α1 ≺ AAg1 ; AAg1 ≺ αG}, as shown graphically in Figure 1(b); in
this particular example:
• concl(AAg1) = {〈 pos-t11, pH 〉, 〈 at-a11, pH 〉} matches

P(αG).
• X(α1) = {〈 moved-amb-a11-H1, pH 〉, 〈 moved-team-t11-

H1, pH 〉} matches base(AAg1).
Therefore, argument AAg1 is indirectly deriving the effects of

the action α1. However, unlike non-argumentative MAP systems,
in DeLP-MAPOP the open goal 〈 at-?a, pH 〉 can also be derived
by means of an argument that an agent, say Ag2, puts forward to
indicate, that according to its knowledge, ambulance a31 is already
at the patient’s home. The base of this argument may be supported
with the information provided by an ambulance position tracking

device which allows Ag2 to infer that an ambulance is already lo-
cated at the patient’s home. As the rest of agents do not own this
information, they would claim for the inclusion of an action that
moves an ambulance to the indicated place. Therefore, unlike clas-
sical planning, the argumentation mechanism in DeLP-MAPOP
enables supporting an open goal with the context information of an
agent without having to necessarily include an action to satisfy such
goal, which results in less costly plans. The next stage would show
the procedure to guarantee that a goal is satisfactorily warranted by
an argument.

3.3 Plan evaluation process
At the EVALUATION stage, agents become engaged in a num-

ber of argumentative dialogues aimed at evaluating the guarantee
of a successful execution of a plan proposal, i.e the possibility that
the actions’ intended effects or the derived information, both repre-
sented as argument steps in the plan proposal under evaluation, are
not achieved as a result of AmI environment changes.

The input of this process is Ref(Π,Φ), the set of plans proposed
by the agents at the previous plan proposal stage. Since ambi-
ent agents may have different available context information (rep-
resented as a combination of facts and defeasible rules) depending
on their information sources, they may not agree on the evalua-
tion of a plan proposal at some point during the dialogue. The
EVALUATION stage generates as many argumentative dialogues
as argument steps are present in the proposal plan under evalua-
tion. An argumentative dialogue is an exchange of arguments for
or against the fulfillment of an argument step, represented as a Plan
Argument Dialogue (PAD) tree T A

Πr
, where Πr ∈ Ref(Π,Φ) is the

refinement plan to be evaluated andA ∈ AR(Πr) is the particular
argument step to be evaluated. We denote the nodes in a PAD tree
as tuples of the form (Πr ,A, Γ), where Γ is a set of attacking argu-
ments (whose bases are warranted in the plan Πr) that will finally
determine if argument A is warranted in plan Πr . Every node in a
PAD tree (except the root) represents a defeater of its parent, and
the leaves of the tree correspond to undefeated plans. The set of di-
rect successors nodes of a given node Πr , is denoted as succ(Πr).
More specifically:

1. The root of the tree is labeled with (Πr,A, ∅).
2. A plan node (Πr,A, {B}) ∈ succ(Πr) represents an attack

against the argument A in plan Πr through the inclusion of
an attacking argument, namely B. Consequently, each node
in succ(Πr) stands for a defeater of the root argumentA, i.e.
B is a defeater of A.

3. A plan node (Πr,A, {B, C}) ∈ succ(succ(Πr)) indicates
an attack to the argument child B of the parent node through
the inclusion of a new attacking argument, say C, so this new
node is a supporter of the root argument A.

Informally we might see a PAD tree for an argument step A as
generating a dialectical tree [5] for A. But in DeLP-MAPOP the
nodes in the PAD tree are contextualized within a plan. Every linear
path from the root to a leaf corresponds to one different acceptable
argumentation line. Circular argumentation (also known as falla-
cious argumentation) is avoided by applying both conditions from
[5]: no argument can be reintroduced in the same argumentation
line and argument concordance must be guaranteed.

Let Ag2 be an agent that has the defeasible rules detailed in
Listing 3, and {〈device-measure-the-traffic-H1-pH, high 〉, 〈 maps-
google-distance-H1-pH, long 〉} ⊆ ΨAg2 . When Ag1 sends the
PAD tree T AAg1

Πr
(containing only the root node) to the rest of

agents, Ag2 puts forward an attacking argument BAg2 =({〈 pos-
t11, H1 〉}, {δ0; δ1; δ2}), inspired by Listing 3, where:



• δ0 =(and 〈 pos-t11, H1 〉 〈 at-a11, H1 〉) −� (and 〈 moved-
amb-a11-H1, pH 〉 〈 moved-team-t11-H1, pH 〉 〈 traffic-jam-
between-H1-pH, true 〉 〈 is-far-from-H1-pH, true 〉).
• δ1 =〈 traffic-jam-between-H1-pH, true 〉 −�〈 device-measure-

the-traffic-H1-pH, high 〉.
• δ2 =〈 is-far-from-H1-pH, true 〉 −� 〈 maps-google-distance-

H1-pH, long 〉.

which attacks AAg1 . Unlike agent Ag1, agent Ag2 knows that
traffic jam is expected according to a smart device from the AmI
system that monitors the traffic density between the hospital H1
and the patient’s home pH, and also knows that the distance be-
tween them provided by a web mapping service as Google Maps,
is rather large. Both informations may be a reason to believe that
an ambulance, initially located at the hospital H1 will not arrive to
pH in time for assisting the patient. Thus, Ag2 creates a new node
(Π

Ag1
r ,AAg1 , {BAg2}) ∈ succ(Π

Ag1
r ) among others, and sends it

to rest of agents.

(:def-rule moved-medical-assistance-denied
:parameters(?a - ambulance
?a1 address-hospital ?a2 - address-patient-home
?m - medical-team)
:head (and (assign (at ?a) ?a1)

(assign (pos ?m) ?a1))
:body (and (= (moved-amb ?a ?a1) ?a2)

(= (moved-team ?m ?a1) ?a2)
(= (traffic-jam-between ?a1 ?a2) true)
(= (is-far-from ?a1 ?a2) true)))

(:def-rule traffic-jam
:parameters(?a1 address-hospital
?a2 - address-patient-home)
:head (assign (traffic-jam-between ?a1 ?a2) true)
:body (= (device-measure-the-traffic ?a1 ?a2) high))

(:def-rule distance
:parameters(?a1 address-hospital
?a2 - address-patient-home)
:head (assign (is-far-from ?a1 ?a2) true)
:body (= (maps-google-distance ?a1 ?a2) long))

Listing 3: Defeasible rules for representing situations in which
the ambulance may not arrive on time.

In the next round of the dialogue, (Π
Ag1
r ,AAg1 , {BAg2}) is re-

ceived by the ambient agent Ag3 who discovers a new attacking
argument CAg3 that defeats BAg2 , which is based on Listing 4.

(:def-rule carpool-lane
:parameters(?a1 address-hospital
?a2 - address-patient-home)
:head (assign (traffic-jam-between ?a1 ?a2) false)
:body (= (carpool-lane-between ?a1 ?a2) true))

Listing 4: The defeasible rule used for representing a carpool
lane which may prevent an ambulance from being stuck by a
traffic congestion situation.

Assuming that 〈 carpool-lane-between-H1-pH, true 〉 ∈ ΨAg3 ,
then CAg3 = ({〈 traffic-jam-between-H1-pH, false 〉},{〈 traffic-
jam-between-H1-pH, false 〉 −� 〈 carpool-lane-between-H1-pH, true
〉}). That is, Ag3 knows that there is a carpool lane (as an express
lane) between H1 and pH, which is a reason to believe that the
ambulance a11 can skip the traffic congestion on the way to reach
the patient’s home. Ag3 creates a new plan (Π

Ag1
r , AAg1 , {BAg2 ,

CAg3}) extending (Π
Ag1
r ,AAg1 , {BAg2}) with CAg3 , and sends it to

the rest of agents. The evaluation dialogue for T AAg1

Πr
continues

until all defeaters are put forward in a round.
In order to check whether the argument of the root node is de-

feated or undefeated, the following procedure on the PAD tree is

applied: label with a U (for undefeated) each terminal plan in the
tree (i.e. each plan with no defeaters at all). Then, in a bottom-up
fashion, we label a node with: U if each of its successors is labeled
with a D; and D (for defeated) otherwise.

A plan in Ref(Π,Φ) is labeled as an undefeated refinement
plan if all the root plans of its PAD trees are labeled as unde-
feated. Otherwise the plan is provisionally labeled as a defeated
refinement plan in the POP tree. Undefeated plans are obviously
preferred over defeated plans as they represent a plan with no ex-
pectation failures according to the ambient agents. Nevertheless,
defeated plans are maintained in the POP tree as their arguments
may become later undefeated as the problem evolves and informa-
tion changes. Finally, each ambient agent updates its initial facts
and defeasible rules with the facts and defeasible rules from the
exchanged arguments’ bases.

3.4 Plan selection process
At the SELECTION stage, the aim is to select the next plan Π to

be refined and continue with the plan-space planning process of the
PROPOSALS stage, unless Π is already a solution in which case
the DeLP-MAPOP protocol stops.

For selecting a plan, agents apply three criteria in order of pri-
ority over the set of evaluated plans from the previous stage. The
objective is to select a plan considering a compromise between the
desire to minimize the computational overhead and that of maxi-
mizing the quality of the solution plan. The three criteria are: first,
the system applies a warranty procedure to discard the plans eval-
uated as defeated in the evaluation stage. Second, a heuristic func-
tion is applied over the undefeated plans resulting from the above
filtering. We use two of the most popular heuristics in planning:
SUM and MAX heuristics [16]. The SUM heuristic estimates the
cost of a plan as the sum of the cost of the pending open goals in
the plan whereas the MAX heuristic returns the value of the most
costly open goal as heuristic estimation. Plans whose heuristic es-
timation is below a certain threshold are discarded from consider-
ation. Finally, the last filtering over the remaining plans considers
the preference functions. We have implemented two intersection
techniques aimed at selecting the most preferable plan by the am-
bient agents according to their preferences. The first mechanism
selects the plan whose actions are all among the preferences of ev-
ery agent with a degree of preference above a certain threshold. If
the application of this method returns an empty list then we com-
pute the number of preferred actions in each plan and we select the
plan with the largest proportion of preferred actions by the ambient
agents.

4. EXPERIMENTAL EVALUATION
The purpose of this section is to test the overall performance,

scalability and quality of DeLP-MAPOP versus a MAP system
with no argumentation (MAPOP) which has also been implemented
in the same agent platform, and discuss the benefits and limita-
tions of each system. We carried out several experiments consid-
ering three different levels of difficulty of the planning problem:
small (composed by 8 grounded actions and 50 grounded defea-
sible rules), medium (composed by 16 grounded actions and 100
grounded defeasible rules) and large (composed by 24 grounded ac-
tions and 150 grounded defeasible rules). We used teams of agents
of different size ranging from 1 (single-agent) to 5. We performed
several tests varying the number of agents of each type in the AmI
environment, namely transportation, communication and assistant
agents, and we took the median values over 20 repetitions for each
set of experiments with ’n’ agents, regardless the type of agent. We
used the MAX heuristic and the Intersection function.



DeLP-MAPOP and MAPOP are implemented on Magentix22,
a multi-agent platform based on Apache Qpid3, an open-source im-
plementation of Advanced Message Queuing Protocol for commu-
nication.

With regard to scalability and performance, Figures 2(a), 2(b)
and 2(c) show the average time spent on each stage of the DeLP-
MAPOP protocol, while Figure 2(d) shows the average total time
to find a solution plan, including parsing the problem file and ground-
ing the planning actions and defeasible rules. The horizontal axis
(the same for the rest of the figures) depicts the size of the team
of ambient agents, while the vertical axis displays the time in mil-
liseconds. As expected, the average time spent in DeLP-MAPOP
is always greater than the time spent in MAPOP due to the fol-
lowing reasons: i) in the PROPOSALS stage, the ambient agents
from DeLP-MAPOP do not only have to reason about which ac-
tions would achieve the selected open goal, but also need to reason
about which arguments would support it; ii) the EVALUATION
stage is not considered in MAPOP; and iii) the SELECTION stage
is replaced in MAPOP by a single heuristic function. It is also no-
ticeable that the more agents in a team, the more exchanged mes-
sages between them, causing each stage to take longer in DeLP-
MAPOP. Figure 2(e) illustrates precisely that, as the number of
agents increases, the number of exchanged messages is larger; Fig-
ure 2(f) shows that as the size of the team increases, the number of
dialogue rounds is lower because in this case more attacking argu-
ments tend to appear in a single round, thus decreasing the number
of rounds.

Figure 3 shows the evaluation of the quality of the obtained so-
lution plans. Figure 3(g) shows that the average number of action
steps in solution plans of DeLP-MAPOP is lower or equal than the
average number in solution plans of MAPOP. The reason is that
in MAPOP, an open goal that is not a threat can only be achieved
through an action step, while in DeLP-MAPOP the open goal can
also be supported by an argument step whose base is already guar-
anteed in the plan. In these cases, the cost of the DeLP-MAPOP
plans is smaller because fewer actions are required to support the
open goals, meaning that the agents’ beliefs support the fulfillment
of a goal without explicitly including an additional action in the
plan. The fact that argument steps are not used in MAPOP is pre-
cisely shown in Figure 3(h). On the other hand, we can see in
Figure 3(i) a comparison of the quality of plans generated with a
single-agent team versus plans generated by teams with more than
one agent. Obviously, in the first case, plans are sequential while
DeLP-MAPOP returns plans with parallel actions that can be si-
multaneously executed by different ambient agents.

We also carried out one more experiment: which action steps
in MAPOP solution plans are actually discarded during an argu-
mentative dialogue in DeLP-MAPOP plans. This latter aspect is
also a very relevant issue as we wanted to compare the plans re-
turned by both systems and see how many plans, and actions cor-
respondingly, of MAPOP were actually discarded by the agents in
DeLP-MAPOP during the argumentative dialogues. The results
of this experiment are shown in Figure 3(j). As can be seen, ac-
cording to the knowledge of the ambient agents, 0% of the solution
plans generated by DeLP-MAPOP comprise failing actions, i.e.
actions whose intended effects were acknowledged to fail at the
EVALUATION stage. Obviously, as long as agents acquire more
information from the context, argumentative dialogues will fit real-
ity better and, therefore, the guarantee of a successful solution plan
(a plan with no expected failures) would also be greater. Further-

2
http://www.gti-ia.upv.es/sma/tools/magentix2/index.php

3
http://qpid.apache.org/

more, this experiment allowed us to check the correctness of the
argumentative dialogues at the EVALUATION stage. However, in
the case of MAPOP, up to 50% of the plans had actions that were
discarded by the ambient agents in DeLP-MAPOP, that is, actions
that agents acknowledged that would not be successfully executed.

Examining the influence of preferences in DeLP-MAPOP, Fig-
ure 3(k) shows that the average satisfaction of each team with the
solution plans decreases as the size of the team increases. We cal-
culated the satisfaction of an individual agent on a solution plan
by averaging its preferences in the action steps of the plan, while
the team satisfaction is calculated as the average of the individual
satisfactions. Figure 3(l) shows that the difference of satisfaction
between agents tends to increase as the size of the teams also in-
creases. It is desirable that the difference is as small as possible for
that all agents are equally satisfied.

5. CONCLUSIONS AND FUTURE WORK
This paper presents the specification, implementation and an ex-

haustive experimentation of DeLP-MAPOP, an argumentation-based
defeasible planning framework, on AmI applications. Our most rel-
evant contribution is a fully implemented MAP framework that has
been extensively tested in AmI environments. DeLP-MAPOP re-
alizes three independent but cooperative processes to propose, criti-
cize, defend and select alternative plan proposals. The results show
two advantages of DeLP-MAPOP over a MAP process with no
argumentation: (i) since each plan step of a plan proposal is collab-
oratively argued, DeLP-MAPOP returns plans whose actions are
not likely to fail at execution time according to the information and
beliefs of the ambient agents; and (ii) since open goals can also
be supported by argument steps whose base is warranted with the
facts of the plan, the context information and defeasible reasoning
of agents provide a means to satisfy goals of the problem without
an explicit inclusion of a planning action; this avoids considering
unnecessary action steps thus reducing the total cost of the plan.

As future work, we intend to test the effectiveness and feasibility
of DeLP-MAPOP in a hospital pilot program, as well as an ex-
tension to temporal defeasible argumentation for MAP [17]. Cur-
rently, we are working on the development of a more elaborated
heuristic function that (i) analyzes the transitions between the val-
ues a state variable can take, and (ii) considers the experiences from
the plan evaluation process (case-based argumentation) to predict
the potential number of attacks that a plan can receive. We are
also interested in studying the influence of the trust on the sources
(devices) used by the ambient agents to acquire the context infor-
mation as well as how a trust level determines the conflict resolu-
tion between attacking arguments. Finally, a comparison with other
MAP approaches will be considered.

Acknowledgements
This work is mainly supported by the Spanish Ministry of Sci-
ence and Education under the FPU Grant reference AP2009-1896
awarded to Sergio Pajares Ferrando, and projects, TIN2011-27652-
C03-01, Consolider Ingenio 2010 CSD2007-00022, and PROME-
TEO/2008/051.

6. REFERENCES
[1] E. Aarts. Ambient intelligence. Adaptive Hypermedia and

Adaptive Web-Based Systems, Springer, pp. 548–568, 2004.
[2] A. Bikakis and G. Antoniou. Distributed defeasible

contextual reasoning in ambient computing. Ambient
Intelligence, Springer, pp. 308–325, 2008.

http://www.gti-ia.upv.es/sma/tools/magentix2/index.php
http://qpid.apache.org/


Figure 2: Performance measures.

Figure 3: Quality measures.

[3] H. Prakken and G. Vreeswijk. Logics for defeasible
argumentation. Handbook of philosophical logic, pp.
4:218–319, 2002.

[4] A. Bikakis and G. Antoniou. Defeasible contextual reasoning
with arguments in ambient intelligence. IEEE Transactions
on Knowledge and Data Engineering, pp. 1492–1506, 2010.

[5] A. García and G. Simari. Defeasible logic programming: An
argumentative approach. Theory and Practice of Logic
Programming, pp. 4:95–138, 2004.

[6] F. Amigoni, N. Gatti, C. Pinciroli and M. Roveri. What
planner for ambient intelligence applications?. Systems, Man
and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on, pp. 35(1):7–21, 2005.

[7] J.S. Penberthy and D.S. Weld. UCPOP: A Sound, Complete,
Partial Order Planner for ADL. In Proc. of KR, pp. 103–114,
1992.

[8] D.E. Smith, J. Frank and A.K. Jónsson. Bridging the gap
between planning and scheduling. The Knowledge
Engineering Review, pp. 15(1):47–83, 2000.

[9] A. Jonsson, P. Morris, N. Muscettola, K. Rajan, and
B. Smith. Planning in interplanetary space: Theory and
practice. In Proc. of ICAPS, pp. 177–186, 2000.

[10] D. García, A. García, and G. Simari. Defeasible reasoning
and partial order planning. In Proc. of the International

Conference on Foundations of information and knowledge
systems, FoIKS 2008, LNCS 4932, pp. 311–328, 2008.

[11] S. Pajares and E. Onaindía. Defeasible Planning through
Multi-Agent Argumentation. Modelling Machine Emotions
For Realizing Intelligence, Smart Innovation Systems and
Technologies Series, pp. 13:311–342, 2011.

[12] P. Pardo, S. Pajares, E. Onaindía, L. Godo and P. Dellunde.
Multiagent Argumentation for Cooperative Planning in
DeLP-POP. In Proc. of AAMAS, pp. 971–978, 2011.

[13] S. Pajares, E. Onaindía and A. Torreño. An Architecture for
Defeasible-Reasoning-Based Cooperative Distributed
Planning. In Proc. of CoopIS in conjunction with OTM, pp.
200–217, 2011.

[14] M.L. Ginsberg and D.E. Smith. Reasoning about action II:
The qualification problem. Artificial Intelligence, pp.
3:311–342, 1998.

[15] D.L. Kovacs. Complete BNF description of PDDL3.1.
Technical report, 2011.

[16] X.L. Nguyen, and S. Kambhampati. Reviving partial order
planning. In Proc. of IJCAI, pp. 17:459–466, 2001.

[17] S. Pajares and E. Onaindía. Temporal Defeasible
Argumentation in Multi-Agent Planning. In Proc. of IJCAI ,
pp 2834–2835, 2011.


	Introduction
	Components of the system
	Ambient Agents
	Context information
	Planning task
	Arguments versus Actions
	Plans

	Multi-Agent Planning Protocol
	Overview of the Application Scenario
	Plan proposals process
	Plan evaluation process
	Plan selection process

	Experimental Evaluation
	Conclusions and Future Work
	References

