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ABSTRACT
Coalition logic is currently one of the most popular logics
for multi-agent systems. While logics combining coalitional
and epistemic operators have received considerable atten-
tion, completeness results for epistemic extensions of coali-
tion logic have so far been missing. In this paper we provide
several such results and proofs. We prove completeness for
epistemic coalition logic with common knowledge, with dis-
tributed knowledge, and with both common and distributed
knowledge, respectively. Furthermore, we completely char-
acterise the complexity of the satisfiability problem for each
of the three logics.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems; I.2.4 [Knowledge representation formalisms
and methods]

General Terms
Theory

Keywords
Epistemic logic, coalition logic, completeness, computational
complexity

1. INTRODUCTION
Logics of coalitional ability such as Coalition Logic (CL)

[17], Alternating-time Temporal Logic (AT L) [1], and STiT
logics [2], are arguably one of the most popular types of log-
ics in multi-agent systems research in recent years. Many
different variants of these logics have been proposed and
studied. Most of the obtained meta-logical results have
been about computational complexity and expressive power.
Completeness results have been harder to obtain, with
Goranko’s and van Drimmelen’s completeness proof forAT L
[8], Pauly’s completeness proof for CL [17] and Broersen and
colleagues’ completeness proofs for different variants of STiT
logic [4, 3, 12] being notable exceptions.

The main construction in coalitional ability logics is of the
form [G]φ, where G is a set of agents and φ a formula, intu-
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itively meaning that G is effective for φ, or that G can make
φ come true no matter what the other agents do. One of the
most studied extensions of basic coalitional ability logics is
adding knowledge operators of the type found in epistemic
logic [5, 16]: both individual knowledge operators Ki where
i is an agent, and different types of group knowledge opera-
tors EG, CG and DG where G is a group of agents, standing
for everybody-knows, common knowledge and distributed
knowledge, respectively. Combining coalitional ability oper-
ators and epistemic operators in general and group knowl-
edge operators in particular lets us express many potentially
interesting properties of multi-agent systems, such as [19]:

• Kiφ→ [{i}]Kjφ: i can communicate her knowledge of
φ to j

• CGφ→ [G]ψ: common knowledge inG of φ is sufficient
for G to ensure that ψ

• [G]ψ → DGφ: distributed knowledge in G of φ is nec-
essary for G to ensure that ψ

• DGφ→ [G]EGφ: G can cooperate to make distributed
knowledge explicit

In this paper we study axiomatisation and complexity
of variants of epistemic coalition logic (ECL), extensions of
coalition logic with individual knowledge and different com-
binations of common knowledge and distributed knowledge.
Coalition logic, the next-time fragment of AT L, is one of the
most studied coalitional ability logics, and this paper settles
a key problem: completeness of its standard epistemic ex-
tensions with group knowledge. We furthermore completely
characterise the computational complexity of the satisfiabil-
ity problem for these extensions.

The combinations of coalitional ability operators and epis-
temic operators in the logics we study in this paper are in-
dependent ; the original semantics of the operators is not
changed. It is well known [14, 13] that there are several
interesting variants of “ability” under imperfect knowledge;
e.g., being able to achieve something without knowing it, vs.
knowing that one is able to achieve something but not neces-
sarily knowing how, vs. knowing how one can achieve some-
thing. While the two former examples can be expressed with
combinations of operators with standard semantics ([{i}]φ∧
¬Ki[{i}]φ and Ki[{i}]φ respectively, in the case of a single
agent), in order to be able to express the latter (knowledge
of ability “de re”), operators with alternative semantics are
needed [14, 18, 11, 13]. We do not consider such operators
in the current paper. Even though ECL with standard se-
mantics cannot express knowledge of ability “de re”, it can



express many other interesting properties (including the ex-
amples above as well as the other “variants” of ability under
imperfect knowledge).

While epistemic coalitional ability logics have been stud-
ied to a great extent, we are not aware of any published
completeness results for such logics with all epistemic op-
erators. [19] gives some axioms of AT EL, AT L extended
with epistemic operators, but does not attempt to prove
completeness1. Broersen and colleagues [3, 12] prove com-
pleteness of variants of STiT logic that include individual
knowledge operators, but not group knowledge operators,
and [12] concludes that adding group operators is an impor-
tant challenge.

The rest of the paper is organised as follows. In the next
section we first give a brief review of coalition logic, and
how it is extended with epistemic operators. We then, in
each of the three following sections, consider basic epistemic
coalition logic with individual knowledge operators extended
with common knowledge, with distributed knowledge, and
with both common and distributed knowledge, respectively.
For each of these cases we show a completeness result. The
reason that we consider each of these three systems sepa-
rately, rather than only the most expressive logic with both
common and distributed knowledge, is first, that we want
to carefully chart the results for different combinations of
operators (a common practice, also in epistemic logic), and,
second, that separate proofs for the common and distributed
knowledge cases are useful for further extensions for logics
with only these epistemic operators. In Section 6 we con-
sider the computational complexity of the three systems. We
conclude in Section 7.

2. BACKGROUND
We will define several extensions of propositional logic,

and the usual derived connectives, such as φ→ ψ for ¬φ∨ψ,
will be used. We will also define a number of axiomatic
systems S, and by `S φ we mean that the formula φ is
derivable in system S.

2.1 Coalition Logic
We give a brief overview of Coalition Logic (CL) [17]. As-

sume a set Θ of atomic propositions, and a finite set N of
agents. A coalition is a set G ⊆ N of agents. We sometimes
abuse notation and write a singleton coalition {i} as i.

The language of CL is defined by the following grammar:

φ ::= p | ¬φ | φ ∧ φ | [G]φ

where p ∈ Θ and G ⊆ N .
A coalition model is a tuple

M = 〈S,E, V 〉

where

• S is a non-empty set of states;

• V is a valuation function, assigning a set V (s) ⊆ Θ to
each state s ∈ S;

1In an unpublished abstract of a talk given at the LOFT
workshop in 2004 [7], the authors propose an axiomatisation
of AT EL with individual knowledge and common knowl-
edge operators. However, a completeness result or proof
has not been published (personal communication, Valentin
Goranko).

• E assigns a truly playable effectivity function (see be-
low) E(s) over N and S to each state s ∈ S.

An effectivity function [17] over N and a set of states S is a
function E that maps any coalition G ⊆ N to a set of sets of
states E(G) ⊆ 2S . An effectivity function is truly playable
[17, 6] iff it satisfies the following conditions (when X ⊆ S,
X denotes the complement S \X):

E1 ∀s ∈ S∀G ⊆ N : ∅ 6∈ E(G) (Liveness)

E2 ∀s ∈ S∀G ⊆ N : S ∈ E(G) (Safety)

E3 ∀s ∈ S∀X ⊆ S : X 6∈ E(∅)⇒ X ∈ E(N) (N -maximality)

E4 ∀s ∈ S∀G ⊆ N∀X ⊆ Y ⊆ S : X ∈ E(G) ⇒ Y ∈ E(G)
(outcome monotonicity)

E5 ∀s ∈ S∀G1, G2 ⊆ N∀X,Y ⊆ S : X ∈ E(G1) and Y ∈
E(G2) ⇒ X ∩ Y ∈ E(G1 ∪ G2), where G1 ∩ G2 = ∅
(superadditivity)

E6 Enc(∅) 6= ∅, where Enc(∅) is the non-monotonic core of
the empty coalition, namely

Enc(∅) = {X ∈ E(∅) : ¬∃Y (Y ∈ E(∅)and Y ⊂ X)}

An effectivity function that only satisfies E1-E5 is called
playable. On finite domains an effectivity function is playable
iff it is truly playable [6], because on finite domains E6 fol-
lows from E1-E5.

A CL formula is interpreted in a state s in a coalition
model M as follows:

M, s |= p iff p ∈ V (s)

M, s |= ¬φ iff M, s 6|= φ

M, s |= (φ1 ∧ φ2) iff (M, s |= φ1 and M, s |= φ2)

M, s |= [G]φ iff φM ∈ E(s)(G)

where φM = {t ∈ S : M, t |= φ}.
The axiomatisation CL of coalition logic consist of the

following axioms and rules:

Prop Substitution instances of propositional tautologies

G1 ¬[G]⊥

G2 [G]>

G3 ¬[∅]¬φ→ [N ]φ

G4 [G](φ ∧ ψ)→ [G]ψ

G5 [G1]φ ∧ [G2]ψ → [G1 ∪G2](φ ∧ ψ), if G1 ∩G2 = ∅

MP `CL φ, φ→ ψ ⇒`CL ψ

RG `CL φ↔ ψ ⇒`CL [G]φ↔ [G]ψ

CL is sound and complete wrt. all coalition models [17].
The following monotonicity rule is derivable [17], and will

be useful later:

Mon `CL φ→ ψ ⇒`CL [G]φ→ [G]ψ



2.2 Adding Knowledge Operators
Epistemic extensions of coalition logic were first proposed

in [19]2. They are obtained by extending the language with
epistemic operators, and the models with epistemic accessi-
bility relations.

An epistemic accessibility relation for agent i over a set
of states S is a binary equivalence relation ∼i⊆ S × S. An
epistemic coalition model, henceforth often simply called a
model, is a tuple

M = 〈S,E,∼1, . . . ,∼n, V 〉

where 〈S,E, V 〉 is a coalition model and ∼i is an epistemic
accessibility relation over S for each agent i.

Epistemic operators come in two types: individual knowl-
edge operators Ki, where i is an agent, and group knowledge
operators CG and DG where G is a coalition for express-
ing common knowledge and distributed knowledge, respec-
tively. Formally, the language of CLCD (coalition logic with
common and distributed knowledge), is defined by extending
coalition logic with all of these operators:

φ ::= p | ¬φ | φ ∧ φ | [H]φ | Kiφ | CGφ | DGφ

where p ∈ Θ, i ∈ N , H ⊆ N and ∅ 6= G ⊆ N . When G
is a coalition, we write EGφ as a shorthand for

∧
i∈GKiφ

(everyone in G knows φ).
The languages of the logics CLK, CLC and CLD are the re-

strictions of this language with no CG and no DG operators,
no DG operators, and no CG operators, respectively.

The interpretation of these languages in an (epistemic
coalition) modelM is defined by adding the following clauses
to the definition for CL:

M, s |= Kiφ iff ∀t ∈ S, (s, t) ∈∼i⇒M, t |= φ

M, s |= CGφ iff ∀t ∈ S, (s, t) ∈ (
⋃
i∈G ∼i)

∗ ⇒M, t |= φ

M, s |= DGφ iff ∀t ∈ S, (s, t) ∈ (
⋂
i∈G ∼i)⇒M, t |= φ

where R∗ denotes the transitive closure of the relation R.
We use |= φ to denote the fact that φ is valid, i.e., that
M, s |= φ for all M and states s in M .

2.2.1 Some Auxiliary Definitions
The following are some auxiliary concepts that will be

useful in the following.
Intuitively, a pseudomodel is like a model except that

distributed knowledge is “not quite” the intersection of in-
dividual knowledge. Formally, a pseudomodel is a tuple
M = (S, {∼i: i ∈ N}, {RG : ∅ 6= G ⊆ N}, E, V ) where
(S, {∼i: i ∈ N}, E, V ) is a model and:

• RG ⊆ S×S is an equivalence relation for each G ⊆ N ,
G 6= ∅

• For any i ∈ N , Ri =∼i

• For any G, H, G ⊆ H implies that RH ⊆ RG

The interpretation of a CLCD formula in a state of a pseu-
domodel is defined as for a model, except for the case for
DG which is interpreted by the RG relation:

M, s |= DGφ iff ∀t ∈ S, (s, t) ∈ RG ⇒M, t |= φ

2In that paper for AT L; CL is a fragment of AT L.

An epistemic model is a model without the E function,
i.e., a tuple 〈S,∼1, . . . ,∼n, V 〉. An epistemic pseudomodel is
a pseudomodel without the E function, i.e., a tuple 〈S, {∼i:
i ∈ N}, {RG : ∅ 6= G ⊆ N}, V 〉 (where RG has the properties
above). When M = 〈S,E,∼1, . . . ,∼n, V 〉 is a model or M =
〈S, {∼i: i ∈ N}, {RG : ∅ 6= G ⊆ N}, E, V 〉 is a pseudomodel,
we refer to 〈S,∼1, . . . ,∼n, V 〉 as M ’s underlying epistemic
model.

Finally, a playable (pseudo)model is like a (pseudo)model,
except that E is not requried to satisfy the E6 property.

We say that a formula φ is satisfied in a (playable)
(pseudo)model M , if M, s |= φ for some state s in M .

3. COALITION LOGIC WITH COMMON
KNOWLEDGE

In this section we consider the logic CLC, extending coali-
tion logic with individual knowledge operators and common
knowledge. The axiomatisation CLC is the result of ex-
tending CL with the following standard axioms and rules
for individual and common knowledge (see, e.g., [5]):

K Ki(φ→ ψ)→ (Kiφ→ Kiψ)

T Kiφ→ φ

4 Kiφ→ KiKiφ

5 ¬Kiφ→ Ki¬Kiφ

C CGφ→ EG(φ ∧ CGφ)

RN `CLC φ⇒`CLC Kiφ

RC `CLC φ→ EG(φ ∧ ψ)⇒`CLC φ→ CGψ

It is easy to show that CLC is sound wrt. all models.

Lemma 1 (Soundness). For any CLC-formula φ, `CLC
φ⇒|= φ.

Outline of completeness proof.
In the remainder of this section we show that CLC also

is complete. Before giving all the details, we describe the
outline of the proof. We first construct a canonical playable
model Mc, using standard definitions of the canonical epis-
temic accessibility relations [9] and Pauly’s definition of the
canonical effectivity functions [17]. There are two potential
problems with Mc: first, it is not necessarily truly playable
(i.e., it is not necessarily a model), and, second, the truth
lemma does not necessarily work for the case CGφ. To take
care of these problems we filtrate Mc through an appropri-
ately defined closure of a given consistent formula, to obtain
a finite model Mf . This is a standard technique for deal-
ing with transitive closure operators such as the Kleene star
in PDL [10] and indeed common knowledge. In our case
the standard technique must be extended to deal with the
effectivity functions. For us the technique has the conve-
nient side effect that playability and true playability coin-
cides (E1-E5 implies E6) on the resulting model, since it
is finite. However, it remains to be shown that filtration
does not break the playability properties E1-E5, and that
Mf satisfies the truth lemma for the combined (epistemic-
coalitonal) language.



Completeness proof.

Theorem 1. Any CLC-consistent formula is satisfied in
some playable model.

Proof. We define a canonical playable modelMc = (Sc, {∼ci :
i ∈ N}, Ec, V c) as follows:

Sc is the set of all maximally CLC consistent sets of for-
mulas

s ∼ci t iff {ψ : Kiψ ∈ s} = {ψ : Kiψ ∈ t}

X ∈ Ec(s)(G) (for G 6= N) iff there exists ψ such that
{t ∈ Sc : ψ ∈ t} ⊆ X and [G]ψ ∈ s.

X ∈ Ec(s)(N) iff Sc \X 6∈ Ec(s)(∅).

V c: p ∈ V c(s) iff p ∈ s

That ∼ci is an equivalence relation is immediate. That Ec(s)
is playable (satisfies E1-E5) can be shown in exactly the
same way as in the completeness proof for CL [17]. The
idea behind the model construction of course is that a for-
mula belongs to a state s in a model iff it is true there (the
truth lemma). However, the canonical model is in general
not guaranteed to satisfy every consistent formula in the
CLC language; the case of CG in the truth lemma does not
necessarily hold. Therefore we are going to transform Mc

by filtration into a finite model for a given CLC consistent
formula φ. Note that since φ is consistent, it will belong to
at least one s in Mc.

Let cl(φ) be the set of subformulas of φ closed under single
negations and the condition that CGψ ∈ cl(φ)⇒ KiCGψ ∈
cl(φ) for all i ∈ G. We are going to filtrate Mc through

cl(φ). The resulting model Mf = (Sf , {∼fi : i ∈ N}, Ef , V f )
is constructed as follows:

Sf is {[s]cl(φ) : s ∈ Sc} where [s]cl(φ) = s ∩ cl(φ). We will
omit the subscript cl(φ) in what follows for readability.

[s] ∼fi [t] iff {ψ : Kiψ ∈ [s]} = {ψ : Kiψ ∈ [t]}

V f (s) = {p : p ∈ [s]}. Again we will omit the subscript for
readability.

X ∈ Ef ([s])(G) iff {s′ : φX ∈ s′} ∈ Ec(s)(G) where φX =
∨[t]∈Xφ[t] and φ[t] is a conjunction of all formulas in
[t].

We now prove by induction on the size of θ that for every
θ ∈ cl(φ), Mf , [s] |= θ iff θ ∈ [s].

case θ = p trivial

case booleans trivial

case θ = Kiψ assume Mf , [s] 6|= Kiψ. The latter means

there is a [s′] such that [s] ∼fi [s′] and Mf , [s′] 6|=
ψ. By the inductive hypothesis ψ 6∈ [s′]. Since [s′]
is deductively closed wrt cl(φ) and Kiψ ∈ cl(φ), also

Kiψ 6∈ [s′]. [s] ∼fi [s′] means that [s] and [s′] contain
the same Ki formulas from cl(φ), hence Kiψ 6∈ [s].

Assume Mf , [s] |= Kiψ. Then for all [s′] such that

[s] ∼fi [s′], Mf , [s′] |= ψ. This means by the IH that

ψ ∈ [s′] for all [s′] ∼fi [s]. Assume by contradiction
that Kiψ 6∈ [s]. Then φ[s], where φ[s] is the conjunc-
tion of all formulas in [s], is consistent with ¬Kiψ. If

we write 〈Ki〉 for the dual of the Ki modality, this is
equivalent to: φ[s] ∧ 〈Ki〉¬ψ is consistent. By forcing
choices,

φ[s] ∧ 〈Ki〉
∨
¬ψ∈[t]

φ[t]

is consistent. By the distributivity of 〈Ki〉 over ∨,∨
¬ψ∈[t]

(φ[s] ∧ 〈Ki〉φ[t])

is consistent. So for some [t] with ¬ψ ∈ [t], φ[s] ∧
〈Ki〉φ[t] is consistent. We claim that [s] ∼fi [t]. If this
is the case, we have a contradiction, since we assumed
that ψ ∈ [s′] for all [s′] ∼fi [s].

Proof of the claim: if φ[s] ∧ 〈Ki〉φ[t] is consistent, then

[s] ∼fi [t]. Suppose not [s] ∼fi [t], that is there is a
formula χ such that Kiχ ∈ [s] and ¬Kiχ ∈ [t] or vice
versa. Then we have Kiχ ∧ φ[s] ∧ 〈Ki〉(¬Kiχ ∧ φ[t])
is consistent, but since Ki is an S5 modality, this is
impossible. Same for the case when ¬Kiχ ∈ [s] and
Kiχ ∈ [t].

case θ = [G]ψ

Mf , [s] |= [G]ψ iff ψM
f

∈ Ef ([s])(G) iff {s′ : (∨
[t]∈ψMf φ[t]) ∈

s′} ∈ Ec(s)(G) iff (by the IH) {s′ : (∨ψ∈[t]φ[t]) ∈
s′} ∈ Ec(s)(G) iff(*) {s′ : ψ ∈ s′} ∈ Ec(s)(G) iff(**)
[G]ψ ∈ s iff (since [G]ψ ∈ cl(φ)) [G]ψ ∈ [s].

Proof of (*): assume Sf contains n+k states, [t1], . . . , [tn]
contain ψ and [s1], . . . , [sk] contain ¬ψ. Clearly, φ[t1]∨
. . . ∨ φ[tn] ∨ φ[s1] . . . ∨ φ[sk] is provably equivalent to
>. Consider ∨ψ∈[t]φ[t]. It is provably equivalent to
(ψ ∧ φ[t1]) ∨ . . . ∨ (ψ ∧ φ[tn]). Since for every [si] such
that ¬ψ ∈ [si], (ψ ∧ φ[si]) is provably equivalent to ⊥,

(ψ ∧ φ[t1]) ∨ . . . ∨ (ψ ∧ φ[tn])

is provably equivalent to

(ψ∧φ[t1])∨ . . .∨(ψ∧φ[tn])∨(ψ∧φ[s1])∨ . . .∨(ψ∧φ[sk])

which in turn is provably equivalent to

ψ ∧ (φ[t1] ∨ . . . ∨ φ[sk])

which in turn is equivalent to ψ ∧> hence to ψ. So in
Mc, {s′ : (∨ψ∈[t]φ[t]) ∈ s′} = {s′ : ψ ∈ s′}.
Proof of (**): since we defined X ∈ Ec(s)(N) to hold
iff Sc \X 6∈ Ec(s)(∅), it suffices to show the case that
G 6= N . The direction to the left is immediate: if
[G]ψ ∈ s then {s′ ∈ Sc : ψ ∈ s′} ∈ Ec(s)(G) by
definition. For the other direction assume that {s′ ∈
Sc : ψ ∈ s′} ∈ Ec(s)(G), i.e., there is some γ such that
{s′ ∈ Sc : γ ∈ s′} ⊆ {s′ ∈ Sc : ψ ∈ s′} and [G]γ ∈ s. It
is easy to see that {s′ ∈ Sc : γ ∈ s′} ⊆ {s′ ∈ Sc : ψ ∈
s′} implies that ` γ → ψ, and by the monotonicity
rule it follows that [G]ψ ∈ s.

case θ = CGψ The proof is similar to in [20]. First we show
that in Mf , if CGψ ∈ cl(φ), then CGψ ∈ [s] iff every

state on every supi∈G ∼
f
i path from [s] contains ψ.

Suppose CGψ ∈ [s]. The proof is by induction on
the length of the path. If the path is of 0 length,
then clearly by deductive closure and by ψ ∈ cl(φ)
we have ψ ∈ [s]. We also have CGψ ∈ [s] by the



assumption. IH: if CGψ ∈ [s], then every state on every

∪i∈G ∼fi path of length n from [s] contains ψ and CGψ.
Inductive step: let us prove this for paths of length
n + 1. Suppose we have a path [s] ∼fi1 [s1] . . . ∼fin
[sn] ∼fin+1

[sn+1]. By the IH, ψ,CGψ ∈ [sn]. Since

sn is deductively closed and Kin+1CGψ ∈ cl(φ), we

have Kin+1CGψ ∈ [sn]. Since [sn] ∼fin+1
[sn+1] and

the definition of ∼fin+1
, CGψ ∈ [sn+1] and hence by

reflexivity ψ ∈ [sn+1].

For the other direction, suppose that every state on
every ∪i∈G ∼f path from [s] contains ψ. Prove that
CGψ ∈ [s]. Let SG,ψ be the set of all [t] such that
every state on every ∪i∈G ∼f path from [t] contains
ψ. Note that each [t] is/corresponds to a finite set of
formulas so we can write its conjunction φ[t]. Consider
a formula

χ =
∨

[t]∈SG,ψ

φ[t]

Similarly to [20] it can be proved that `CLC φ[s] → χ,
`CLC χ → ψ and `CLC χ → EGχ. And from that
follows that `CLC φ[s] → CGψ hence CGψ ∈ [s].

Now we prove that Mf , [s] |= CGψ iff CGψ ∈ [s].

CGψ ∈ [s] iff every state on every ∪i∈G ∼fi path from
[s] contains ψ iff for every [t] reachable from [s] by a

∪i∈G ∼fi path, Mf , [t] |= ψ iff Mf , [s] |= CGψ.

It is obvious that in Mf , ∼i are equivalence relations. So
what remains to be proved is that Ef satisfies E1-E6. Since
Sf is finite, it suffices to show E1-E5, which for finite sets
of states entail E6.

Proposition 1. Mf satisfies E1-E5.

Proof.

E1 Note that φ∅ is the empty disjunction, ⊥.

∅ ∈ Ef ([s])(G) iff (by definition of Ef ) {s′ : ⊥ ∈ s′} ∈
Ec(s)(G) iff ∅ ∈ Ec(s)(G). Since Ec satisfies E1, ∅ 6∈
Ef ([s])(G).

E2 Sf ∈ Ef ([s])(G) iff {s′ :
∨

[t]∈Sf ∈ s′} ∈ Ec(s)(G) iff

Sc ∈ Ec(s)(G). Since Ec satisfies E2, Sf ∈ Ef ([s])(G).

E3 Let X 6∈ Ef ([s])(∅). Then {s′ : φX ∈ s′} 6∈ Ec(s)(∅).
Note that {s′ : φX ∈ s′} is the complement of {s′ :
φX ∈ s′}, since φX = ¬φX . Since Ec satisfies E3,
this means that {s′ : φX ∈ s′} ∈ Ec(s)(N). Hence
X ∈ Ef ([s])(N).

E4 Let X ⊆ Y ⊆ Sf and X ∈ Ef ([s])(G). Clearly `CLC
φX → φY . Hence {s′ : φX ∈ s′} ⊆ {s′ : φY ∈ s′}.
Since X ∈ Ef ([s])(G), we have {s′ : φX ∈ s′} ∈
Ec(s)(G). Since Ec satisfies E4, {s′ : φY ∈ s′} ∈
Ec(s)(G) so Y ∈ Ef ([s])(G).

E5 Let X ∈ Ef ([s])(G1) and Y ∈ Ef ([s])(G2) and G1 ∩
G2 = ∅. So {s′ : φX ∈ s′} ∈ Ec(s)(G1) and {s′ :
φY ∈ s′} ∈ Ec(s)(G2) and since Ec satisfies E5, {s′ :
φX ∈ s′} ∩ {s′ : φY ∈ s′} ∈ Ec(s)(G2). Note that
{s′ : φX ∈ s′} ∩ {s′ : φY ∈ s′} = {s′ : (∨[t]∈Xφ[t]) ∈ s′
and (∨[t]∈Y φ[t]) ∈ s′} which is in turn the same as

{s′ : (∨[t]∈X∩Y φ[t]) ∈ s′}

since {s′ : (∨[t]∈X∩Y φ[t]) ∈ s′} ∈ Ec(s)(G2), X ∩ Y ∈
Ef ([s])(G1).

Corollary 1. For any CLC-formula φ, `CLC φ iff |= φ.

4. EPISTEMIC COALITION LOGIC WITH
DISTRIBUTED KNOWLEDGE

In this section we consider the logic CLD, extending coali-
tion logic with individual knowledge operators and distributed
knowledge.

The axiomatisation CLD is obtained by extending CL
with the following standard axioms and rules for individual
and distributed knowledge (see, e.g., [5]):

K Ki(φ→ ψ)→ (Kiφ→ Kiψ)

T Kiφ→ φ

4 Kiφ→ KiKiφ

5 ¬Kiφ→ Ki¬Kiφ

RN `CLD φ⇒`CLD Kiφ

DK DG(φ→ ψ)→ (DGφ→ DGψ)

DT DGφ→ φ

D4 DGφ→ DGDGφ

D5 ¬DGφ→ DG¬DGφ

D1 Kiφ↔ Diφ

D2 DGφ→ DHφ, if G ⊆ H
As usual, soundness can easily be shown.

Lemma 2 (Soundness). For any CLD-formula φ, `CLD
φ⇒|= φ.

Outline of completeness proof.
In the remainder of this section we show that CLD also

is complete. An outline of the proof is as follows. As in the
case of CLC, we start with the canonical model construc-
tion. However, rather than constructing a playable model,
we construct a playable pseudomodel Mc. The truth lemma
for the combined epistemic-coalitional language holds for
Mc, but the relations interpreting distributed knowledge are
not necessarily the intersections of the individual epistemic
accessibility relations. The idea is to transform Mc into
a proper model, which has the E1-E6 propeties, without
breaking the truth lemma. This is done in two additional
steps. First, Mc is transformed into a finite pseudomodel
Mf , exactly like in the case of CLC. The transformation
preserves satisfaction, as well as the playability properties
(and E6 follows from finiteness). Using pseudomodels that
are then transformed into proper models is a common way to
deal with intersection in general and distributed knowledge
in particular [22]. We can in fact now make directly use of
an existing completeness result and proof for epistemic logic
with distributed knowledge [5], by taking the (finite) epis-
temic pseudomodel underlying Mf and transform it into a
proper (not necessarily finite) epistemic model which is used
as the underying epistemic model of the final model M ′. It
remains to be shown that the transformation did not break
the true playability properties, nor satisfaction of formulae
in the closure.



Completeness proof.
For a set of formulae s, let Kas = {Kaφ : Kaφ ∈ s} and

DGs = {DGφ : DGφ ∈ s}.

Definition 1 (Canonical Playable Pseudomodel).
The canonical playable pseudomodel Mc = (Sc, {∼ci : i ∈
N}, {RcG : ∅ 6= G ⊆ N}, Ec, V c) for CLD is defined as fol-
lows:

• Sc is the set of maximal consistent sets.

• s ∼ci t iff Kis = Kit

• sRGt iff DHs = DHt whenever H ⊆ G

• X ∈ Ec(s)(G) (for G 6= N) iff there exists ψ such that
{t ∈ Sc : ψ ∈ t} ⊆ X and [G]ψ ∈ s.

• X ∈ Ec(s)(N) iff Sc \X 6∈ Ec(s)(∅).

• V c(s) = {p : p ∈ s}

Lemma 3 (Pseudo Truth Lemma). Mc, s |= φ⇔ φ ∈
s.

Proof. The proof is by induction on φ. The epistemic
cases are exactly as for standard normal modal logic. The
case for coalition operators is exactly as in [17].

It is easy to check that ∼ci are equivalence relations and
E1-E5 hold for Ec.

Lemma 4 (Finite Pseudomodel). Every CLD-
consistent formula φ is satisfied in a finite pseudomodel where
E1-E6 hold.

Proof. The proof is exactly as in Theorem 1, namely the
construction of Mf , but starting with a Canonical Playable
Pseudomodel rather than Canonical Playable Model; the
definition of Mc contains the clause

ΓRG∆ iff ∀H ⊆ G{ψ : DHψ ∈ Γ} = {ψ : DHψ ∈ ∆}

We add the following condition to the closure: Diψ ∈
cl(φ) iff Kiψ ∈ cl(φ).

We define Mf to be a pseudomodel instead of a model,
by adding the clause:

[s]RfG[s′] iff ∀H ⊆ G{ψ : DHψ ∈ [s]} = {ψ : DHψ ∈ [s′]}

We show that Mf is indeed a pseudomodel:

• Rfi =∼fi : this follows from the fact that Kiφ ∈ [s] iff
Diφ ∈ [s] for any i, φ and s, which holds because of
the Kiφ → Diφ axiom and the new closure condition
above.

• G ⊆ H ⇒ RfH ⊆ R
f
G: this holds by definition.

We add a case for θ = DGψ to the inductive proof. This
case is proven in exactly the same way as the θ = Kiψ case:
the definitions of ∼fi and RfG are of exactly the same form

(in particular, RfG is also an S5 modality). The proof that
E1-E6 hold in the resulting pseudomodel is the same as in
the proof of Theorem 1 for Ef .

We are now going to transform the pseudomodel into a
proper model; it is a well-known technique for dealing with
distributed knowledge. In fact, we can make direct use of
a corresponding existing result for epistemic logic with dis-
tributed knowledge, and extend it with the coalition oper-
ators/effectivity functions. We here give the more general
result for the language with also common knowledge, which
will be useful later.

Theorem 2 ([5]). If Mp = (S, {∼i: i ∈ N}, {RG : ∅ 6=
G ⊆ N}, V ) is an epistemic pseudomodel, then there is an
epistemic model M ′p = (S′, {∼′i: i ∈ N}, V ′) and a surjective
(onto) function f : S′ → S such that for every s′ ∈ S′ and
formula φ ∈ ELCD, Mp, f(s′) |= φ iff M ′p, s

′ |= φ.

Proof. This result is directly obtained from the com-
pleteness proof for ELCD sketched in [5, p. 70]. For a more
detailed proof (for a more general language), see [22, Theo-
rem 9].

Theorem 3. If a formula is satisfied in some finite pseu-
domodel, then it is satisfied in some model.

Proof. Let M = (S, {∼i: i ∈ N}, {RG : ∅ 6= G ⊆
N}, E, V ) be a finite pseudomodel such that M, s |= φ. Let
Mp = (S, {∼i: i ∈ N}, {RG : ∅ 6= G ⊆ N}, V ) be the epis-
temic pseudomodel underlying M , and let M ′p = (S′, {∼′i:
i ∈ N}, V ′) and f : S′ → S be as in Theorem 2. Let
f−1(X) = {s′ ∈ S′ : f(s′) ∈ X} for any set X ⊆ S. Finally,
let M ′ = (S′, {∼′i: i ∈ N}, E′, V ′) where E′ is defined as
follows:

• For G 6= N : Y ∈ E′(u)(G) ⇔ ∃X ⊆ S, (Y ⊇ f−1(X)
and X ∈ E(f(u))(G))

• for G = N : Y ∈ E′(u)(G) ⇔ Y 6∈ E′(u)(∅)

Two things must be shown: that M ′ is a proper model,
and that it satisfies φ.

Since M ′p is an epistemic model, to show that M ′ is a
model all that remains to be shown is that E′ is truly playable.
We now show that that follows from true playability of E.

E1 Note that f−1(X) = ∅ iff X = ∅.
For G 6= N , ∅ ∈ E′(u)(G) iff (by definition of E′)
∃X ⊆ S, (∅ ⊇ f−1(X)and X ∈ E(f(u))(G)) iff ∅ ∈
E(f(u))(G)) which is impossible since M satisfies E1.
Note that in particular this proves ∅ 6∈ E′(u)(∅), which
we will use in the E2 case below.

For G = N , ∅ ∈ E′(u)(G) iff S′ 6∈ E′(u)(∅) and we’ll
see that this is impossible in the E2 case below.

E2 Note that f−1(S) = S′.

For G 6= N , S′ ∈ E′(u)(G) iff (by definition of E′)
∃X ⊆ S, (S′ ⊇ f−1(X)and X ∈ E(f(u))(G)), and
by taking X = S we get that S′ ∈ E′(u)(G) holds
since S′ ⊇ f−1(S) and S ∈ E(f(u))(G). Note that in
particular this proves S′ ∈ E′(u)(∅), which we needed
in the E1 case above.

For G = N , S′ ∈ E′(u)(G) iff ∅ 6∈ E′(u)(∅) and this
was proved in the E1 case above.

E3 ∀u ∈ S′∀Y ⊆ S′ Y 6∈ E′(u)(∅)⇒ Y ∈ E′(u)(N) follows
immediately from the definition for E′(u)(N).

E4 E′ is monotonic by definition for G 6= N .

For N , assume X ⊆ Y and X ∈ E′(u)(N). Then
X 6∈ E′(u)(∅). Since we already know that E′ is
monotonic for G = ∅ and Y ⊆ X, Y 6∈ E′(u)(∅). So
Y ∈ E′(u)(N).

E5 Let u ∈ S′, f(u) = s, G1, G2 ⊆ N such thatG1∩G2 = ∅,
X ′, Y ′ ⊆ S′, X ′ ∈ E′(u)(G1) and Y ′ ∈ E′(u)(G2). We
must show that X ′ ∩ Y ′ ∈ E′(u)(G1 ∪G2). We reason
by cases for G1 and G2.



First consider the case that G1 ∪ G2 6= N . We must
show that there is a Z such that f−1(Z) ⊆ X ′∩Y ′ and
Z ∈ E(s)(G1 ∪G2). We have that there are X,Y such
that f−1(X) ⊆ X ′ and X ∈ E(s)(G1) and f−1(Y ) ⊆
Y ′ and Y ∈ E(s)(G2). Take Z = X ∩ Y . It is easy
to see that f−1(X ∩ Y ) = f−1(X) ∩ f−1(Y ) (from the
defintion of f−1(·)), and we thus get that f−1(Z) =
f−1(X)∩ f−1(Y ) ⊆ X ′ ∩ Y ′. From X ∈ E(s)(G1) and
Y ∈ E(s)(G2) and superadditivity of E we get that
Z ∈∈ E(s)(G1 ∪G2).

Second consider the case that G1 = N or G2 = N .
Wlog. assume the former. That implies that G2 =
∅. We must show that X ′ ∩ Y ′ ∈ E′(u)(N), i.e.,
that X ′ ∩ Y ′ 6∈ E′(u)(∅). Assume otherwise, i.e., that
X ′ ∩ Y ′ ∈ E′(u)(∅), in other words that X ′ ∪ Y ′ ∈
E′(u)(∅). As G2 = ∅ we also have that Y ′ ∈ E′(u)(∅),
and by E5 for E′ for the case that G1 = G2 = ∅ 6= N
(proven above) we get that (X ′ ∪ Y ′)∩ Y ′ ∈ E′(u)(∅).
I.e., X ′ ∩Y ′ ∈ E′(u)(∅). By E4 for E′ (proven above),
we get that X ′ ∈ E′(u)(∅). But that contradicts the
fact that X ′ ∈ E(u)(G1) with G1 = N .

Finally, consider the case that G1 ∪ G2 = N and
G1 6= N and G2 6= N . We must show that X ′ ∩ Y ′ ∈
E′(u)(N), i.e., that X ′ ∩ Y ′ 6∈ E′(u)(∅), i.e., that there
does not exist a Z such that f−1(Z) ⊆ X ′ ∩ Y ′ and
Z ∈ E(s)(∅). Assume otherwise, that such a Z exists.
Let X,Y be such that

f−1(X) ⊆ X ′ and X ∈ E(s)(G1)
f−1(Y ) ⊆ Y ′ and Y ∈ E(s)(G1)

which exist becauseX ′ ∈ E′(u)(G1) and Y ′ ∈ E′(u)(G2).
From superadditivity of E we get that

X ∩ Y ∈ E(s)(N) (1)

It follows that

X ∩ Y 6∈ E(s)(∅) (2)

because otherwise ∅ = (X∩Y )∩(X ∩ Y ) ∈ E(s)(N) by
E5 for E, which contradicts E1 for E. We furthermore
have that

X ′ ⊆ f−1(X) ⊆ f−1(X)

Y ′ ⊆ f−1(Y ) ⊆ f−1(Y )
(3)

which follow immediately from the facts that f−1(X) ⊆
X ′ and f−1(Y ) ⊆ Y ′ and the definition of f−1(·). From
(3) it follows that

X ′ ∪ Y ′ ⊆ f−1(X ∪ Y ) (4)

From (4) and the assumption that Z ∈ E(s)(∅) we get
that f−1(Z) ⊆ f−1(X ∪ Y ), and it follows, by surjec-
tivity of f , that

Z ⊆ X ∩ Y (5)

By (5) and the assumption that Z ∈ E(s)(∅) we get
that X ∩ Y ∈ E(s)(∅). But this contradicts (2).

E6 We must show that E
′nc(u)(∅) 6= ∅, for any u. Let

s = f(u), and let X ∈ Enc(s)(∅) (exists because of

E6 for E). We show that f−1(X) ∈ E
′nc(u)(∅). First,

we have that f−1(X) ∈ E′(u)(∅); this follows from
the fact that X ∈ E(s)(∅) and the definition of E′.
Second, assume, towards a contradiction, that there

exists a Y ⊂ f−1(X) such that Y ∈ E
′
(u)(∅). By the

definition of E′, this means that there is a Z such that
f−1(Z) ⊆ Y and Z ∈ E(s)(∅). Since Y ⊂ f−1(X)
and f−1(Z) ⊆ Y it follows that f−1(Z) ⊂ f−1(X). It
is easy to see (from surjectivity of f) that it follows
that Z ⊂ X, and this contradicts the assumption that
Z ∈ E(s)(∅) and X ∈ Enc(s)(∅).

In order to show thatM ′ satisfies φ, we show thatM, f(u) |=
γ iff M ′, u |= γ for any u ∈ S′ and any γ, by induction in
γ. All cases except γ = [G]ψ are exactly as in the proof of
Theorem 2.

For the case that γ = [G]ψ, the inductive hypothesis
is that for all proper subformulae χ of [G]ψ, and any v,
M, f(v) |= χ iff M ′, v |= χ. We can state this as {v : M ′, v |=
χ} = f−1(χM ), or χM

′
= f−1(χM ).

First consider the case that G 6= N . Let f(u) = s.

M ′, u |= [G]ψ iff ψM
′
∈ E′(u)(G) iff there is an X such

that f−1(X) ⊆ ψM
′

and X ∈ E(s)(G). This holds iff
ψM ∈ E(s)(G) iff M, s |= [G]ψ. For the implication to
the left take X = ψM ; for the implication to the right ob-
serve that f−1(X) ⊆ f−1(ψM ) implies that X ⊆ ψM , and
ψM ∈ E(s)(G) follows from X ∈ E(s)(G) by outcome mono-
tonicity of E.

Second consider the case that G = N . M, s |= [N ]ψ iff

ψM ∈ E(s)(N) iff (*) ¬ψM 6∈ E(s)(∅) iff (as above) ¬ψM
′
6∈

E′(u)(∅) iff M ′, u |= [N ]ψ. (*): one direction E3, the other
direction E5 and E1.

Corollary 2. For any CLD-formula φ, `CLD φ iff |=
φ.

5. EPISTEMIC COALITION LOGIC WITH
BOTH COMMON AND DISTRIBUTED
KNOWLEDGE

In this section we consider the logic CLCD, extending
coalition logic with operators for individual knowledge, com-
mon knowledge and distributed knowledge.

The axiomatisation CLCD is obtained by extending CL
with the axioms and rules of CLC and CLD.

Lemma 5 (Soundness). For any CLCD-formula φ,
`CLCD φ⇒|= φ.

Completeness can in fact be shown in exactly the same
was as for CLD, except that there is an extra clause for
CGφ in the proof of satisfaction which is taken care of in the
same way as in the proof for CLC.

Theorem 4. Any CLCD-consistent formula is satisfied
in some finite pseudomodel.

Proof. The proof is identical to the proof of Lemma 4,
starting with the canonical playable pseudomodel, with the
addition of the inductive clause θ = CGψ as in the proof of
Theorem 1.

We can now use the same approach as in the case of CLD.

Theorem 5. If a CLCD formula is satisfied in some fi-
nite pseudomodel, it is satisfied in some model.

Proof. The proof goes exactly like the proof of Theorem
3, using Theorem 2. The definition of the model M ′ is iden-
tical to the definition in Theorem 3, as is the proof that it is



a proper model. For the last part of the proof, i.e., showing
that M ′ satisfies φ, note that the last clause in Theorem 2
holds for epistemic logic with both distributed and common
knowledge. Thus, the proof is completed by only adding the
inductive clause for [G]φ, which is done in exactly the same
way as in Theorem 3.

Corollary 3. For any CLCD-formula φ, `CLCD φ iff
|= φ.

6. COMPUTATIONAL COMPLEXITY
The following complexity result is an easy consequence of

the known results for other logics:

Theorem 6. The satisfiability problem for CLC and for
CLCD is EXPTIME-complete.

Proof. EXPTIME-hardness follows from EXPTIME-
hardness of S5n + C ([9]). EXPTIME upper bound follows
from the upper bound for ATEL ([21]).

Theorem 7. The satisfiability problem for CLD is
PSPACE-complete.

Proof. PSPACE-hardness follows from PSPACE-
hardness of S5n [9] and also from PSPACE-hardness of CL
[17].

The PSPACE upper bound can be obtained by combining
the tableaux algorithm for S5n + D given in [9] with the
algorithm in [17] which checks the satisfiability of a finite
set of coalition logic formulas. The two algorithms need to
call each other recursively. In addition, since [9] only has the
D operator for the grand coalition, the rule for producing
witnesses for the ¬DGφ formulae has to be modified as in
the tableaux algorithm for K∪,∩ω [15].

7. CONCLUSIONS
This papers settles several hitherto unsolved problems. It

proves completeness of coalition logic extended with differ-
ent combinations of group knowledge operators. The ax-
ioms for the epistemic modalities are standard in epistemic
logic, but the completeness proofs require non-trivial com-
binations of techniques. The proofs are given in detail, and
can be used and extended in future work. The paper fur-
thermore completely characterises the computational com-
plexity of the considered logics. They are all decidable. We
can conclude that adding coalition operators to epistemic
logic comes “for free” without changing the complexity of
the satisfiability problem: the extension of epistemic logic
with distributed and common knowledge with coalition op-
erators remains EXPTIME-complete, the extension of epis-
temic logic with only distributed knowledge with coalition
operators remains PSPACE-complete.
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