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ABSTRACT
We consider a setting in which a worker and a manager may
each have information about the likely completion time of
a task, and the worker also affects the completion time by
choosing a level of effort. The task itself may further be
composed of a set of subtasks, and the worker can also de-
cide how many of these subtasks to split out into an explicit
prediction task. In addition, the worker can learn about
the likely completion time of a task as work on subtasks
completes. We characterize a family of scoring rules for the
worker and manager that provide three properties: infor-
mation is truthfully reported; best effort is exerted by the
worker in completing tasks as quickly as possible; and col-
lusion is not possible. We also study the factors influencing
when a worker will split a task into subtasks, each forming
a separate prediction target.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics

General Terms
Economics, Theory

Keywords
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1. INTRODUCTION
Software engineering is one of many domains with com-

plex and modular tasks. There are often information asym-
metries, both between the worker performing a task and the
manager supervising and between the two of them and the
rest of the organization or company. In such environments,
it is important for the organization to be able to elicit ac-
curate predictions from worker-manager teams in regard to
when individual tasks are expected to complete. By eliciting
accurate predictions, this enables good decision-making in
regard to scheduling resources to projects (such as bug fixes
or new features), and in regard to coordination of projects.

A particular challenge is that a worker with information
relevant to the prediction task also controls the completion
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time through the amount of effort exerted on the task. In
modeling this, we consider a single worker and a single man-
ager. The worker works on a sequence of tasks and both the
worker and the manager receive a score based on predictions
and completion times for each task completed. We assume
that the organization (or company) couples the score re-
ceived by the worker or manager with incentives, be they
social-psychological such as praise or visibility, or material
rewards through prizes or the payment of bonuses. Based
on this, we assume that the worker and the manager each
seek to maximize total expected score.

The role of the worker is to share information relevant to
the expected completion time of the task with the manager,
in order to enable accurate predictions, and also to decide
on whether to work at “best effort” or less than best effort.
The role of the manager is to combine information received
from the worker with her own information (if any), and make
accurate predictions to the organization regarding the com-
pletion time of tasks. We tackle the issue of how to elicit
truthful information and thus accurate predictions from the
worker and manager, as well as how to elicit best effort from
the worker.1

In essence, our problem is a combination of a repeated
principal-agent problem and a prediction problem. In a
principal-agent setting, a principal wishes to elicit a desired
effort level from an agent but does not require the agent to
make any predictions. On the other hand in a prediction
problem, accurate predictions of the outcome of an event
are sought but without considering that the distribution on
outcomes might be something that can be controlled by the
agent doing the prediction. In contrast we seek to establish
both accuracy and the investment of best effort.

Our main technical result is a characterization of a class
of scoring rules that are able to align incentives with both
accurate prediction and the investment of best effort. In
addition, the scoring rules inherently preclude the possibil-
ity of collusion between the worker and manager in their
participation in the scoring system. For example, it is not
useful for a manager and worker to agree that the worker
will deliberately slow down in return for a prediction task
with lower variance and thus the potential for higher total
score to the worker-manager pair.

1We assume that existing incentive schemes within the or-
ganization (e.g., pay, promotion, etc.) encourage best effort
work, all things being equal. For this reason, it is sufficient
for our purposes that the incremental incentives provided by
the scoring scheme, work with (not against) best effort. In
particular, we want to preclude working at less than best
effort leading to a higher expected score.



In addition, we consider the effect of a scoring system on
whether or not a worker will choose to split a task into multi-
ple prediction targets. For this purpose, we model a task as
a sequence of subtasks, where a subtask is conceptualized as
a unit of work with a well-defined end point, and for which
the time to complete the unit of work may be informative as
to the time to complete other subtasks that comprise a task.
With this in mind, we study the incentives for a worker to
“split-out” a subtask for the purpose of a separate predic-
tion target.2 The qualitative result we obtain is that there
is a greater propensity to split subtasks for which the com-
pletion times are positively correlated than those for which
the completion times are independent. A simulation study
completes the paper, providing a quantitative analysis of
the trade-off between the frequency of “splitting” prediction
into subtasks, the degree to which the distribution on sub-
task completion time is correlated, and a parameterization
of the scoring rule that affects how much payment is made
per subtask target vs how much payment must be made in
catch-up upon the completion of a task.

1.1 Related Work
Scoring rules have been developed to measure the per-

formance of experts who are solicited to reveal their prob-
ability assessments regarding uncertain events. They have
been used in a variety of scenarios, from weather forecast-
ing to prediction markets [3, 5, 4, 7]. Proper scoring rules
incentivize truthful reporting of likelihood estimates. An
overview of the theory behind proper scoring rules can be
found in Gneiting and Raftery [3].

Proper scoring rules typically require that the outcome of
the uncertain event will be revealed and the agent whose
assessment is elicited can not influence the outcome. In our
setting, the prediction of effort required to complete a task
and the outcome or realized effort are not independent; both
are influenced by the worker. Shi et al. [11] consider situa-
tions where agents may be able to take actions that influence
the outcome. They propose principal-aligned mechanisms
that do not incentivize agents to take actions that reduce
the utility of the principal. Their setting considers eliciting
a probability distribution and the outcome space is discrete.
Our setting allows for continuous effort level and we seek
to elicit the expectation as well as incentivize best effort.
The result of Shi et al. [11] can be generalized to the set-
ting of eliciting the expectation for a random variable over a
continuous outcome space using the characterization of Sav-
age [10], which is also used to derive our characterization in
Section 3. With this generalization, it is possible to derive
our Theorem 7 by assigning a particular utility function to
the principal and applying the result of Shi et al. [11]. How-
ever, this approach seems unnecessarily complicated in our
setting, and we derive our results by directly considering
desirable properties of the incentive mechanism.

There is a vast literature on principal-agent models [2,
6]. In a classical principal-agent model with hidden action,
an agent chooses an action to take that is costly for him

2Our viewpoint is that it is the worker, not the manager,
who is privy to information in regard to subtasks. Moreover,
we can imagine situations in which predictions in regard to
subtasks rather than in regard to the aggregate time for a
task is useful; e.g., for sharing information with other work-
ers, for re-planning, and in order to collect data to enable
the training of predictive models in order to enable better
organizational efficiency going forward.
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Figure 1: Timeline of the worker-manager game.

but beneficial for the principal in exchange for a promise of
payment. The principal cannot directly observe the agent’s
action, but the stochastic correlation between actions and
outcomes (that is, the probability of observing an outcome
given that the agent takes an action), is common knowledge.
For example, the agent’s action can be a level of effort ex-
erted with the probability of success for a project an increas-
ing function of the level of effort. Knowing the stochastic
correlation, the principal seeks to incentivize the agent to
take a desirable action using contracts with payments based
on the outcome.

Radner [9] considers an infinitely repeated setting for the
principal-agent problem. In Radner’s setting, the game is
composed of sequences of review and penalty periods. By
allowing the players’ actions in one period to depend on the
history of previous periods, the principal can observe the
results of the agent’s actions and punish the agent if the
agent’s performance fails some statistical test of efficiency.
Radner shows that for high enough discount factors, there
exist equilibria, consisting of reward-decision pairs, of the
infinitely repeated game that are strictly more efficient than
the short-term equilibrium. Our setting is different in that
it combines the challenge of eliciting desirable actions with
that of eliciting information from an agent. Our setting
introduces information asymmetry about the stochastic cor-
relation between the action and the outcome, allowing the
agent to have private information about this stochastic cor-
relation. The principal would like to elicit the information
from the agent so as to obtain a better prediction, which is
then used by the principal to set the reward for the agent.
Because the reward of the agent now depends on the re-
ported information, this introduces incentives to lie about
the information or act in a suboptimal way. Given this ten-
sion, we aim to achieve truthful elicitation of private infor-
mation as well as elicitation of the desirable action.

2. THE BASIC MODEL
We consider the incentive design problem for a company

(the principal), whose goal is to truthfully elicit information
from its employees as well as incentivize them to exert opti-
mal level of effort. The basic model considers a single task
with two agents, a worker and a manager, each with private
information in regard to likely completion time of the task.
The worker shares information with the manager, who then
combines this information with his own private information
and makes a prediction. The worker then exerts effort, and
at some subsequent time the task completes and the worker
informs the system (and the manager) of this event. We
assume that only a truly completed task can be claimed as
complete, but allow a worker to reduce effort below best



effort, including to pretend a task is not complete when it
has been completed. Eventually, a score is assigned to both
the worker and the manager. Later, we extend the basic
model to include structure in regard to subtasks and also to
consider a sequence of tasks.

Let X denote the random variable for the time the task
takes to complete under the best effort by the worker. As-
sume that the realized value of X is nonnegative and upper
bounded, i.e. x ∈ (0, xmax). Neither the manager nor the
worker knows the realization of X. But they each have some
private information, denoted as random variables Im and
Iw respectively, on the completion time under best effort.
The joint distribution Π(X, Im, Iw) is common knowledge
to them, but not known to the company. Assuming Π is
not known to the company ensures a broad range of priors
are considered possible. In particular, this allows E[X|Im],
E[X|Iw], and E[X|Im, Iw] all take on all values in (0, xmax).
This ensures that rules we derive work for a broad range
of beliefs, similar to proper scoring rules requiring truthful
reporting be optimal for all probability distributions. If the
company believes that only a significantly restricted set of
priors is possible, there may be additional rules that our re-
sults do not characterize. Note also that these expectations
are well defined because X is bounded.

The manager and the worker play a three-stage game as
shown in Figure 1. In stage 1, the worker can communicate
with the manager and share information. In stage 2, the
manager makes a prediction x̂ about the completion time
of the task under the worker’s best effort. In stage 3, the
worker exerts some effort and completes the task in time
x′. While the worker cannot exert more than his best effort
and complete the task in time less than x, he can work at a
more slack pace and take time x′ > x to complete the task.
However, we require that x′ ≤ xmax because otherwise it
will be clear to both the manager and company that he is
not working efficiently.

We assume that both the manager and the worker are
risk neutral. We further assume that the worker, all things
being equal, is indifferent between working at best effort or
“slacking.” In other words, if the worker can get a higher ex-
pected score through a best-effort strategy rather than slow-
ing down, then this is the approach the worker will take. Our
results also hold when there is an existing, strict incentive
for best effort over slacking, for example because of existing
incentives in the company.

We consider incentive mechanisms (we refer to them as
scoring systems) that reward the manager and the worker
based on the manager’s prediction of the completion time
and the worker’s actual completion time. At the end of stage
3, a manager is rewarded according to the score Sm(x′, x̂)
and the worker according to the score Sw(x′, x̂). We require
Sm and Sw to be differentiable with respect to x′ and x̂.
The goal of a scoring system is to incentivize the report of
an accurate prediction at best effort and the exertion of the
best effort.

2.1 Desirable Properties of Scoring Systems
Our model is a simple two-player three-stage game. We

hence consider the perfect Bayesian equilibrium of the game
and desire good behavior of the manager and the worker at
the equilibrium. The following are four properties we would
like a scoring system to achieve at the equilibrium:

1. Information sharing. For all Π, the worker shares

his private information Iw honestly with the manager
in stage 1.

2. Report the mean. For all Π, when estimating the
time required to complete a task under best effort of
the worker, the manager’s optimal report in stage 2 is
x̂ = E[X|I] where I is all information available to the
manager at the time, given equilibrium beliefs.

3. Best effort. For all x̂, it is optimal for the worker to
exert his best effort and choose x′ = x for all realiza-
tions x in stage 3.

4. Collusion-proofness. For all Π, the total expected
score of the manager and the worker is maximized by
reporting x̂ = E[X|Iw, Im] and exerting best effort
such that x′ = x for all realizations x.

If the above four properties are satisfied, we will have
a perfect Bayesian equilibrium where the worker shares all
his information with the manager, the manager truthfully
reports his expectation of the completion time under best
effort given both pieces of information, and the worker com-
pletes the task as quickly as possible. Moreover, this equilib-
rium is collusion-free, such that no joint deviation can lead
to an increase in the total expected score.

3. CHARACTERIZATION OF SCORING SYS-
TEMS

We proceed to characterize scoring systems that satisfy
our desirable properties. The main technical challenge is to
simultaneously address the need for accurate prediction and
retain incentives for the worker to adopt best effort.

First, we consider the best effort property. It’s easy to see
that if choosing x′ = x is optimal for the worker given any
x and prediction x̂, the worker’s score Sw(x′, x̂) must be a
decreasing function of x′.

Observation 1. A scoring system satisfies best effort if

and only if ∂Sw(x′,x̂)
∂x′ ≤ 0.

For example, a simple scoring rule Sw(x′, x̂) = 2x̂−x′ can
incentivize the worker to exert his best effort.

Given the best effort property, we know that x′ is set to x
at the equilibrium. The report the mean property requires
a scoring system to incentivize the manager to honestly re-
port her expected completion time given all available infor-
mation. This is exactly the problem addressed by proper
scoring rules for eliciting the mean of a random variable.
Proper scoring rules for eliciting the mean of a random vari-
able satisfy the property that reporting the mean maximizes
expected score. Hence, we have an immediate solution based
on the definition of proper scoring rules.

Observation 2. If the best effort property is satisfied, the
scoring system satisfies the report the mean property if and
only if E(X|I) ∈ argmaxx̂ E(Sm(X, x̂)|I).

We can use any proper scoring rule as the manager scoring
rule, in conjunction with a worker scoring rule that incen-
tivizes best effort, to achieve the report the mean property.
For example, Sm(x′, x̂) = b− (x̂− x′)2 for an arbitrary pa-
rameter b uses a quadratic scoring rule.

While it is easy to achieve both best effort and report the
mean properties at an equilibrium, satisfying information
sharing and collusion-proofness is less straightforward.



Consider the pair of the worker and manager scoring rules
mentioned above, Sw(x′, x̂) = 2x̂ − x′ and Sm(x′, x̂) = b −
(x̂ − x′)2. The worker may not want to share his informa-
tion with the manager if his information will lead to a lower
prediction x̂ by the manager. In addition, the total score
can be increased if the worker and the manager collude.
To see this, note that the manager can report a larger pre-
diction and the worker can work slowly to perfectly match
the manager’s prediction, which increases the worker’s score
while maximizing the manager’s score. Below, we charac-
terize the conditions for achieving all four desired properties
simultaneously.

3.1 A Family of Scoring Rules
We first consider how to satisfy the information sharing

property. This will require that the worker is also rewarded
for a more accurate prediction.

Lemma 3. If the best effort and report the mean proper-
ties are satisfied, the information sharing property is satis-
fied if and only if E(X|I) ∈ argmaxx̂ E(Sw(X, x̂)|I).

Proof. The worker can influence the prediction x̂. In an
extreme case, when all relevant information is possessed by
the worker, the prediction is effectively made by the worker.
In order for the worker to predict the mean, the worker
scoring rule needs to be a proper scoring rule for the random
variable X. Because E(X|I) maximizes a worker’s score
given any information set I, for any Im and Iw, E(X|Iw, Im)
maximizes the worker’s expected score E(Sw(X, x̂)|Iw, Im).
Hence, the worker is better off sharing the information with
the manager to have the manager report E(X|Iw, Im).

Next, we consider achieving collusion-proofness. Let
ST (x′, x̂) denote the sum of the worker and manager scores.
If the manager and the worker collude to report a predic-
tion x̂ and complete the task in time x′, collusion-proofness
requires that the manager-worker pair is incentivized to re-
port the mean and exert best effort. These are analogous
to achieving information sharing and best effort when the
worker has all information and the manager has no infor-
mation. Let ST (x′, x̂) = Sw(x′, x̂) + Sm(x′, x̂) be the total
scoring rule. The following result follows immediately.

Lemma 4. Collusion-proofness is satisfied if and only if
∂ST (x′,x̂)

∂x′ ≤ 0 and E(X|I) ∈ argmaxx̂ E(ST (X, x̂)|I).

This means that if a scoring system satisfies best effort,
report the mean, and information sharing we essentially get
collusion-proofness for free with the mild additional condi-
tion that the total scoring rule also satisfies best effort (a
sufficient condition for which is that the manager’s scoring
rule satisfies best effort). Combining the results character-
izes scoring systems that satisfy all four desirable properties.

Lemma 5. A manager-worker scoring system satisfies
information sharing, report the mean, best effort, and
collusion-proofness at a perfect Bayesian equilibrium if and
only if the following conditions are satisfied:

• ∂Sw(x′,x̂)
∂x′ ≤ 0.

• ∂ST (x′,x̂)
∂x′ ≤ 0.

• E(X|I) ∈ argmaxx̂ E(Sm(X, x̂)|I).

• E(X|I) ∈ argmaxx̂ E(Sw(X, x̂)|I).

for all information sets I.

Intuitively, Lemma 5 requires that the worker score and
the manager score are all given by a proper scoring rule for
eliciting the mean (it is immediate that the total score must
also be given by a proper scoring rule), in addition to the
worker and total scores being a decreasing function of the ac-
tual completion time. For example, Sw(x′, x̂) = Sm(x′, x̂) =
f(x′) + 2cx′x̂ − cx̂2, where f ′(x′) + 2cx̂ < 0 and c > 0 is
a family of scoring systems that satisfy all four desirable
properties. A theorem due to Savage [10] characterizes all
(differentiable) proper scoring rules for eliciting the mean.

Theorem 6 (Savage [10]). For S differentiable in x̂,
E(X|I) ∈ argmaxx̂ E(S(X, x̂)|I) if and only if S(x′, x̂) =
f(x′) + G(x̂) + (x′ − x̂)G′(x̂) where E[f(X)|I] is finite for
all Π and G is a differentiable convex function.

Note that a sufficient condition for E[f(X)|I] to be finite
for all Π is that f is bounded on (0, xmax). Combining Theo-
rem 6 with Lemma 5 yields a more precise characterization.

Theorem 7. A manager-worker scoring system satis-
fies information sharing, report the mean, best effort, and
collusion-proofness at a perfect Bayesian equilibrium if and
only if the following conditions are satisfied:

• Sw(x′, x̂) = fw(x′) + Gw(x̂) + (x′ − x̂)G′w(x̂) where
fw is a differentiable function such that E[fw(X)|Iw]
is finite for all Π and Gw is a differentiable convex
function.

• Sm(x′, x̂) = fm(x′)+Gm(x̂)+(x′− x̂)G′m(x̂) where fm
is a differentiable function such that E[fm(X)|Im, Iw]
is finite for all Π and Gm is a differentiable convex
function.

• f ′w(x′) + G′w(x̂) ≤ 0 for all x′,x̂ ∈ (0, xmax).

• f ′w(x′) + f ′m(x′) + G′w(x̂) + G′m(x̂) ≤ 0 for all x′,x̂ ∈
(0, xmax).

Finally, note that this means we can derive a scoring sys-
tem from a differentiable convex pair of Gs whose derivatives
we can upper bound by taking f ′w(x′) = −| supx̂ G

′
w(x̂)| and

similarly for fm.

4. TASK DECOMPOSITION
Continuing, we now consider that a task has substruc-

ture, with a task represented as a series of subtasks. Based
on this, we allow a worker-manager team to elect to split-
off individual subtasks (or contiguous subtasks) to become
identified prediction tasks in their own right; i.e., essentially
partitioning the task into a distinct set of pieces, each of
which has an associated prediction problem.

In increasing the realism of the model, we also situate the
prediction task for a single task in the context of a repeated
version of the problem, in which a worker has a sequence of
tasks. In this context, the following property is useful:

5. Always non-negative. The score of the worker and
the manager is always non-negative for all realizations
of x and all reports x̂.



If the score is always non-negative, then our best effort
property immediately guarantees that best effort is also op-
timal for a worker facing a sequence of tasks, in that this
will maximize both the total score for sequence of tasks and
the score per unit time.3

This noted, we can focus back on a single task and in-
troduce formalism to make precise what is intended by a
subtask. Let X = X1 + . . .+Xk denote a task X composed
of k subtasks X1, . . . , Xk. The worker decides which sets of
subtasks are to become targets of the scoring system. For
example, the worker might prefer to make a single predic-
tion, thereby being scored just once after completing the
task in its entirety. Another option is that the worker may
prefer to make k predictions (hence receiving k scores), one
for each subtask. Alternately, the worker select subtask X1

as a target, then subtask X2, and then subtasks X3, . . . , Xk

aggregated into one chunk of work for the purpose of pre-
diction. We assume that the degree to which the prediction
problem associated with a task may be split-out into sub-
tasks is knowledge that is private to the worker and a priori
not known to the manager.

We allow the worker to make online decisions about which
subtasks to split-out as separate prediction targets. That is,
if the worker initially decides to get scored for X1, after this
is done he can then choose whether to next get scored for X2

or instead to combine X2 with some number of subsequent
subtasks (we assume subtasks must be completed in order).
As we are focusing on decisions made by the worker, we
will only discuss Sw. The report the mean and collusion
proofness properties can be retained through an appropriate
choice of Sm. To be able to make concrete statements, we
focus on the special case Sw(x, x̂) = f(x′) + 2cx′x̂− cx̂2.

4.1 Independent Subtasks
For a simple model, consider a worker with two subtasks,

denoted by random variables X1 and X2, and each with
discrete support {a, b}, with 0 < a < b ≤ 1 and xmax = b.

For this setting with two subtasks, the choice of the worker
in regard to prediction targets is as follows:

• Adopt the complete task as a prediction target, share
information in regard to X = X1 +X2 (with the man-
ager making a prediction), work on them both, and
then receive a score.

• Split-out X1 as the first prediction target, share infor-
mation with the manager (with the manager making
a prediction), work on X1 and receive a score, then
share information in regard to X2, work and receive a
score.

Lemma 8. Let Sw(x, x̂) = f(x′) + 2cx′x̂− cx̂2 satisfy best
effort and always non-negative. Then for a task with two
subtasks, it is always optimal for the worker to split inde-
pendent subtasks into separate prediction targets.

Proof. For any distribution of effort X the worker’s ex-
pected score from truthful reporting (which is optimal) is

E[Sw(X,E[X])] = E[f(X)] + cE[X]2.
3In contrast, suppose the score assigned for the completion
of a task is negative. In this case, a worker may prefer to
spend 10 hours and earn a score of −2 than to spend 1 hour
and earn a score of −1, because in those additional 9 hours
the worker would be completing additional tasks for more
negative scores.

To deal with E[f(X)], we make use of two bounds regard-
ing f(x). First, we know that f ′(x′) < −2cx̂ for all x̂, so
in particular this is true for x̂ = xmax. By always non-
negative, f(xmax) ≥ 0. Thus, f(x) ≥ (xmax − x)2cxmax.
Second, for a < b, f(a) − f(b) ≥ (b − a)2cxmax. We
now show that E[Sw(X1, E[X1])] + E[Sw(X2, E[X2])] >
E[Sw(X1 + X2, E[X1 + X2])]. Note that we use the un-
conditional expectation over X2 here because X1 and X2

are independent.

E[Sw(X1, E[X1])] + E[Sw(X2, E[X2])]

− E[Sw(X1 + X2, E[X1 + X2])]

= E[f(X1)] + cE[X1]2 + E[f(X2)] + cE[X2]2

− E[f(X1 + X2)]− cE[X1 + X2]2

= E[f(X1) + f(X2)− f(X1 + X2)]− 2cE[X1]E[X2]

≥ E[(xmax −X1)2cxmax + ((X1 + X2)−X2)2cxmax]

− 2cE[X1]E[X2] = 2c(x2
max − E[X1]E[X2]) > 0.

We take this as a negative observation, because there is
no learning effect when splitting out independent subtasks—
it is not the case that additional accuracy can be achieved
through separate predictions in the absence of correlations.

On the other hand, if we are willing to accept a scoring
rule that may be negative, it is easy to obtain a different
result. For example, take f(x′) = −kx′ (k > 2xmax) and
c = 1. Some algebra shows that not splitting results in an
increase in utility of 2E[X1]E[X2] > 0, and so independent
subtasks are not split out as separate prediction targets.

For this reason, the following is a very helpful observa-
tion. If the distinction between the completion of a task
and the completion of a subtask is observable by the com-
pany, then the scoring system can provide a large enough
bonus score B > 0 upon the completion of a task (but not
a subtask), in order to remove the broader implications of
a stream of negative scores. We adopt this approach going
forward, allowing for scoring rules that may be negative but
correcting for this with a large enough catch-up bonus B on
the completion of a complete task.4

Parameter B can be calculated as the negation of the low-
est possible score (the most negative score) that a worker
who exerts best effort can possibly get for completing the
task. For a given chunk of work (a set of subtasks chosen as
a prediction target), the lowest score is achieved when the
time to complete it under best effort is maximized while the
prediction of the completion time is minimized.

4.2 Correlated Subtasks
To gain a qualitative understanding of the effect of our

scoring rules on the propensity to split-out subtasks as
separate targets, we adopt a simple model of correlation.
The joint distribution on (X1, X2) is parameterized with
q ∈ (1/2, 1] and r ∈ [0, 1]. The distribution on time to
complete task 1 under best effort is a with probability q and
b with probability 1 − q. With probability r, the time to
complete task 2 is the same as for task 1 (i.e. X2 = X1).
Otherwise, with probability 1− r the time to complete task
2 is independently sampled according to probability q.

We use the scoring rule Sw(x, x̂) = f(x′) + 2cx′x̂ − cx̂2

with f(x′) = C − kx′ and c = 1, where k > 2xmax and C is
4This bonus is invariant to any aspect of the prediction or
effort and does not change the rest of the analysis.



a constant. We show that, for appropriate choice of C, the
incentive to split-out subtasks increases as r increases, and
thus as there is more positive correlation between the time
to complete the subtasks under best effort.

In particular, the choice of C sets a threshold for r. If r
is below this threshold then the subtasks are independent
enough that the worker does not want to split them. If
r is above this threshold then the substasks are correlated
enough that splitting them to learn is worthwhile. Increasing
C decreases this threshold, but increases the cost to the
scoring rule. Thus the choice of C allows a trade-off between
encouraging the accurate sharing of predictions on subtasks
and cost. However, past a certain point, the worker will
want to split-out all subtasks regardless, and increasing C
will simply increase the cost.

Lemma 9. Consider a task with two sub-tasks. Let Sw be

as above with C < 2E[X1]E[X2]. Let r∗ =
√

2E[X1]E[X2]−C

q(1−q)(a−b)2
.

If r ≥ r∗ then it is optimal for the worker to split-out sub-
tasks. If r ≤ r∗ then it is optimal for the worker to not do
so.

Proof. Unlike in Lemma 8, X1 and X2 are no longer
independent. In particular, this means that the expected
score for task two if they are split is no longer simply
E[Sw(X2, E[X2])]. Instead, the worker learns something af-
ter completing the first task so, a priori, the expected score
is EX1 [E[Sw(X2, E[X2|X1 = x])|X1 = x]]. Hence we can
write the expected gain from splitting as follows:

E[Sw(X1, E[X1])] + EX1 [E[Sw(X2, E[X2|X1 = x])|X1 = x]]

− E[Sw(X1 + X2, E[X1 + X2])]

= E[C − kX1 + E[X1]2]

+ EX1 [E[C − kX2 + EX1 [(E[X2|X1 = x])2]|X1 = x]]

− E[C − k(X1 + X2) + E[X1 + X2]2]

= C + E[X1]2 + EX1 [(E[X2|X1 = x])2]− E[X1 + X2]2

= C + E[X1]2 + E[X2]2 − E[X1 + X2]2

+ EX1 [(E[X2|X1 = x])2]− E[X2]2

= C − 2E[X1]E[X2] + EX1 [(E[X2|X1 = x])2]− E[X2]2.

For the particularly simple distribution we have chosen, we
can expand the last two terms as

EX1 [(E[X2|X1 = x])2]− E[X2]2

= q(ra + (1− r)E[X2])2 + (1− q)(rb + (1− r)E[X2])2 − E[X2]2

= (1− r)2E[X2]2 + qr2a2 + (1− q)r2b2 + 2qar(1− r)E[X2]

+ 2(1− q)br(1− r)E[X2]− E[X2]2

= (1− r)2E[X2]2 + qr2a2 + (1− q)r2b2 + 2r(1− r)E[X2]2

− E[X2]2

= qr2a2 + (1− q)r2b2 − r2E[X2]2

= r2(qa2 + (1− q)b2 − (qa + (1− q)b)2)

= r2(qa2 + (1− q)b2 − q2a2 − (1− q)2b2 − 2q(1− q)ab)

= r2((1− q)qa2 + q(1− q)b2 − 2q(1− q)ab)

= r2q(1− q)(a− b)2

Thus, splitting is optimal if and only if C−2E[X1]E[X2]+
r2q(1 − q)(a − b)2 ≥ 0. Solving for r yields the desired
inequalities.

In a situation where it is important that the cumulative
score for each task is non-negative, then a mitigating aspect
of this trade-off is that for smaller values of C the scoring
system must assign a larger bonus B upon task completion
to correct for the possibility of an accumulation of negative
scores on subtasks.

Remark: One might also wonder whether it is possible to
modify our scoring rules to allow a worker-manager team to
“push” new predictions in regard to a particular prediction
target over time, and without leading to new strategic con-
siderations. For example, suppose the worker elects not to
split-off any subtasks and have as the target the entire task.
But now as work is completed on each subtask, perhaps the
worker has updated information in regard to when the task
will likely be completed. Perhaps surprisingly, the effect of
allowing this turns out to be quite subtle.

For example, associating the score with the average of the
score from m predictions fails, because the worker-manager
team could maximize its realized score by simply pushing a
lot of predictions just before completing a task when there is
high confidence about how long the task will take. Insisting
that predictions are made at fixed intervals of time could
lead to a preference for slacking in order to be able to make
an additional prediction. Adopting a time-averaged score,
integrated over the different predictions made over time in
regard to a prediction target, could lead to a preference to
work more slowly on subtasks about which the prediction is
higher quality. We leave a full reconciliation of this problem
to future work.

5. SIMULATIONS
Our simulation study is designed to validate the three

qualitative observations in our theoretical analysis: (a) for
subtasks with more correlation the worker will tend to split
out more subtasks as targets, (b) for a higher value of C the
worker will tend to split out more subtasks into targets, and
(c) for a higher value of C the average score received by the
worker will tend to increase.

For this purpose, we consider a task X with 3 subtasks
X1, X2, and X3. With probability q the task is low difficulty,
and with probability 1− q the task is high difficulty. Given
that the task is low difficulty, then a subtask takes time
a = 0.5 under best effort with probability p ∈ [0.5, 1], and
b = 1 under best effort otherwise. For a high difficulty task,
a subtask takes time b = 1 with probability p, and a = 0.5
otherwise (both under best effort.) In this way, p controls
the correlation between effort on subtasks. High p yields
high correlation.

We simulate each possible policy a worker might adopt in
deciding which subtasks to split-off into separate prediction
targets. Altogether, there are six possible policies:

1. Policy 1: Work on each subtask separately. First tar-
get is subtask X1, then X2, followed by X3.

2. Policy 2: First target is X1. If completion time of X1 is
observed to be a then the second target is X2, followed
by X3. If completion time of X1 is b then the second
target is X2 + X3 as a chunk.

3. Policy 3: First target is X1. If completion time of X1 is
observed to be b then the second target is X2, followed
by X3. If completion time of X1 is a then the second
target is X2 + X3 as a chunk.
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Figure 2: Average score and average number of
prediction targets under the best policy, varying
p ∈ [0.5, 1] for C = −1.9 and q = 0.5.

4. Policy 4: First target is X1. The second target is X2 +
X3 as a chunk.

5. Policy 5: First target is X1 + X2 as a chunk. The
second target is X3.

6. Policy 6: The first and only target is the entire task
X = X1 + X2 + X3 as a single chunk.

For concreteness, the scoring rule that we adopt is

Sw(x, x̂) = C − 2x′xmax + 2x′x̂− x̂2

In considering the score, we also allocate a bonus B upon
completion of the entire task, set to the minimal value such
that the score is guaranteed to be positive for all contin-
gencies. To determine this value, we first compute all the
possible different scores that could be obtained for each pol-
icy, selecting the lowest score as that policy’s worst score.
The (negated) lowest score amongst the 6 worst scores of
the 6 policies provides the bonus.

Given this setup, we compare the average score and the av-
erage number of prediction targets as the amount of positive
correlation (reflected by p) and the parameter in the scoring
rule C varies. For each policy, and for different values of C,
p and q, we run at least 10,000 trials and determine the aver-
age score. The policy that we assume the worker adopts for
a triple (C, p, q) is that which maximizes the average score.

Figure 2 is obtained by varying p ∈ [0.5, 1] for C = −1.9
and q = 0.5, and shows for each value of p the average score
and the average number of targets for the optimal policy for
that value of p. As p increases there is greater correlation
which results in more splitting and a higher score. Figure 3
corroborates this by showing that as p approaches a value
of 0.7, the optimal policy changes from Policy 4 to Policy
3. Since Policy 3 varies between 2 and 3 splits, we get an
average number of targets equal to 2.5. We have omitted
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Figure 3: Average score for policies 1 through 5,
varying p ∈ [0.5, 1] for C = −1.9 and q = 0.5.

Policy 6 in Figure 3; its average score remained in the range
[2.8, 2.9] throughout.

Figure 4 is obtained by varying C ∈ [−5, 1] for p = 0.8
and q = 0.5, and shows for each value of C the average score
and the average number of targets for the optimal policy for
that value of C. It shows that as C increases there is more
splitting. while the average score also increases. Figure 5
shows the average score of the different policies. The optimal
policy is initially Policy 6 (no splitting), and hence there is
only 1 prediction target. With increasing C the optimal
policy changes to those with greater splitting, finally ending
up at Policy 1 (full splitting). We have omitted policies
2 and 5 in Figure 5, as their scores were very close to the
scores of policies 3 and 4 respectively (policies 2 and 5 scored
slightly less than policies 3 and 4 respectively for all values
of C). For C < −3.75, the value of B was determined by
policy 1, which is why the curve for policy 1 is initially flat
and the others are decreasing. For larger values of C, B is
determined by policy 6 so it is flat while the others increase.

The basic trends we see in these plots are consistent with
the theory, which allows for a tradeoff between the degree
to which tasks are split and the cost to the mechanism.

6. CONCLUSIONS
We have introduced the problem of incentivizing a worker-

manager team to commit best effort to a task and make ac-
curate predictions in regard to completion time. In studying
this question, we have characterized a family of scoring rules
with natural properties, and considered the effect of the rules
on decisions in regard to which subtasks to split-out into ex-
plicit prediction targets.

The problem was motivated by an extant outcomes-based
incentive system currently applied to IBM’s internal IT ini-
tiatives. In this system, software professionals (developers,
software designers, testers, etc.) execute tasks assigned by
their project managers to produce project deliverables. Each
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Figure 4: Average score and average number of
prediction targets under the best policy, varying
C ∈ [−5, 1] for p = 0.8 and q = 0.5.

task is associated with a “Blue Sheet” that records the man-
ager’s prediction of required effort for the task, along with
its actual completion time. Blue Sheet data are used to
compute scores for both ‘workers’ and ‘managers,’ and top
scorers are recognized for their achievement.

The Blue Sheet system has been in place since 2009 and
has provided some useful initial insights on process differ-
ences across internal groups. However, the current Blue
Sheet scoring system does not satisfy any of the four prop-
erties outlined in Section 2.1. It is difficult to derive any
strong conclusions about the impact of these missing prop-
erties from existing Blue Sheet data (much of the informa-
tion is self-reported), but the data suggests some evidence
of collusion between ‘workers’ and ‘managers.’

We are aiming to pilot a new scoring system based on
the current work, comparing to the existing system, both
by comparing scores and outcomes and by surveying the
participants regarding which system they prefer. It will be
interesting to consider, as a next step, additional factors
that might be important in a practical deployment. These
factors include the impact of a scoring system on the kinds
of tasks that worker-manager teams choose to take on, for
instance in regard to their inherent predictiveness.

The current Blue Sheet system includes some additional
aspects that are outside of our model. These include a self-
assessment of the deliverable quality against specified stan-
dards, and also an assessment of the extent that re-use of
pre-existing assets was leveraged to complete the deliver-
able. From this perspective, we are interested to understand
the impact of a scoring system on how to decompose work
into subtasks in the first place, that is on the modulariza-
tion of tasks. A key goal of the Blue Sheet system is to
incentivize the creation and application of reusable software
components, thereby making the development process more
efficient. Devising incentive schemes that directly encourage
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Figure 5: Average score for policies 1, 3, 4, and 6,
varying C ∈ [−5, 1] for p = 0.8 and q = 0.5.

creating reusable components, e.g., by rewarding the com-
ponent author when others reuse the component, remains as
future work.
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