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ABSTRACT
We analytically study the role played by the network topol-
ogy in sustaining cooperation in a society of myopic agents in
an evolutionary setting. In our model, each agent plays the
Prisoner’s Dilemma (PD) game with its neighbors, as spec-
ified by a network. Cooperation is the incumbent strategy,
whereas defectors are the mutants. Starting with a popula-
tion of cooperators, some agents are switched to defection.
The agents then play the PD game with their neighbors and
compute their fitness. After this, an evolutionary rule, or
imitation dynamic is used to update the agent strategy. A
defector switches back to cooperation if it has a cooperator
neighbor with higher fitness. The network is said to sustain
cooperation if almost all defectors switch to cooperation.
Earlier work on the sustenance of cooperation has largely
consisted of simulation studies, and we seek to complement
this body of work by providing analytical insight for the
same.

We find that in order to sustain cooperation, a network
should satisfy some properties such as small average diam-
eter, densification, and irregularity. Real-world networks
have been empirically shown to exhibit these properties, and
are thus candidates for the sustenance of cooperation. We
also analyze some specific graphs to determine whether or
not they sustain cooperation. In particular, we find that
scale-free graphs belonging to a certain family sustain co-
operation, whereas Erdos-Renyi random graphs do not. To
the best of our knowledge, ours is the first analytical at-
tempt to determine which networks sustain cooperation in
a population of myopic agents in an evolutionary setting.
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1. INTRODUCTION
The question of how cooperation emerges among ratio-

nal, intelligent agents is one which has received consider-
able amount of attention. When agents interact with one
another, they are often faced with two choices - cooperate
with each other for mutual benefit, or think about one’s
own interests, and defect. This abstract interaction model
is captured succinctly in the Prisoner’s Dilemma (PD) game,
which is a two player, one shot, simultaneous move game.
Although the Hawk-Dove and Stag Hunt games are also used
to model agent cooperation, the PD game is arguably the
most often used and well studied.

Table 1 shows the (normalized) payoff matrix for the two
player PD game. In this game, each agent can choose one
of two actions or strategies – cooperate or defect. The first
entry in each cell in the table is the payoff for the row player,
and the second entry is that of the column player. For
example, when the row player cooperates and the column
player defects, then the cell entry is 0, b, meaning that the
row player gets 0, and the column player gets b. When
both agents cooperate, each gets a moderate payoff (say 1).
However, a defector achieves a higher payoff (say b) against
a cooperator, who gets zero payoff. Here b is called the ben-
efit or temptation to defect, and typically 1 < b < 2. When
both agents defect, then both get zero payoff. We observe
that if the column player cooperates, the row player is better
off defecting, whereas, if the column player defects, then the
row player is indifferent as to his strategy. Hence defection
is a dominant strategy, and rational agents will be expected
to defect always. When two rational players play the PD
game, both defect. However, it would ultimately have been
better for both agents to have cooperated with each other
(mutual cooperation is Pareto-optimal with respect to mu-
tual defection) and therein lies the dilemma. Hence it is of
interest to study what conditions or protocols of interaction
induce agents to cooperate with one another.

Cooperate Defect
Cooperate 1,1 0,b

Defect b,0 0,0

Table 1: Prisoner’s Dilemma payoff matrix

In the literature, several settings that sustain coopera-
tion have been proposed and studied. When agents interact
repeatedly with one another, and can remember past histo-
ries, then agents can retaliate against defectors by refusing
to cooperate in future interactions, and this could induce



mutual cooperation [3]. However this line of reasoning fails
in settings where the same agents may not interact repeat-
edly. In such settings, reputation mechanisms may be used
by the community of agents to track and punish defectors
[19]. Such a technique requires unique, constant identities
for the defectors, and cannot account for settings in which
agents are anonymous, or can freely change their identities,
such as happens in interactions over the Internet. Hence we
seek interaction models which sustain cooperation in a soci-
ety of myopic, memoryless agents. We approach this study
by looking at the way in which the structure of interaction
between the agents affects their strategies.

In a multiagent society, one cannot always expect that all
agents interact with one another. For example, spatial struc-
ture (agents only interact with other agents in their vicinity)
and organizational structure (agents interact only with other
agents immediately above or below them in a hierarchy) are
two immediate examples in which interactions are restricted
between agents. The structure of the interaction of agents
with one another is naturally represented by a network, with
each node corresponding to an agent, and each edge repre-
senting an interaction between a pair of agents. We model
agent interaction as an evolutionary PD game played on this
network. In this model, every agent is either a cooperator
or a defector, and plays the same strategy uniformly with
each of its neighbors on the network. We take cooperation
to be the incumbent strategy, and defection as the mutant
strategy. Starting with a population of cooperators, a small
number of agents are switched to defection. The agents then
play the game with their neighbors on the network. The fit-
ness of an agent is calculated as the sum of the payoffs that
it receives in each game. After one such round the defectors
then decide whether to stay with their current strategy, or
switch, depending on the fitness of their neighbors. In par-
ticular, a defector switches to cooperation when one of its
neighbors is a cooperator with higher fitness. We say that a
network sustains cooperation if almost all defectors switch
to cooperation.

Given this simple model of agent interaction, we ask which
networks sustain cooperative behavior, and which do not.
In our analysis, we identify some necessary properties that
a network should satisfy in order to sustain cooperation,
such as small average diameter, densification, and irregular-
ity (Section 4). Real-world networks have been empirically
observed to exhibit these properties, and hence can be con-
sidered suitable for sustaining cooperation. We also identify
some graphs which sustain cooperation, and some which do
not (Section 5). In this way, we try to build a complete
characterization of networks which sustain cooperation.

There have been many simulation studies on the suste-
nance of cooperation on networks, but very few of analytical
nature. In an analytical study, although the complexity of
the model that is studied is necessarily limited in the interest
of tractability, the insights obtained are very clear. In fact,
it is the analytical approach alone that enables us to obtain
a characterization of graphs that sustain cooperation, as il-
lustrated in our necessary conditions above. In contrast, it
is arguably difficult, if not impossible to conduct an simula-
tion on a graph class such as “all graphs with large average
diameter”.

The rest of the paper is as follows: In Section 2, we de-
scribe the network interaction model that we use in our
study, and formally define when a network is said to sus-

tain cooperation. In Section 3, we briefly survey the lit-
erature relating to the study of sustenance of cooperation
under various settings. In Sections 4 and 5, we give proofs
for the necessary conditions to sustain cooperation and an-
alyze some specific graphs, respectively. Finally, in Section
6, we summarize our study, and also identify some avenues
for future work.

2. THE NETWORK INTERACTION MODEL

2.1 Intuition for the Model
Our definition of networks which sustain cooperation uses

a fitness function and imitation rule that follows in spirit
the model described by Kearns and Suri [13]. However, we
have made some important changes to the model to make it
more realistic and suitable to a wider range of applications.
We now describe the salient features of our model.

1. Agent fitness: The fitness of each agent is defined to
be the sum of the payoffs it derives from the PD games
played with each of its neighbors in the interaction net-
work. We have defined it to be the sum rather than
average (as considered in [13]), because in real world
networks, the agents are disparate and have fitnesses
based on their centrality and degree of connectedness
and normalizing them based on their degree is not nat-
ural. The sum of payoffs has been used in earlier works
as a measure of fitness of an agent in evolutionary game
theory [1, 17].

2. Incumbents and mutants: In [13], it is shown that
an evolutionarily stable strategy (ESS) in a classical
sense (that is, when underlying network of interac-
tions is a complete graph) is also an ESS on graphs
(with respect to their fitness model). This result holds
under mild restrictions on the graph or how the mu-
tants are chosen. In the context of the PD game, this
implies that a population of defectors is resistant to in-
vasion by mutant cooperators. However, we are trying
to study whether cooperation (a dominated strategy)
can survive mutant attacks (by defectors) given cer-
tain network topologies. To this effect we assume the
incumbent strategy is cooperation and introduce de-
fectors as mutants.

3. Imitation dynamics: In a PD game, for every agent,
the best response strategy is to defect (irrespective of
the actions of other agents). Hence cooperation cannot
be sustained when agents follow best response dynam-
ics. The dynamics considered in our work is not that of
best response but that of imitation (which not only ap-
plies to humans but also to primitive life forms where
rationality cannot be completely justified). Here, if
a mutant defector has at least one cooperator neigh-
bor with a higher fitness than it, then it is likely to
imitate that strategy and switch over to cooperation.
This is a natural behavior and models the fact that
every agent tries to imitate other successful agents it
interacts with, so as to improve its own payoff [8].

4. Sustaining cooperation: Starting with a network
of cooperators, a small randomly selected fraction of
agents are switched to defection. We say that a net-
work sustains cooperation, if almost all defectors change



their strategy back to cooperation, in accordance with
the imitation dynamics described above. The random
selection is warranted, as with adversarial placement it
is always possible to place mutants in such a way that
no mutant switches to cooperation, and the question
becomes trivial.

2.2 Notation
Following the game model considered by Santos and

Pacheco [20], we work with a normalized PD game ma-
trix, shown in Table 1. The interaction structure among
the agents is specified by a graph G = (V,E), where V is
the vertex (or node) set, and E ⊆ V × V is the edge set.
The number of vertices (|V|) is denoted as n. We consider
graphs which are specified for all large values of n, as we
are interested in asymptotic behavior as n→∞. When two
vertices u, v are connected by an edge, we denote the edge
as (u, v) (which is equivalent to (v, u), because we work with
undirected graphs), and say that (u, v) ∈ E. For each vertex
v ∈ V , the neighborhood N(v) is the set of vertices adjacent
to v. That is, N(v) = {u ∈ V : (u, v) ∈ E}. Each vertex
v corresponds to an agent, and has a fixed strategy s(v),
which is either C or D. In future, we will refer to the terms
agent and vertex interchangeably. Also, we will refer to each
agent, or node, as either a cooperator or a defector, depend-
ing on its strategy. Now each agent plays the PD game with
each of its neighbors on the graph. Denote by f(v, u), the
payoff obtained by agent v playing against agent u. Now the
total fitness f(v) of agent v is the sum of its payoffs against

each of its neighbors, that is, f(v) =
∑

u∈N(v)

f(v, u).
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Figure 1: Network Interaction Model

Figure 1 shows an example graph with some cooperators
and defectors, along with their fitness. We also see two
defectors (shaded) adjacent to a cooperator who has a higher
fitness than them. We say that such defectors are suppressed.
If a defector is not adjacent to any cooperator of higher
fitness than it, then we refer to it as unsuppressed. We say
that an event occurs with high probability, if it occurs with
probability 1 − o(1) (where o(1) is a term which goes to 0
as n→∞). Given a graph G, and a constant ε∗, (0 ≤ ε∗ ≤
1) the defector selection process chooses a random subset
of vertices D, of size ε∗n as defectors, keeping the other
(1− ε∗)n vertices C as cooperators. (Strictly speaking, the
number of cooperators and defectors should be integers. Our
analysis can be carried out taking either the floor or ceiling
of such quantities, without affecting the results.) A graph G
is said to sustain cooperation, if there is a constant ε (0 <

ε < 1) such that for all values ε∗ ≤ ε, with high probability
(with respect to the defector selection process), at most o(n)
defectors are unsuppressed. If not, that is, for all values
of ε, there exist corresponding values of ε∗ ≤ ε, such that
the probability that the number of unsuppressed defectors is
Ω(n) is greater than some fixed α, then we say that the graph
does not sustain cooperation. The definition of sustenance of
cooperation of a graph, can be extended to that of a random
graph in a simple manner. In this case, we require that with
high probability with respect to selection of a graph from
the set of possible graphs (in addition to selection of the
defector set), at most o(n) defectors are unsuppressed.

In the above model, we select a random subset of nodes as
defectors. One might also consider an adversarial selection.
In Section 4.1, we show that with adversarial selection of the
defector set, no graph can sustain cooperation, and hence
the model becomes uninteresting.

3. RELATED WORK
We now briefly survey the literature which addresses the

broad question of how cooperation emerges and is sustained
in social interactions, and also identify some key differences
between earlier work and ours. These studies can be cate-
gorized according to the choice of conditions studied. The
most commonly used and popular model of agent interac-
tion is the Prisoner’s Dilemma (PD) game, although some
studies use the Hawk-Dove (HD, also called Snowdrift or
Chicken) game [10, 20]. The network of interaction between
the agents can be either static [11, 20] or dynamic [9, 12].
The agents themselves can be myopic and memoryless [11,
20] or strategic and intelligent [3, 12].

Early studies relating to sustenance of cooperation have
been in the context of repeated games, where agents play the
PD game repeatedly with one another for an infinite number
of rounds. In such a setting, the Folk Theorem indicates that
mutual cooperation can be sustained as a Nash equilibrium
[18]. Axelrod and Hamilton [3] found experimentally that
cooperation is sustained when defectors are punished recip-
rocally with defection in a tit-for-tat fashion. The study
was conducted in the form of two computer tournaments
where strategic programs competed against one another in
a repeated PD game. In their model, each agent (program)
plays with every other agent in several rounds, can distin-
guish each agent’s identity, remember the history of actions
for each agent that it played, and adopt a different strat-
egy for each interaction. Also the final fitness of an agent is
calculated as the sum of the payoffs that it received in each
round. A detailed analysis of the sustenance of cooperation
in such a setting can be found in [2]. In contrast to this
model, agents in our model can adopt only one strategy at a
time, which they uniformly exercise in all their interactions,
and the payoffs that agents receive are recomputed in each
round and are not added up.

Hofmann, Chakraborty, and Sycara [11] carried out a com-
prehensive simulation study, in which they found that the
sustenance of cooperation depends on a number of factors
such as network topology, strategy update rule, and ini-
tial population of cooperators. In particular, they found
that scale-free networks sustain cooperation given almost
any update rule. Hanaki, Peterhansl, Dodds, and Watts
[9] conducted simulations and found that cooperation can
be sustained in a dynamic multiagent network when links
between agents are costly and local structure is largely ab-



sent. They used a model where each agent imitates the strat-
egy of its most successful neighbor, and breaks/creates links
stochastically based on a cost/benefit comparison. Santos
and Pacheco [20] carried out simulations of the PD and HD
games on various networks and found that cooperation is
not sustained on regular graphs and graphs formed by a
growth model without preferential attachment, but can be
sustained on graphs formed by a growth model with prefer-
ential attachment (such graphs were introduced by Barabasi
and Albert [4]). Other simulation studies of the sustenance
of cooperation are [1, 6, 10, 15, 17, 21]. Also refer to Szabo
and Fath [22] for a survey of evolutionary games on graphs.

We observe that the literature in this field largely deals
with simulation studies of the sustenance of cooperation on
networks. We now turn to the relevant analytical studies in
this area. The work which is most similar to ours in terms
of the techniques used is that of Kearns and Suri [13], who
extended the notion of evolutionarily stable strategies (ESS,
[16]) to games played on graphs. An ESS is a strategy that is
resistant to invasion by mutant strategies. Kearns and Suri
showed analytically that the ESS of games are preserved in
their model. In the context of the PD game, this implies
that defection is dominant even in the graph setting. While
the techniques that we use are similar to the above work,
our model is fundamentally different in the computation of
fitness, as well as in the restrictions imposed on the graph
and placement of defectors. Hence our analysis yields quali-
tatively different results regarding the sustenance of cooper-
ation, which cannot be obtained in their model. Immorlica,
Lucier, and Rogers [12] found that cooperation can be sus-
tained by the formation of social capital. They studied a
PD game on a dynamic network where an agent can change
its links, but not its strategy. At each round some randomly
chosen agents are removed, and replaced by new agents, who
choose their strategy based on expected long term fitness.
They found that under some parameter settings, cooperators
and defectors co-exist in a dynamic self-correcting equilib-
rium. Our work is different from this, in that we consider
myopic, memoryless agents, who cannot compute long-term
costs and benefits, but are instead driven by imitation dy-
namics.

3.1 Our Contributions
In the context of the proposed model, we identify the fol-

lowing necessary conditions for a network to sustain coop-
eration:

• Small Average Diameter: The average diameter
of the network should be sub-linear in the number of
nodes. Real-world networks have been shown to have
an average diameter that grows logarithmically in the
number of nodes [23].

• Densification: As the number of nodes in the net-
work grows, the average degree of the nodes should
increase. In other words, the number of edges should
grow super-linearly in the number of nodes [14].

• Irregularity: The ratio of maximum degree to mini-
mum degree should be greater than b, the benefit re-
ceived by defectors. Real-world networks have a power
law degree distribution, and hence satisfy this condi-
tion [4].

In particular, we analyze the sustainability of cooperation
on specific important networks, and classify them accord-
ingly:

• Sustaining cooperation: Scale-Free graphs, Hierar-
chical graphs, Bipartite Random graphs

• Not sustaining cooperation: Erdos-Renyi random
graphs

4. NECESSARY CONDITIONS FOR
SUSTAINING COOPERATION

First, we show that with adversarial selection of the de-
fector set, no graph can sustain cooperation.

4.1 Adversarial Mutant Selection

Theorem 1. For any graph G with n nodes, it is always
possible to place εn defectors and (1−ε)n cooperators in such
a way that for every cooperator vc and defector vd adjacent
to each other, f(vd) ≥ f(vc).

Proof. Let P be a placement of cooperators and defec-
tors on the graph which minimizes the total fitness of all
cooperators. We will show that this placement satisfies the
condition of the theorem, and we are done.

If not, then there is a cooperator vc, and a defector vd
adjacent to each other, such that f(vc) > f(vd). Let the
number of cooperators who are adjacent to vc but not vd
be kc and those adjacent to vd but not vc be kd, and let
k be the number of cooperators adjacent to both. Then,
f(vc) = kc+k; f(vd) = b ·(kd+k); f(vc) > f(vd)⇒ kc+k >
b · (kd + k) ⇒ kc > kd. Now interchange the strategies of
vc and vd. That is, vc now becomes a defector, and vd be-
comes a cooperator. Let us consider the total change in the
cooperator fitness. The fitness of each of the kc cooperators
adjacent to vc decreases by 1 (−kc); that of the kd cooper-
ators adjacent to vd increases by 1 (+kd); and that of the
k cooperators adjacent to both does not change. Also, vc is
no longer a cooperator (−kc−k) and vd is now a cooperator
(+kd + k). Hence the change in total cooperator fitness is
2(kd − kc), which is negative since kd < kc. Now we have
a new placement of cooperators and defectors P ′, in which
the total cooperator fitness is strictly less than that of P ,
contradicting the minimality of P .

We now establish two key lemmas that will be used in the
proofs.

Lemma 1. Let A1, A2, ..., Ak be a set of events, where k
is a constant. Further, each Ai occurs with high probability

Let A =

k⋂
i=1

Ai. Then, A occurs with high probability.

Proof. For each i, since Pr[Ai] = 1 − o(1), Pr[Ai] =

o(1). Also, Pr[A] = 1 − Pr[A], and A =

k⋃
i=1

(Ai). By the

union bound, Pr[

k⋃
i=1

(Ai)] ≤
∑

Pr[Ai] = o(1).

Lemma 2. Let a graph G have Ω(n) vertices of bounded
degree. Then G does not sustain cooperation.



Proof. Let VS be the set of vertices of bounded degree,
that is, which have degree at most some k. We are given
that for some fixed β, |VS | ≥ βn. (Actually, this statement
is true when n > n0, for some fixed n0, but we are inter-
ested in the asymptotic behavior as n → ∞, so we do not
mention this condition.) Set ε∗ = ε. For each vertex in this
set, the probability that it and its neighbors are defectors
is at least εk+1, and expected number of such vertices is
at least βεk+1n, which is linear in n. It is clear that these
vertices are unsuppressed, and hence the total number of
unsuppressed defectors is at least βεk+1n. By the Large Ex-
pectation Lemma (refer A.2), we can say that with constant
non-zero probability, the number of unsuppressed defectors
is greater than o(n).

We now establish the necessary conditions for any graph
to sustain cooperation.

4.2 Small Average Diameter
With a view to keeping our model as general as possible,

we do not require the networks under consideration to be
connected. That is, the network may consist of disjoint sets
of vertices, which are not connected to each other. Each such
set of vertices, within which there is a path between any pair
of vertices is called a component. We now define the diame-
ter and average diameter of a component G′ or a network G.
The distance between two nodes in a component is defined
as the length of the shortest path between them. The di-
ameter (diam(G′)) and average diameter (diamavg(G

′)) of
a component G′ are defined as the maximum and average
distance respectively over all pairs of nodes within the com-
ponent. The diameter (diam(G)) and the average diameter
diamavg(G) is defined as the maximum over all components
of the diameter and average diameter respectively.

We find that in order to sustain cooperation, the average
diameter of the network should be o(n), that is, the average
diameter should grow sub-linearly in the number of nodes.
In other words, the network cannot have a large average
diameter of Ω(n).

Theorem 2. Let G be a graph of large average diame-
ter, that is, diamavg(G) = Ω(n). Then G does not sustain
cooperation.

Proof. From the definition for average diameter, we know
that some component of G, say G′, has average diameter
diamavg(G

′) = Ω(n). It is easy to see that this implies
diam(G′) = Ω(n) and also that G′ has Ω(n) vertices. We
now show that some Ω(n) vertices in G′ have bounded de-
gree. This along with Lemma 2 establishes the theorem.

Suppose not, that is, at most o(n) vertices in G′ have
bounded degree. Call this set VS . All the other vertices in
G′ have degree ω(1). Call this set VB . Recursively apply
the following procedure:

1. Let i = 0; V ′ = VB

2. Find v ∈ V ′ : N(v)
⋂

(S0

⊎
S1....

⊎
Si−1) = φ (Stop if

no such vertex exists).

3. Let N [v] = v ∪N(v)

4. Assign Si = N [v]; i = i+ 1

5. Assign V ′ = V ′ −N [v]

Let the value of i at the end of the iterations be k. Since
each Si has ω(1) vertices, the number k of stars Si formed
is o(n). Notice that each vertex remaining in V ′ at the end
is at distance one to some star, that is, it has a neighbor in
some star Si. For each vertex v remaining in V ′, find some i
such that Si∩N(v) 6= φ, and add v to Si. Now the diameter
of each Si is at most 4.

The component G′ is now decomposed into two parts -
o(n) stars (S0, ..., Sk−1), and some subset V ′S of VS . Let
us look at the shortest path between any two vertices in
G′. This path passes through each Si at most constant
times, and through each of the V ′S at most once. Hence
the diameter is o(n), contradicting the statement above that
diam(G′) = Ω(n).

4.3 Densification
A graph is said to densify if the number of edges in the

graph asymptotically grows faster than n. That is, |E| =
ω(n). Put in another way, these are graphs whose average
degree increases with n. This rules out all sparse graphs
(paths, cycles, trees, planar graphs, etc.), that is, graphs
which do not densify over time.

Theorem 3. Let G be a sparse graph, that is, |E| =
O(n). Then G does not sustain cooperation.

Proof. We will show that some Ω(n) vertices have bounded
degree, which along with Lemma 2, establishes the result.

We are given that for some fixed β, |E| ≤ βn. Since the
total degree is at most 2βn, there can be at most n/2 vertices
of degree greater than 4β, and hence at least n/2 vertices of
degree bounded by 4β, which is a constant.

4.4 Irregularity
The degree d(v) of a vertex v is the size of its neighbor-

hood N(v). The maximum degree ∆ and minimum degree δ
of a graph G are defined as the maximum and minimum re-
spectively, over the degrees of all vertices of G. For a graph
G to sustain cooperation, the ratio of the maximum degree
to the minimum degree should be at least b (∆/δ ≥ b). This
means that the graph should be irregular to some extent,
ruling out all near-regular graphs.

Theorem 4. Let G be a Near-Regular graph, that is, ∆/δ <
b. Then G does not sustain cooperation.

Proof. Let τ := ∆/δ < b. If δ = O(1), that is, a con-
stant, then ∆ is also a constant, implying that all nodes have
bounded degree. By Lemma 2, the graph does not sustain
cooperation.

Now consider δ = ω(1). We will show that with fixed
non-zero probability, there is a linear-sized set of defectors,
in which each defector has a fitness higher than that of any
other cooperator. No defector in this set is suppressed, and
the result follows.

The maximum degree of any vertex is ∆, and hence the
maximum fitness of any cooperator is ∆. This implies that if
a defector has more than ∆

b
cooperator neighbors, then it is

unsuppressed. We call such a node bad, and the other nodes
good. Let us now give an upper bound for the probability
of a node being good. This happens if the node is a coop-
erator (probability 1 − ε∗), or if the node has less than ∆

b
cooperator neighbors. Using the Chernoff bound, this latter

probability is not more than e−
λ2

3
µ =: β, where µ is the



expected number of cooperator neighbors of a vertex, which
is at least δ(1− ε∗), and λ = (1− τ

(1−ε∗)·b ) is the deviation

from the mean on the lower side (which is strictly positive,
as ε∗ can be set to a value less than 1− τ

b
). Using the Union

bound, the probability of a node being good is not more than
1− ε∗ + β, and hence the probability of a node being bad is
at least ε∗ − β =: γ, which is strictly positive (as δ = ω(1),
β is arbitrarily close to zero).

The expected number of bad nodes is at least γn. The
maximum number of bad nodes is ε∗n, and hence by the
Large Expectation Lemma (refer A.2), the size of this set is
linear with non-zero probability.

5. SUSTAINABILITY OF COOPERATION
ON SPECIFIC GRAPHS

5.1 Erdos-Renyi Random Graphs
We now analyze the G(n, p) model of Erdos-Renyi [7].

In this model, a graph on n nodes is taken, and the edge
between every pair of vertices is included in the graph inde-
pendently with probability p(n) = p. In such a graph, the
degree of each vertex is roughly close to the expected value
(np). Hence this graph behaves like a regular graph, and
one would expect that does not sustain cooperation. This
intuition is supported by the proofs for specific ranges of the

parameter p (p = O
(

1
n

)
and p = ω

(
log(n)
n

)
). We expect the

result to hold similarly for other values of p as well.

Theorem 5. Let G(n, p) be an Erdos-Renyi random graph,
where ∀e ∈ V × V, Pr[e ∈ E] = p, and p = O

(
1
n

)
or

p = ω
(
log(n)
n

)
. G(n, p) does not sustain cooperation.

Proof. When p = O
(

1
n

)
, with high probability the num-

ber of edges is linear in n. That is, |E| = O(n). Hence
G(n, p) does not densify, and by Theorem 3, does not sus-
tain cooperation.

When p = ω
(
log(n)
n

)
, we show that the graph is near-

regular, and hence by Theorem 4, does not sustain cooper-
ation. The expected degree of each vertex is µ := E[d(v)] =
(n − 1)p = ω(log(n)). By the Chernoff bound, the prob-
ability that the degree of a node is not within (1 ± λ)µ is

at most 2e−
λ2

3
µ, and the expected number of such nodes is

n · 2e−
λ2

3
µ, which goes to 0. Hence all nodes have degrees

within (1 ± λ) of the expected value. Setting λ such that
1+λ
1−λ < b makes the graph near-regular, and we have the
result.

5.2 Bipartite Random Graphs
These graphs are bipartite graphs, that is, graphs in which

the vertex set can be partitioned into two sets L and R,
such that there are no edges within each partition. Also the
size of the partition L is given by a function f(n), which
asymptotically grows faster than log(n), but slower than n.
Every edge between one vertex in L and one in R is included
in the graph independently with probability p(n) (which is

at least 4log(n)
f(n)

).

We thus have a family of random graphs parametrized by
the values of f(n) and p(n). We observe that the expected
degrees of vertices in partition L is linear in n, whereas
in partition R is sub-linear in n, because of which, coop-
erators in L can suppress defectors in R, and intuitively

these graphs should sustain cooperation. This family of
graphs is useful in that allows us to construct networks
which sustain cooperation having any given edge density
which is super-linear in n ∗ log(n) and sub-linear in n2,
that is |E| = ω(n ∗ log(n)), o(n2). This is done by setting

f(n) = |E|
n

, and p(n) appropriately.

Theorem 6. Let G be a bipartite graph with V = L
⊎
R

(L and R are the two partitions of the vertices), |L| =
f(n) = ω(log(n)), o(n), and ∀e ∈ L×R,Pr[e ∈ E] = p(n) =

p, where p(n) ≥ 4log(n)
f(n)

. G sustains cooperation.

Proof. We will show that all defectors in R are sup-
pressed. Hence the number of unsuppressed defectors is only
that in L, which is at most f(n) = o(n), and the theorem is
proved.

Let 0 < ε < 1 and let ε∗ take any value ≤ ε; define
ε′ := 1 − ε∗. The number of cooperators in partition L has
an expected value of ε′f(n), and by the Chernoff bound, is
at least 1

2
ε′f(n) with high probability. Call this set VC .

There are a total of ε′n cooperators in the graph, and
hence at least ε′n − f(n) cooperators in R. Since f(n) =
o(n), this number is at least 1

2
ε′n. Since a cooperator in

VC is adjacent to each cooperator in R independently with
probability p, the expected fitness of a cooperator in VC is
at least 1

2
ε′np. By the Chernoff bound, the probability that

the fitness is less than half of this expected value is not more

than e−
1
24
ε′np. The expected number of such vertices is not

more than 1
2
ε′n ∗ e−

1
24
ε′np = 1

2
ε′elog(n)− 1

24
ε′np, which goes

to 0, as p ≥ 48log(n)
n

. Hence the fitness of each cooperator

in VC is at least 1
4
ε′np, with high probability.

Using a similar analysis, we can say that the fitness of each
defector d ∈ R is at most 3

2
bε′pf(n), with high probability.

From the above two arguments, we can say that any de-
fector in R who is adjacent to any one cooperator in VC is
suppressed.

The probability that a defector in R is not connected to

any cooperator in VC is at most (1 − p)
1
2
ε′f(n), which is at

most e−
1
2
ε′f(n)p. The expected number of such defectors is

at most n∗e−
1
2
ε′f(n)p, which goes to 0 since p ≥ 4log(n)

f(n)
.

5.3 Hierarchical Graph
This graph is built by starting with a complete binary

tree, and connecting each node to all of its ancestors (and
descendants). The set of nodes of a given degree correspond
to a level in the hierarchy. Nodes which are higher up in
the hierarchy are high degree nodes, and those lower in the
hierarchy are of low degree. Hence intuitively cooperators
in higher levels can suppress defectors in lower levels, and
cooperation can be sustained.

Theorem 7. Let G be a complete binary tree where each
node is connected to all its descendants. Formally, let Σ∗

be the set of all strings over alphabet Σ = {0, 1}. For each
such s ∈ Σ∗, let |s| denote the length of s, and let prefix be a
relation on Σ∗, such that prefix (u, v) is true, when the string
u is a prefix of the string v. Take V = {s ∈ Σ∗ : |s| ≤ log(n+
1) − 1}, and E = {(u, v) : prefix (u, v) or prefix (v, u)}. G
sustains cooperation.

Proof. Let us call the length of the string that represents
a vertex v, as the level of v; and say that the level of vertex
v is above, or higher than that of vertex u, if |v| < |u| (and



also that the level of vertex |u| is below or lower than that
of |v|). Let 0 < ε < 1/2 and let ε∗ take any value ≤ ε, and
define ε′ := 1− ε∗.

First we will show that every vertex at level h1 + 1, where
h1 = 1

3
log(n), has an ancestor who is a cooperator (and

hence every vertex below level h1 (that is, |v| > h1) has an
ancestor of level higher than h1 +1 (that is, |v| ≤ h1), who is
a cooperator). Every vertex at level h1 +1 has h1 ancestors,
and the probability that all of them are defectors is roughly
(ε∗)h1 . Hence the expected number of such vertices is 2h1+1 ·
(ε∗)h1 , which goes to 0 as ε∗ ≤ ε < 1/2.

Now, we will show that each vertex of level h1 (and hence

each vertex of level higher than h1 + 1), has at least 1
4
ε′n2/3

cooperator neighbors. For each vertex at level h1, the ex-
pected number of cooperator neighbors is at least 1

2
ε′n2/3,

and by the Chernoff bound, the probability that this num-
ber is less than half the expected value is not more than

e−
1
12
ε′n2/3

. The expected number of such vertices is not

more than n2/3 ∗ e−
1
12
ε′n2/3

, which goes to zero.
It is clear that each defector of level lower than h2 =

2
3
log(n) has fitness fd at most b · |N(d)| ≤ b · (n1/3 + log(n)).

By the above two arguments, each such defector has an an-
cestor of level higher than h1 + 1 who is a cooperator, who
has fitness fc at least 1

4
ε′n2/3. Clearly fc > fd. Hence each

such defector is suppressed. The number of unsuppressed
defectors is at most that in levels above h2 + 1, which is
O(n2/3) = o(n).

5.4 Scale-Free Graphs
In order to study the sustainability of cooperator on scale-

free networks, we consider the random scale-free graph de-
scribed in [5]. In this model, the vertices are labeled from
1 through n, and the edge between two vertices is included
in the graph with some probability, which is defined as a
function of the vertex labels. In our model, Pr[(i, j) ∈ E] =

(ij)−
1
2

+κ, where 0 < κ < 1
2
. The expected degree of node

i is given by E[d(i)] = 2
1+2κ

n( 1
2

+κ)i(−
1
2

+κ). Observe that
the lesser the label i of a node, the higher will be its degree.
Cooperator nodes with lower labels can suppress defector
nodes with higher labels, thereby sustaining cooperation.

Theorem 8. Let graph G have vertex set |V | = {vi : 1 ≤
i ≤ n}, and ∀i, j ∈ V, Pr[(i, j) ∈ E] = (ij)−

1
2

+κ, where
0 < κ < 1

2
. G sustains cooperation.

Proof. Let 0 < ε < 1 and let ε∗ take any value ≤ ε;
define ε′ := 1− ε∗. Consider α, β, such that 0 < α < β < 1.
Let V1 = vi : 1 < i < nα; V2 = vi : nα < i < nβ ; and
V3 = vi : nβ < i < n. By the Chernoff bound, with high
probability there are at least 1

2
ε′nα cooperators in V1. Call

this set VC .
There are at most nα cooperators in V1, and hence at

least n
2

cooperators in V2

⊎
V3. Call this set V ′C . The ex-

pected fitness of any cooperator in VC – call it fc – is at least∑
j∈V ′

C

ε′(nαj)−
1
2

+κ, which is at least ε′nα(− 1
2

+κ)
n∑

j=n/2

(j)−
1
2

+κ

= ε′nα(− 1
2

+κ)(S(n) − S(n/2)), where S(n) = 2
1+2κ

n
1
2

+κ.

Simplifying, we get fc ≥ 2γnα(− 1
2

+κ)+ 1
2

+κ, where γ is a
constant. By the Chernoff bound, we can show that with
high probability all cooperators in VC have fitness higher

than γnα(− 1
2

+κ)+ 1
2

+κ.

Similarly, it can be shown that with high probability each

defector in V3 has fitness at most γ′nβ(− 1
2

+κ)+ 1
2

+κ. By the
above two arguments, with high probability any defector in
V3 who is adjacent to any cooperator in VC is suppressed (as
α < β).

The probability that a defector in V3 is not connected

to any cooperator in VC is at most

(1−ε′)nα∏
nα

(1− (nj)−
1
2

+κ),

which is at most γe−n
2κ

, where γ is some constant. The

expected number of such defectors is at most n·γe−n
2κ

which
goes to zero. Hence with high probability all defectors in V3

are suppressed, and the number of unsuppressed defectors
is at most the size of |V1

⊎
V2|, which is o(n).

6. CONCLUSIONS AND FUTURE WORK
We have studied the Evolutionary Prisoner’s Dilemma on

graphs as a model of cooperation. In particular, we iden-
tify the role played by the network topology in sustaining
cooperation in a multiagent society. We have shown ana-
lytically that for a network to sustain cooperation, it must
exhibit properties such as small average diameter, densifi-
cation, and irregularity. Real-world networks exhibit these
properties, and hence could be suitable for sustaining co-
operation. Also, we have shown that a family of Scale-Free
graphs, a Hierarchy, as well as a family of Bipartite Random
graphs sustain cooperation, whereas Erdos-Renyi random
graphs do not.

Further exploration along these lines can be carried out
to determine which graphs sustain cooperation and which
do not, building towards a complete characterization. In
our interaction model, we have considered one particular
imitation rule (a mutant copies the incumbent strategy if
it has an incumbent neighbor with higher fitness) and one
particular fitness function (sum of the payoffs received in
games played with all neighbors) in the context of the PD
game. A similar analysis can be carried out in the context
of other strategy update rules and fitness functions, as well
as other models of cooperation, such as the Hawk-Dove and
Stag-Hunt games.

In general, we feel the kind of analytical treatment carried
out in this work yields interesting insights into the factors
influencing the sustenance of cooperation, complements the
simulation work in the literature, and warrants further stud-
ies along similar lines.
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APPENDIX
A. COMMONLY USED FORMULAE

A.1 Chernoff Bound
Let (X1, X2, ..., Xn) be a set of independent random vari-

ables, each of which takes value 0 (with probability 1 − pi)

and value 1 (with probability pi). Also, let X =

n∑
i=1

Xi,

with µ = E[X] =

n∑
i=1

pi, and 0 ≤ λ ≤ 1. Then,

Pr[X ≥ (1 + λ)µ] ≤ e−
λ2

3
µ,

Pr[X ≤ (1− λ)µ] ≤ e−
λ2

3
µ

.

A.2 Large Expectation Lemma
Theorem 9. Let X(n) be a non-negative discrete (inte-

ger) random variable with density function p(x) and maxi-
mum value M(n), with E[X(n)] ≥ αM(n), where 0 ≤ α ≤ 1.
Let f(n) = o(M(n)). Then Pr[X ≥ f(n)] ≥ α/2.

Proof.

E[X(n)] =

M(n)∑
x=0

xp(x) =

f(n)−1∑
x=0

xp(x) +

M(n)∑
x=f(n)

xp(x)

M(n)∑
x=f(n)

M(n)p(x) ≥
M(n)∑
x=f(n)

xp(x)

⇒ Pr[X ≥ f(n)] =

M(n)∑
x=f(n)

p(x) ≥ 1

M(n)

M(n)∑
x=f(n)

xp(x)

≥ 1

M(n)

E[X(n)]−
f(n)−1∑
x=0

xp(x)



≥ 1

M(n)

E[X(n)]−
f(n)∑
x=0

f(n)p(x)



≥ E[X(n)]

M(n)
− f(n)

M(n)

f(n)∑
x=0

p(x)

≥ α− f(n)

M(n)

For large enough n,
f(n)

M(n)
≤ α

2

⇒ Pr[X ≥ f(n)] ≥ α

2


