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ABSTRACT
Infrastructures for implementing agent architectures are cur-
rently unaware of what tasks the implemented agent is per-
forming. Such knowledge would allow the infrastructure to
improve the agent’s autonomy and reliability. For exam-
ple, the infrastructure could detect abnormal system states,
predict likely faults and take preventive measures ahead of
time, or balance system load based on predicted compu-
tational needs. In this paper we introduce a learning al-
gorithm to automatically discover a state-transition model
of the agent’s behavior. The algorithm monitors the com-
munication between architectural components, in the form
of function calls, and finds the frequencies at which various
functions are polled. It then determines the states according
to what polling frequencies are active at any time. The two
main novel features of the algorithm are that it is completely
unsupervised (it requires no human input) and task-agnostic
(it can be applied to any new task or architecture with min-
imal effort).

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics; I.2.6 [Artificial

Intelligence]: Learning

General Terms
Algorithms, Experimentation

Keywords
introspection, state-transition model, unsupervised

1. INTRODUCTION
The architectures of robotic agents are often implemented

in some middleware or software infrastructure [7]. The in-
frastructure’s purpose is to abstract over hardware details
and provide various advanced services to the architecture,
such as automatic distribution of components over different
computational resources, location-independent service dis-
covery, communication with remote components, and vari-
ous others. Infrastructures might have mechanisms to mon-
itor their distributed network of components (e.g. to au-
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tomatically restart crashed components) [10]. But infras-
tructures do not “know” what tasks the implemented agent
is performing. Such knowledge could improve an agent’s
reliability and autonomy, especially in long-term sustained
operations. For example, the infrastructure could detect ab-
normal system states, predict likely faults and take preven-
tive measures ahead of time, or balance system load based
on predicted computational needs.

The challenge is to obtain the knowledge needed to pre-
dict the agent’s behavior. One possibility is for the designer
to explicitly represent all possible system states. This is
clearly difficult even for fairly small systems, such as a robot
that performs navigation tasks. Moreover, such a descrip-
tion might fail to specify how the agent reacts to environ-
mental contingencies, such as the appearance of an obstacle.
Hence, in addition to the overall description of the system,
some kind of learning component is necessary to integrate
information about how environmental factors influence the
agent’s behavior.

Since the infrastructure would need an online learning
component anyway, the other possibility would be for the
infrastructure to discover the entire operation of the imple-
mented agent, without any need to specify abstract system
behavior or relevant system states. This means that the
infrastructure would have to extract state information from
the agent’s internal, subjective perspective only, since it does
not have access to any external, objective information such
as the agent’s global coordinates.

In this paper we introduce an unsupervised agent-centric
learning algorithm to automatically discover a model of the
agent’s behavior. The algorithm monitors the communica-
tion patterns among architectural components, and builds a
state diagram that reflects the agent’s task model. We start
with some background on related approaches for learning be-
havioral models. We then introduce our proposed approach,
and demonstrate its operation in several robotic tasks im-
plemented in the ADE infrastructure [10]. We show that
the state diagrams generated automatically from the agent’s
internal perspective can nicely match state diagrams cre-
ated manually from an external observer’s perspective. We
then discuss properties and shortcomings of the proposed
method, provide a summary of our contributions, and out-
line future steps for improving results and performing larger-
scale evaluations.

2. BACKGROUND
Conventional methods for modeling the behavior of an

autonomous agent are based on observing the agent from



an external perspective. This external approach is based on
methods used by ethologists in describing animal behavior
[5]. First, we observe the agent and determine a set of low-
level actions that it performs. For a rodent, these could
include resting, walking, grooming, eating, and drinking [6].
Once the low-level action repertoire is defined, we describe
the environmental conditions that cause the agent to switch
between actions. This way we obtain a state diagram of the
agent’s behavior, where the states are the low-level actions,
and the transitions are the observable conditions that cause
action switches.
The behavior of an autonomous agent is typically repre-

sented as some variation of a Hidden Markov Model (HMM).
If the set of states is known in advance and we have a
training sequence of observations, we can learn the param-
eters of a HMM using algorithms such as Baum-Welch [1,
9]. For example, Guillory et al. [5] learn a model of the
agent’s behavior using Input/Output HMMs. Their ap-
proach requires as input a set of possible perceptions for the
agent, and human-labeled example trajectories. Similarly,
Delmotte and Egerstedt [2] learn simple control programs
from externally-observed data. Goldberg and Mataric [4]
present an algorithm for learning Augmented Markov Mod-
els (AMMs), which are similar to HMMs, but allow each
state to produce a single symbol. Their algorithm takes a
sequence of symbols and processes it online to update an
initially empty AMM.
The strength of the external approach is that the state

labels are directly meaningful to human beings, because the
model was built based on observed behavior. On the down-
side, the external approach always requires some amount of
domain-specific knowledge, such as a model of the agent’s
perceptions, or labels for an execution trajectory. Label-
ing can be difficult when the observer’s action abstraction
does not directly correspond to the agent’s internal action
representation. For example, a robot may use several dif-
ferent actions to follow a corridor, depending on its current
goal. But an external observer might treat all these ac-
tions as the same. Similarly, an external observer might
discriminate among multiple actions (e.g. approach wall,
turn away from wall) even though the agent’s control sys-
tem does not discriminate among them (e.g. because the
agent uses a potential-based approach for traversing hall-
ways). As a result, the state-transition diagram will contain
states that have no counterpart in the agent control system.
Furthermore, the external approach treats the agent like a
black box, and will miss unobservable state changes (such as
perceiving a door and storing its location for future explo-
ration). The external approach will also miss any behaviors
exhibited outside of the observation period. And, in gen-
eral, it might not be possible to observe the agent in certain
situations (e.g. a cleaning robot in the sewage system).
To overcome some of these complications we turn to the

internal approach, where the observer is the infrastructure
in which the agent control system is implemented. Unlike
any external observer, the infrastructure has exact informa-
tion about component interactions. The agent is no longer
a black box. On the other hand, the infrastructure usually
has no information about the functional role of these compo-
nents in the agent architecture. Wallace [12] discusses the
advantages of self-assessment (internal monitoring) as op-
posed to external monitoring for detecting runtime errors.
Other unsupervised approaches for acquiring a model of the

world and self are being explored in the field of developmen-
tal robotics [13, 11]. Our work is most similar to the robot-
introspection work of Fox et al. [3], which learns a HMM of
the robot’s behavior from raw sensor data. They start with
a set of human-labeled states, which they then refine. Our
method requires no labeling whatsoever for model construc-
tion, but only for evaluation. Furthermore, the variables
and sensory features used by Fox et al. have to be chosen
by hand for each task, whereas the log data we use requires
no human pre-processing. Also, Fox et al. require multi-
ple runs of the same task to learn the model, whereas our
method allows building a model from a single run.

The ADE infrastructure mediates communication between
the agent’s components. During task execution we can record
the interaction between components, in the form of function
calls. The patterns in the recorded call log can be used to de-
fine states, which can then be organized in a state-transition
model. These states will reflect the agent’s control system,
and as discussed above, they will not necessarily correspond
to states described by an external observer. In general, the
best we can hope for from the internal approach is that it
will come reasonably close to an external model built from
human observations. We are looking for a middle ground be-
tween a model that is overly specific (too many states) and
one that is overly general (too few states). If this goal can be
achieved, the internal approach will have several advantages
over the external approach. First, internal modeling does
not require any human labeling effort. This means that it
can easily be applied to new tasks or architectures, and it
can, in principle, run online while the robot is performing its
task. Second, the model corresponds closely to the actual
control flow of the robot, so there is no risk of “cheating”
by imposing structure that is not really there (which an ex-
ternal observer might be tempted to do). Finally, and most
importantly, the robot itself knows what state it is in, and it
can use its own model to make predictions. This can enable
the robot to balance load or to predict failures before they
happen.

3. METHOD
Our state extraction algorithm is based on the following

key observation: Throughout the execution of the task, the
architecture polls various functions at regular intervals. For
example, while going through a hallway, the robot might poll
the checkMotion function, but not the getLaserReadings

function. When entering a door, the robot might poll get-
LaserReadings, but not checkMotion. We associate each
distinct polling pattern with a state. The states detected
this way are grounded solely in subjective data collected in-
ternally by the robot.

To explain our method, we use a short example task,
where the robot turns inside a room, and then exits through
the door and into the hallway. The input data is an exe-
cution log, containing a list of function calls. Each call is
identified by a time stamp, a component and function name,
and a set of arguments (which we currently ignore). Figure
2a shows some sample log entries.

We first determine the possible polling frequencies for each
function. Then, we identify the time intervals when each
polling frequency is active (we call these the instances of a
given polling frequency). We define a state as a set of active
polling frequencies. We use the detected instances to de-
termine the states, and the state-transition history. Finally,



we prune the state-transition history to remove superfluous
states, and we use the pruned transition history to construct
a state diagram. We proceed to describe this process in
greater detail, together with the parameters that each step
requires. It is helpful to follow Figure 2 while reading the
rest of this section.

3.1 Polling frequencies
We start by computing the time difference between pairs

of consecutive calls to the same function. If there are n calls
to function f, we get n − 1 values, which we call the ca-
dence values for f. If some caller polls f every 100ms, we
expect to see a cluster of cadence values around 100ms. Fig-
ure 2b shows a histogram plot of the cadence values for our
example task. We can see clusters for getLaserReadings,
checkMotion, updateMoveToRel, and getPlan. To extract
these clusters, we make a single-linkage hierarchical cluster-
ing1 of the cadence values for each function. We then put
two cadence values in the same flat cluster if the difference
between them is less than a threshold Dmax. If a cluster
is supported by less than Nmin cadence values, we discard
it. Figure 2c shows the resulting clusters (the clusters are
ranges of values, and we identify them by their center). In
general, there can be more than one cluster for any given
function. We refer to a function (e.g. getLaserReadings)
together with one of its clusters (e.g. 327ms) as a polling
frequency (e.g. getLaserReadings at 327ms).
This step has the following parameters:

• Dmax: maximum difference between adjacent cadence
values for them to belong to the same cluster

• Nmin: minimum number of cadence values to consti-
tute a polling frequency

3.2 Instances of each polling frequency
In the next step, we want to find all instances when a given

polling frequency is active. For example, for the polling
frequency “f at 200ms,” we want to find all time intervals
(tbegin, tend) when f is being polled at 200ms. To find these
intervals, we sweep over the logged calls in the order they
occurred, keeping track of which polling frequencies are pos-
sible at each point. If over an interval of time, we see at least
Cmin calls to f, and the time difference between each con-
secutive pair of calls is within a tolerance T of 200ms, we
save an instance for this polling frequency. Since calls that
are slightly off-time happen often, we forgive an early or late
call, if the next call is on time. Figure 2d shows a timeline
of the logged calls. Figure 2e shows the detected instances
for each polling frequency.
This step has the following parameters:

• Cmin: minimum number of calls to constitute an in-
stance

• T : tolerance with respect to a polling frequency (for a
call to be counted towards an instance)

3.3 States and the state diagram
We define a state to be a set of active polling frequen-

cies. We extract states from the instances detected in the
previous step. At each point in time, a given set of polling
frequencies is active, and if this set does not correspond to

1We also tried k-means, RANSAC, and Gaussian Mixture
Model fitting, but the simple hierarchical clustering worked
best.

an existing state, it becomes a new one. Figure 2f shows
the states and state-transition history discovered this way.
Because instances of different polling frequencies are never
perfectly aligned, this process results in a lot of superflu-
ous states, in which very little time is spent. We therefore
prune the state-transition history, discarding all state visits
shorter than Vmin. The time spent in a discarded state is
redistributed to the previous and next state in the transi-
tion history. Figure 2g shows the states and state-transition
history after pruning.

This step has a single parameter:

• Vmin: minimum time spent in a state (for pruning)

Finally, we use the pruned state-transition history to build
a state diagram of the task, shown in Figure 1. We indicate
the start state with an arrow, and the final state with a
double border.

R1

R2 R3

Figure 1: The state diagram obtained for the example task.

We use this simple way of constructing a diagram to illus-
trate the results of our state-extraction method. The state-
transition history obtained in the final step (Figure 2g) is
simply a sequence of states, which we could use to train a
HMM or AMM if desired.

4. EXPERIMENTAL RESULTS
Evaluation is one of the main difficulties of robot intro-

spection. Because the learned model is grounded in the
robot’s subjective observations, there is no “ground truth”
that we can use for a direct comparison. Instead, as pointed
out by Fox et al. [3], we are forced to compare the learned
model with a human observer’s interpretation of what the
robot actually did. We cannot escape the limitation that
interpretations may differ across observers.

We evaluate our algorithm by looking for bisimilarity be-
tween the constructed state diagram DR and another state
diagram DO, representing a human observer’s interpreta-
tion of the robot’s behavior. Bisimilarity (or bisimulation)
is a relationship between two state-transition systems that
behave in the same way, in the sense that one system simu-
lates the other and vice-versa. Park [8] provides a technical
definition in the context of automata theory.

We have tested our state-extraction algorithm on three
different tasks, using the ADE simulator. In the Boxes

task, the robot moves objects from several source boxes into
a destination box. In the Hallway task, the robot traverses
a hallway looking for wounded people in every open room.
The Combined task is a composition of the two tasks above.
The robot traverses a hallway and performs the Boxes task
inside each room.

We used the following parameters in our experiments:
Dmax = 5ms, Nmin = 10, Cmin = 3, T = 20ms, Vmin =
1.3s. For each task, we performed the following steps:

1. Run the task, generating the log and recording a screen-
cast of the simulator window.



system time component name function name arguments

1306509565603 CALL: com.motion.MotionServer moveToRel 0.0020581365076 0.890346846488
1306509565878 CALL: com.adesim.SimPioneerServer getLaserReadings
1306509573546 CALL: com.motion.MotionServer checkMotion 1306509573522

(a) Sample log entries

0.0 0.1 0.2 0.3 0.4 0.5
seconds

SimPioneerServer.getLaserReadings (23)
MotionServer.checkMotion (405)

MotionServer.moveToRel (0)
MotionServer.timeMove (0)
MotionServer.timeTurn (2)

MotionServer.updateMoveToRel (19)
FODDServer.getPlan (97)

(b) Cadence histogram. The number of cadence values for each
function is shown in parentheses.

function polling frequencies
getLaserReadings 327ms

checkMotion 26ms
updateMoveToRel 327ms

getPlan 202ms

(c) Detected polling frequencies

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(turn around) (align to door) (exit door)

seconds

SimPioneerServer.getLaserReadings
MotionServer.checkMotion

MotionServer.moveToRel
MotionServer.timeMove
MotionServer.timeTurn

MotionServer.updateMoveToRel
FODDServer.getPlan

(d) Timeline of function calls, with the observed events shown on the bottom (the algorithm does not use these labels)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
seconds

(1) SimPioneerServer.getLaserReadings @0.327s

(2) MotionServer.checkMotion @0.026s

(3) MotionServer.updateMoveToRel @0.327s

(4) FODDServer.getPlan @0.202s

(e) Detected instances for each polling frequency

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
seconds

state 1 (polling frequencies [0 0 0 0])
state 2 (polling frequencies [0 1 0 0])
state 3 (polling frequencies [0 1 0 1])
state 4 (polling frequencies [1 1 0 1])
state 5 (polling frequencies [1 0 0 1])
state 6 (polling frequencies [1 0 1 1])
state 7 (polling frequencies [0 0 1 1])
state 8 (polling frequencies [0 0 0 1])

(f) States and state-transition history before pruning. The states are identified by a set of active polling frequencies.
For example, state 3 is marked [0 1 0 1], which means the second (checkMotion at 26ms) and fourth (getPlan at
202ms) polling frequencies are active.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
seconds

state 1 (polling frequencies [0 1 0 1])

state 2 (polling frequencies [1 0 1 1])

state 3 (polling frequencies [0 0 0 1])

(g) States and state-transition history after pruning

Figure 2: Our method, described in section 3. From the log, we obtain the cadence values (b), which we cluster to obtain the
polling frequencies (c). We then traverse the log (d), find the instances of each polling frequency (e), determine states based
on what polling frequencies are active (f), and finally prune the state-transition history (g).



2. Watch the screencast and create a state diagram based
on the behavior we observe. We call this the observer’s
state diagram, DO.

3. Run the state-extraction algorithm on the robot’s log,
obtaining an unlabeled state diagram.

4. Label the state diagram given by the algorithm, by
watching the screencast and observing the robot’s be-
havior during each of the detected states. We call the
result the robot’s state diagram, DR.

5. Create an expanded state diagram, DE , such that ev-
ery state inDE corresponds to exactly one state inDO,
and exactly one state in DR. (We view DO and DR as
two different ways to decompose the robot’s behavior
into states, and DE as their common denominator.)

6. Show that DR and DO are bisimilar, by defining a
function f mapping states in DO to states in DE , and
a function g mapping states in DR to states in DE .

4.1 The Boxes Task
In this task, the robot is in a room with a destination box

and several source boxes, which may be empty or contain
a single object. The robot first does a 360-degree sweep
to determine the location of the boxes. Then it visits each
source box, and if it finds an object inside, it carries the
object to the destination box. We stop the run after the
robot visits four source boxes. Figure 3 depicts the robot’s
environment and trajectory.

empty source box

filled source box

destination box

robot sweeps 360 degrees

robot position at run start

robot position at run end

wounded person

healthy person

robot speaks

Legend for all tasks:

Figure 3: Map of the Boxes task, with legend.

The robot’s state diagram DR has two states, depicted
in Figure 6a, and the observer’s state diagram DO has six
states, shown in Figure 6b. For this task, the expanded state
diagram DE is identical to DO. The full state-transition
histories for DR and DO are given in Figure 6c. The bisim-
ilarity between DR and DO is given by:

f = {R1 7→ {O1, O3, O5}, R2 7→ {O2, O4, O6}}

4.2 The Hallway Task
In this task, the robot traverses a hallway with several

rooms. Upon seeing an open door, the robot enters the room
and does a 360-degree sweep, looking for wounded people.
If it finds a wounded person, the robot pauses and sends
a spoken message to the operator. It then exits the room
and continues traversing the hallway. We stop the run after
the robot visits three rooms. Figure 4 depicts the robot’s
environment and trajectory. (Please consult the legend on
the right side of Figure 3.)
The robot’s state diagram DR has six states, depicted in

Figure 7a. The observer’s state diagram DO has five states,
depicted in Figure 7c. The expanded state diagram DE has
eleven states, shown in Figure 7b. The full state-transition

Figure 4: Map of the Hallway task.

histories for DR, DE , and DO are given in Figure 7d. The
bisimilarity between DR and DE is given by:

f = {R1 7→ {E1}, R2 7→ {E2}, R3 7→ {E3}, R4 7→ {E4, E9},

R5 7→ {E5, E7, E10}, R6 7→ {E6, E8, E11}}

and the bisimilarity between DO and DE is given by:

g = {O1 7→ {E1, E2}, O2 7→ {E3, E4, E5, E6}, O3 7→ {E7},

O4 7→ {E8}, O5 7→ {E9, E10, E11}, }

4.3 The Combined Task
This task is a composition of the Hallway and Boxes

tasks. The robot traverses a hallway with several rooms.
Upon seeing an open door, the robot enters the room and
performs the Boxes task: It does a 360-degree sweep to
find any boxes, and carries any objects from source boxes to
the destination box. When finished (or if no source boxes
are found), the robot exits the room and continues travers-
ing the hallway. The run starts with the robot sweeping
the first room, and it ends after the robot exits the third
room. Figure 5 depicts the robot’s environment and trajec-
tory. (Please consult the legend on the right side of Figure
3.)

Figure 5: Map of the Combined task.

The robot’s state diagram DR has six states, depicted in
Figure 8a. The observer’s state diagram DO has ten states,
depicted in Figure 8c. The expanded state diagram DE has
sixteen states, shown in Figure 8b. The full state-transition
histories for DR, DE , and DO are given in Figure 9. The
bisimilarity between DR and DE is given by:

f = {R1 7→ {E2, E4, E6, E9, E15},

R2 7→ {E1, E3, E5, E7, E10, E16}, R3 7→ {E8, E14},

R4 7→ {E11}, R5 7→ {E12}, R6 7→ {E13}}

and the bisimilarity between DO and DE is given by:

g = {O1 7→ {E1}, O2 7→ {E2}, O3 7→ {E3}, O4 7→ {E4},

O5 7→ {E5}, O6 7→ {E6}, O7 7→ {E7},

O8 7→ {E8, E9, E10}, O9 7→ {E11, E12},

O10 7→ {E13, E14, E15, E16}}



R2 Pause / UseBox

R1 Sweep / GoToBox

(a) DR: robot’s state diagram

O2 Pause

O4 TakeFromBox O5 GoToDestBox

O6 PutIntoBoxO3 GoToSrcBox

O1 Sweep

(b) DO: observer’s state diagram

R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1

O1 O2 O3 O4 O5 O6 O3 O4 O5 O6 O3 O4 O5 O6 O3 O4 O5 O6 O3

(c) State-transition history in DR (top) and DO (bottom). Time moves from left to right (not drawn to scale).

Figure 6: State diagrams for the Boxes task. The start state has a loose arrow coming into it. The end state has a double
border. To illustrate bisimilarity, the states corresponding to R1 are shaded in red, and the states corresponding to R2 are
shaded in green.

R6 Enter / TurnAround / Exit

R5 Align3 / Speak

R4 Align2

R3 Align1

R2 Traverse

R1 PrepareTraverse

(a) DR: robot’s state diagram

E5 AlignEnter3

E4 AlignEnter2

E3 AlignEnter1

E1 PrepareTraverse

E7 Speak

E6 Enter E8 TurnAround

E9 AlignExit1

E10 AlignExit2

E11 Exit

E2 Traverse

(b) DE : expanded state diagram

O1 Traverse

O3 Speak O4 TurnAround

O2 Enter O5 Exit

(c) DO: observer’s state diagram

R1 R2 R3 R4 R5 R6 R5 R6 R4 R5 R6 R1 R2 R3 R4 R5 R6

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E1 E2 E3 E4 E5 E6 E8

O1 O2 O3 O4 O5 O1 O2 O4

...

...

R4 R5 R6 R1 R2 R3 R4 R5 R6 R4 R5 R6 R1 R2

E9 E10 E11 E1 E2 E3 E4 E5 E6 E8 E9 E10 E11 E1 E2

O5 O1 O2 O4 O5 O1

(d) State-transition history in DR (top), DE (middle), and DO (bottom). Time moves from left to right (not drawn to scale).

Figure 7: State diagrams for the Hallway task. We illustrate bisimilarity by shading some states in DR and DO, and their
corresponding states in DE (R4 in green, R5 in red, R6 in blue, and O1 in yellow).

R5 Traverse R6 Align1

R4 PrepareTraverse R3 Align2

R1 UseBox /

Align3 / Pause
R2 TurnAround / Sweep

/ GoToBox / Enter / Exit

(a) DR: robot’s state diagram

E5 GoToDestBox

E12 TraverseE13 AlignEnter1

E14 AlignEnter2

E7 TurnAroundE2 Pause

E3 GoToSrcBox

E4 TryTakeFromBox

E10 ExitRoom

E6 PutIntoBox

E8 AlignExit1E1 Sweep

E9 AlignExit2E16 Enter

E11 PrepareTraverse

E15 AlignEnter3

(b) DE : expanded state diagram

O7 TurnAround

O5 GoToDestBox

O9 TraverseO10 EnterRoom

O1 Sweep

O2 Pause

O3 GoToSrcBox

O4 TryTakeFromBox

O8 ExitRoom

O6 PutIntoBox

(c) DO: observer’s state diagram

Figure 8: State diagrams for the Combined task. We illustrate bisimilarity by shading R1 in red and R2 in green, showing
the corresponding states in DE .



R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R3 R1 R2 R4 R5 R6 R3 R1 R2

E1 E2 E3 E4 E3 E4 E5 E6 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E1

O1 O2 O3 O4 O3 O4 O5 O6 O3 O4 O5 O6 O7 O8 O9 O10 O1

...

...

R1 R2 R3 R1 R2 R4 R5 R6 R3 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R3 R1 R2

E2 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E1 E2 E3 E4 E3 E4 E5 E6 E7 E8 E9 E10

O2 O7 O8 O9 O10 O1 O2 O3 O4 O3 O4 O5 O6 O7 O8

Figure 9: State-transition history for the Combined task, in DR (top), DE (middle), and DO (bottom). Time moves from
left to right (not drawn to scale).

5. DISCUSSION
We start by discussing how the extracted state diagrams

relate to the real world. As noted before, the only informa-
tion used by our algorithm is the function-call log given by
the infrastructure. This means that the algorithm has no
knowledge of the meaning of a function call, and so cannot
derive the meaning of a state, either. Consider the state
diagram DR extracted by the algorithm for the Hallway

task (Figure 7a). We can imagine a state diagram that has
the same number of states, the same arrows, and the same
start and end state. But if the states have completely dif-
ferent labels, the semantics of the state diagram would also
be radically different. This is the price we pay for being
completely agent-centric: Our algorithm has no way to get
at the semantics of states.
Despite this limitation, we were able to show how the ex-

tracted state diagrams DR are bisimilar to state diagrams
made by an external observer DO. We did this by build-
ing a more fine-grained (“expanded”) state diagram DE , and
showing thatDR andDO are both bisimilar toDE . This cor-
respondence is encouraging, because it shows that the states
detected introspectively often correspond to distinct observ-
able behaviors. Note that bisimilarity is a rather strong
requirement, and that we would need something weaker if
some state transitions were not detected (e.g. if we usu-
ally detect Ra → Rb → Rc, but sometimes we just detect
Ra → Rc).
Comparing the extracted state diagrams with those made

by an external observer illustrates some limitations of intro-
spection. For example, in the Boxes task our algorithm was
unable to distinguish between the Pause, TakeFromBox,
and PutIntoBox states, and lumped the three together in
R2 (Figure 6a). The reverse can also happen: In the Hall-

way task, our algorithm split the observer’s single state En-
ter into the sequence R3 → R4 → R5 → R6. This shows
that parts of the extracted state diagram can be either more
coarse-grained or more fine-grained than what an observer
sees.
We now turn to a discussion of our method. Our original

idea for extracting states was to slide a fixed-size observa-
tion window over the call log, count the number of calls to
each function in each observation, and cluster the result-
ing vectors. This turned out to work very poorly, because
the fixed-size window introduced discretization errors, states
with a short time span tended to be ignored, and observa-
tions taken at the transition between two states gave rise
to spurious clusters. Moreover, the number of clusters had
to be known in advance. We developed our current method
after we realized that most functions were being polled at
regular intervals, and that we could take advantage of the
polling patterns to distinguish between states. (One could
presumably design an architecture that performs no polling

whatsoever; in that case our algorithm would need to be
adapted.)

Our method has five parameters: two for finding the polling
frequencies, two more for detecting the instances of each
polling frequency, and one for pruning the state-transition
history. For our experiments, we set the parameters by
hand, noticing how they affect the algorithm’s behavior on
the three tasks. For example, if Dmax or T are too small,
then we would most likely miss slow polls (e.g. one call every
second). If they are too large, then we might detect spurious
polling frequencies and instances. If Nmin or Cmin are too
large, we might miss states that the robot visits for only a
short time. If they are too small, then we would most likely
have many spurious state transitions. Finally, Vmin has to
strike a balance between pruning too much (joining states
that should be distinct), and pruning too little (leaving spu-
rious states). We believe that the optimal setting for these
parameters depends on variables in the infrastructure, such
as the call latency.

We briefly sketch the time complexity of each part of our
algorithm. The hierarchical clustering to find polling fre-
quencies takes O(N2

c logNc) time and O(N2
c ) space, where

Nc is the number of calls to a given function. Therefore, for
Nf , functions that are being polled, finding all polling fre-
quencies takes O(Nf ·N

2
c logNc) time. After that, assuming

Npf polling frequencies were detected, finding the instances
naively takes O(Npf ·Nc) time. For Ni instances, extracting
the states takes O(Ni) time. If the resulting state-transition
history has Nt transitions, pruning it takes O(N2

t ) naively,
and can be improved to O(Nt logNt) by using a heap.

The initial clustering of cadence values appears to be the
bottleneck. In our experiments, the cadence values had mil-
lisecond precision. To keep the running time reasonable,
it was sufficient to reduce the number of duplicate cadence
values to Nmin (this does not affect the results). For con-
venience, we used single-linkage hierarchical clustering, and
we then created flat clusters based on a distance threshold.
It should be possible to replace this expensive part of the
algorithm with simply sorting the cadence values, and then
traversing them, finding the flat clusters directly, and avoid-
ing the hierarchical clustering altogether. Such an approach
would take O(Nc logNc) time per function. Based on this
back-of-the-envelope analysis, we expect our algorithm to
scale well with increasingly complex tasks.

Finally, we discuss how our method could help with fault
detection and load balancing. (We plan to evaluate these
proposals in future work.) Suppose the robot performs a
task for which it has already built a state diagram. If it
encounters a previously unseen state transition, the robot
could signal to the operator that something unexpected is
happening. Using introspection alone, the robot would be
unable to distinguish between a fault (in which case it should



state visit time spent
count mean std

R1 4 3.68 s 1.22 s
R2 4 14.33 s 7.09 s
R3 3 2.18 s 0.64 s
R4 6 4.81 s 1.75 s
R5 7 2.37 s 0.93 s
R6 7 17.11 s 6.93 s

Table 1: Mean and standard deviation of the time spent in
each state of the Hallway task.

notify the operator) and a new state (in which case it should
update its internal model). The only way to clarify the situa-
tion is to ask the operator: “Am I doing something wrong?”
or “Is this supposed to happen?” Spending too much or
too little time in a state may also indicate a failure. To
detect this, the robot could maintain statistics about the
time spent in each state. Table 1 shows the statistics col-
lected during the Hallway task. The standard deviations
are high, indicating that the time spent in a state depends
on environmental features (e.g. the length of hallway be-
tween two rooms), and not just on what the robot is doing.
This suggests that applying the unmodified AMM-learning
algorithm of Goldberg and Mataric [4] could be problematic,
because a state with high variance would be split in two.
To perform load balancing, the robot needs to know what

components of the architecture are active in each state. We
can obtain this information directly from the logs. Know-
ing its current state and the possible next states, the robot
can instantiate components on different hosts to achieve load
balancing. It can also conserve energy by suspending a com-
ponent if it is unlikely to be used in the near future.

6. CONCLUSIONS AND FUTURE WORK
The main contribution of this paper is an algorithm to ex-

tract a state diagram of an agent’s behavior from the com-
munication patterns of its architectural components. The
algorithm monitors function calls between components, and
finds the frequencies at which various functions are polled.
It then determines the states according to what polling fre-
quencies are active at any time. Unlike external approaches
to modeling robot behavior, our algorithm is completely un-
supervised (it requires no human input) and task-agnostic (it
can be applied to any new task or architecture with minimal
effort).
We evaluated the algorithm in three robotic example tasks.

We demonstrated that the state diagrams extracted by the
algorithm are bisimilar to state diagrams made by an exter-
nal observer who watches the robot perform its task. We
also discussed how our algorithm can be used for fault de-
tection and load balancing.
The most immediate direction for future work is to make

the algorithm work online, which would allow the robot to
learn during task execution and take advantage of what it
has learned so far. To turn the current version into an online
algorithm, we would need to detect new polling frequencies
and instances iteratively, without maintaining a full history
of every call so far. Using the online version, we intend to
demonstrate fault detection and load balancing based on an
actual robot.
Another extension to our algorithm is to consider “rare”

calls: occasional calls to functions that occur without polling.
This should enable us to distinguish among states that are
very similar otherwise (e.g. TakeFromBox and PutInto-

Box). We are also looking into extending our algorithm
by incorporating sensor data and function-call arguments,
and by building a probabilistic state-transition model, while
remaining completely unsupervised and task-agnostic. Fi-
nally, it would be interesting to see how much better the
state-transition model can get if we are allowed to occasion-
ally ask the operator questions, such as “What am I doing
right now?” or “Am I doing the same thing that I was doing
a minute ago?”.
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