
Modeling and Learning Synergy
for Team Formation with Heterogeneous Agents

Somchaya Liemhetcharat
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA

som@ri.cmu.edu

Manuela Veloso
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213, USA
veloso@cs.cmu.edu

ABSTRACT
The performance of a team at a task depends critically on
the composition of its members. There is a notion of syn-
ergy in human teams that represents how well teams work
together, and we are interested in modeling synergy in multi-
agent teams. We focus on the problem of team formation,
i.e., selecting a subset of a group of agents in order to per-
form a task, where each agent has its own capabilities, and
the performance of a team of agents depends on the indi-
vidual agent capabilities as well as the synergistic effects
among the agents. We formally define synergy and how
it can be computed using a synergy graph, where the dis-
tance between two agents in the graph correlates with how
well they work together. We contribute a learning algorithm
that learns a synergy graph from observations of the perfor-
mance of subsets of the agents, and show that our learning
algorithm is capable of learning good synergy graphs with-
out prior knowledge of the interactions of the agents or their
capabilities. We also contribute an algorithm to solve the
team formation problem using the learned synergy graph,
and experimentally show that the team formed by our algo-
rithm outperforms a competing algorithm.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms, Experimentation

Keywords
Capability, synergy, team formation, heterogeneous

1. INTRODUCTION
It is clear that the performance of a team, in terms of

the outcome of the task, depends on the team composition.
The term synergy is commonly used in human teams, and
describes how well the team works together. We extend
this notion of synergy from human teams to multi-agent
teams, and seek to model and quantify it for effective team
formation at a task.

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Research in agent capabilities, which we describe in de-
tail in the related work section, typically focus on single-
agent capabilities, and not the interactions between multiple
agents. Similarly, research in coalition formation typically
does not seek to model how the value of a coalition is com-
puted. In this paper, we introduce a model that captures
synergy from the interactions among large groups of agents.

Concretely, we abstract the problem as finding the best
subset of agents to complete a task, where each agent has
its own set of capabilities. The performance of a team of
agents at the task depends both on the capabilities of the
agents, and the synergy among the members of the team.
This model of performance among the agents is initially un-
known, but observations of the performance of groups of
agents can be made. From these observations, a model of
synergy within the agents is learned, and the optimal subset
of the agents is then selected for the task.

Formally, we define a synergy graph that models single-
agent capabilities and the interactions among the agents.
We then define pairwise synergy, i.e., how well a pair of
agents will perform together, and define synergy in groups
of agents. We then contribute an algorithm to find the op-
timal team to perform the task from a synergy graph, and
an algorithm that learns a synergy graph from observations
of interactions among small groups of agents. In our ex-
periments, we show that the learned synergy graph matches
closely to the hidden model that generated the observations,
and the team formed by searching this learned synergy graph
performs very well. In addition, we use a probabilistic robot
capability model introduced in [8], and show that the syn-
ergy graph learned from observations of this probabilistic
model leads to the formation of a team that outperforms
the team selected by the ASyMTRe algorithm [8].

The format of our paper is as follows: in Sec. 2, we dis-
cuss related work and the differences with our work. In
Sec. 3, we formally define the problem, and contribute our
synergy graph model and the algorithm for team formation.
In Sec. 4, we contribute an algorithm that learns a synergy
graph based on observations of the performance of agents at
the task. In Sec. 5, we describe our experiments and results,
and we summarize our contributions in Sec. 6.

2. RELATED WORK
In heterogeneous teams, agents and robots have different

capabilities. There has been a large amount of research in
the task-allocation and role assignment domains [3], but the
capabilities are typically binary, i.e., whether a robot is ca-
pable of performing a sub-task is usually due to its physical
characteristics such as the presence of an arm. There has

also been some research in modeling capabilities as values,
where higher values indicate better task performance [5],
and with a Normal distribution to represent the uncertainty
in the agents’ performance [4]. However, while modeling ca-
pabilities of single agents and robots has been extensively
studied, there has been limited work in modeling the ca-
pabilities of teams of agents, other than a sum of their in-
dividual capabilities, or a binary to represent whether the
team can perform a sub-task. Pairwise capabilities between
agents has been studied [7], and the coupling of robot ca-
pabilities to perform complex tasks using schemas with the
ASyMTre algorithm [8], which we elaborate further below.

In the ASyMTRe algorithm, robot capabilities are mod-
eled with schemas, that define inputs and outputs of infor-
mation types (e.g., the global position of the robot) [8]. Each
robot has a set of schemas with probabilities of success. The
task is defined as a set of desired outputs, and a multi-robot
team is formed to complete the task by creating a joint plan
of the robots’ schemas. Teams are ranked by a utility func-
tion that balances the probability of success and the cost
of execution. ASyMTRe is an anytime algorithm that re-
quires prior knowledge of the agent’s capabilities and prob-
abilities of success in order to rank potential teams, while
our approach does not need such a priori information. Our
approach models and learns the interactions between large
groups of agents to form an effective team, and we compare
the performance of our algorithm against ASyMTRe.

Coalition formation is a related field, where every pos-
sible subset of agents is given a value, and the goal is to
partition the agents so as to maximize the sum of values.
However, most of the research in the field has focused on
how to achieve the best partitioning [9]. There has been
some recent work in modeling how the value of a coalition
is affected by externalities [1], but not how the value of a
coalition is derived based on the composition of its members.
Service and Adams recently applied coalition formation to
solve task allocation, where the goal is to maximize the util-
ity gained from completing tasks, and taking into account
the resources/services that the agents can provide [10]. How-
ever, they use a market-based approach to solve the task
allocation and do not model the synergistic effects across
agents that have the same service. Our approach models
varying quality in the capabilities of agents and how inter-
actions in a team can amplify the results.

In the social network domain, there has been much re-
search in selecting teams based on the interactions of agents
in the social network graph. Lappas, Liu and Terzi stud-
ied how to find a team of experts that accomplish a goal
while minimizing the communication cost in a social net-
work graph [6]. Similarly, Dorn and Dustdar studied how to
compose near-optimal expert teams by trading-off between
coverage and communication cost [2]. We extend the use
of a social network graph to model synergy between teams
of agents, where the distance in the graph correlates with
how well agents work together, and not the communication
cost between the agents, and thus, the task performance is
directly affected by the structure of the graph. Further, we
contribute an algorithm to learn the structure of the graph
from observations.

3. MODELING SYNERGY FOR TEAM
FORMATION

Let A be a set of agents, and the task be T . Let the

task T be divided into M independent sub-tasks, and let
F : 2A → X, where X is a M -dimensional random variable
with unknown distribution. The function F represents the
“world”, so F is unknown but samples of F (A) can be re-
trieved for agent teams A ⊆ A, where the size of a team can
vary from 1 to |A|. A sample of F (A) corresponds to the
values attained by A at the M sub-tasks.

Let V : RM → R be a value function that computes the
overall value at the task T based on the values of the M
sub-tasks. Examples of V are: Vsum(X) =

∑M
m=1X(m),

Vmax(X) = maxMm=1X(m), and Vtask(X) = Vsum(X) iff
X(m) > τ ∀ m ∈ [1, M], and 0 otherwise, where X(m) is
themth component ofX. Vsum and Vmax are the summation
and maximum functions, while Vtask is a composite function
that returns 0 if the performance of any sub-task is below a
threshold τ , and is the summation otherwise.

The goal is to find a team of agents A∗ ⊆ A such that
∀ A ⊆ A, V (F (A∗)) ≥ V (F (A)), i.e., A∗ receives the
highest value at the task T .

3.1 Modeling Task-Based Relationships
In order to solve this problem of forming the optimal team

to complete the task T , we create a model of F based on
samples of F (A). We assume that there is some task-based
relationship between the agents that we can model. Re-
search in the social network field use social graphs and com-
munication costs to form effective teams [6, 2]; we model
task-based relationships with a task-based network between
the agents. As such, we form a task-based graph, where
vertices are agents, and the edges represent the task-based
relationship between the agents.

One method to model this relationship is with a fully-
connected graph, where the weights of the edges represent
how well agents work together (smaller numbers mean agents
work better together, i.e., with lower cost). For example,
Fig. 1 shows a 3-agent graph, where a1 and a2 work well
together compared to other pairs.

a1 a2

a3

0.7

0.2

0.9

Figure 1: A fully-connected task-based graph where
the task-based relationship between agents are rep-
resented by edge weights.

However, a fully-connected graph does not capture tran-
sitivity in the task-based relationship. For example, transi-
tivity would mean that if a1 works very well with a2, and
a2 works very well with a3, then a1 should work well with
a3. To capture transitivity in the task-based relationship,
we can use a connected graph (instead of a fully-connected
one), where the minimum distance between agents in the
graph is inversely correlated with their task-based relation-
ship. Fig. 2 shows a modification from Fig. 1 where the edge
{a1, a3} has been removed, as an example that still preserves
the distance between the agents.

In order to model the inverse correlation between the dis-
tance of agents and their task-based relationship, we intro-
duce a weight function w : R+ → R+, where w(d(a1, a2))
returns the task-based value of agents a1 and a2 based on

a1 a2 a3
0.70.2

Figure 2: A connected task-based graph where the
task-based relationship between agents is a function
of the shortest distance between them.

the minimum distance between them in the graph (using the
function d). Further, w(d) is always positive and monoton-
ically decreases as d increases. Intuitive examples of w are
w(d) = 1

d
, and w(d) = exp(− d ln 2

h
), which is an exponential

decay function with half-life h.
As a simplifying assumption, we assume the edges in the

task-based graph are unweighted (all edges have weight 1),
and the weight function is still capable of fully capturing the
task-based relationship.

3.2 Quantifying Performance at the Task
We want to model F based on samples of F (A), and so

far we have introduced a graphical model to capture the
task-based relationships between agents. However, there is
an innate capability of agents that is still unmodeled. For
example, even if a1 works equally well with a2 and with
a3, the value F ({a1, a2}) may be consistently higher than
F ({a1, a3}), if a2 is “better” at the task than a3.

As such, the graph structure alone is insufficient to com-
pletely model F . We thus add a value to each vertex. Al-
though F returns an unknown distribution, we assume that
it can be represented by M Normal distributions, where
each Normal distribution models the agent’s performance
at a sub-task. Fig. 3 shows a 6-agent graph, where M = 1.
We use Normal distributions because the single peak cor-
responds to the agent’s average performance, and the sym-
metric spread corresponds to the agent’s variability.

Now, we formally define a synergy graph:

Definition 1. A synergy graph S is a tuple {GS , NS},
such that GS = (VS , ES) is a connected graph, and NS is
set of Normal distributions, where:

• va ∈ VS is a vertex in GS and represents an agent
a ∈ A,

• ES are unweighted edges in GS , and

• Na = (Na,1, . . . , Na,M) ∈ NS is a list of M Normal
distributions, where Na,m ∼ N (µa,m, σ

2
a,m) is the ca-

pability of agent a at sub-task m ∈ [1,M].

Using a synergy graph, we can compute the performance
of a pair of agents:

Definition 2. The pairwise synergy S2(a, a′) between 2
agents a, a′ ∈ A in a synergy graph S is a list of M Nor-
mal distributions, given by w(d(va, va′)) · (Na +Na′), where
each component of Na and Na′ is summed independently,
d(va, va′) is the shortest distance between the va, va′ in GS ,
and w(d) is a positive weight function that monotonically
decreases as d increases.

Using this definition of synergy between a pair of agents,
we define synergy within a group of agents, i.e., their task
performance, below:

Definition 3. The synergy S(A) of a set of agentsA ⊆ A
in a synergy graph S is the average of the pairwise synergy

of its components, i.e., 1

(|A|2)
·
∑

{a,a′}∈A

S2(a, a′)

a1

a4

a2 a3

a6

N (5, 1)

N (20, 7)

N (5, 2)

N (8, 1)

N (23, 4)

a5
N (10, 3)

Figure 3: A synergy graph with 6 agents. Each ver-
tex represents an agent, and the distance between
vertices in the graph indicate how well agents work
together. Agents have lists of Normal distributions
that correspond to their capabilities at the M sub-
tasks. In this example, M = 1.

Thus, S(A) returns
{
N (µA,1, σ

2
A,1), . . . ,N (µA,M , σ

2
A,M)

}
,

a list of M Normal distributions, indicating the task perfor-
mance of the team A ⊆ A. From Defs. 2 and 3:

µA,m =
1(|A|
2

) ∑
{a,a′}∈A

wa,a′ · (µa,m + µa′,m) (1)

σ2
A,m =

1(|A|
2

)2 ∑
{a,a′}∈A

w2
a,a′ · (σ2

a,m + σ2
a′,m) (2)

where wa,a′ = w(d(va, va′)) and Na,m ∼ N (µa,m, σ
2
a,m) are

the agent capabilities at sub-task m ∈ [1,M], assumed to be
independent.

While the definition of synergy involves the summation
of individual capabilities, it is weighted by the distance of
agents in the synergy graph, and as such, the addition or
removal of specific agents can have a large impact on the
total score of a team. For example, from Fig. 3, suppose
that w(d) = 1

d
. Then, the team {a1, a2} has a mean score of

10, but the addition of a3 lowers the mean to 8. Conversely,
the team {a1, a2, a4} increases the mean to 20, even though
the individual capability of a4 is lower than a3.

We defer the learning of synergy graphs from samples of
F to a later section, and first describe how to find the best
team A∗ ⊆ A given a synergy graph S.

3.3 Composing an Effective Team
In this section, we introduce an algorithm to approximate

the optimal team composition for the task, in terms of the
task performance, given a synergy graph. The goal is to
find the optimal team A∗ ⊆ A from a synergy graph S. We
assume that the size of the optimal team (i.e., n∗ = |A∗|)
is known. This is a reasonable assumption, since the size of
teams are typically limited by external factors, e.g., a cost
budget, size restrictions. For example, the size of teams
in sports is fixed, and also in tasks that require handing
of a fixed number of devices, such as the operators of an
ambulance. In addition, if n∗ is unknown, then our approach
can be run iteratively for increasing n, and then return the
optimal team found across all n.
S calculates the list of M Normal distributions of the

team’s performance. In order to rank teams, each Normal
distribution needs to be converted into a single number. To
do so, we use the evaluation function introduced by us in [7],
that balances the mean and variance of a Normal distribu-

Algorithm 1 Approximating the optimal team of size n

ApproxOptimalTeam(S, n, ρ)

1: A← GenerateRandomTeam(A, n)
2: {NA,1, . . . , NA,M} ← S(A)
3: v ← V (Evaluate(NA,1, ρ), . . . , Evaluate(NA,M , ρ))
4: for k = 1 to kmax do
5: A′ ← RandomTeamNeighbor(A)
6: {NA′,1, . . . , NA′,M} ← S(A′)
7: v′ ← V (Evaluate(NA′,1, ρ), . . . , Evaluate(NA′,M , ρ))
8: if P(v, v′, Temp(k, kmax)) > random() then
9: A← A′

10: v ← v′

11: return A

tion using a risk factor ρ ∈ (0, 1), such that when ρ > 1
2
,

distributions with higher variances attain higher values. As
such, Evaluate(NA,m, ρ) = µA,m + σA,m · Φ−1(ρ), where
Φ−1 is the inverse standard Normal cumulative distribution
function. Thus, the M Normal distributions are converted
into M real numbers, and the value function V : RM → R
is computes the final task value.

Algo. 1 finds an approximation of the optimal team of
a given size n. A random team is first generated, where
n agents are randomly chosen. Next, simulated annealing
is performed to optimize the team configuration, where a
neighbor of the current team is created by replacing one
agent with another agent not currently in the team. Lines
4-10 of Algo. 1 implements simulated annealing, where Temp

is a temperature schedule, P(v, v′, t) returns a value between
0 and 1 given values v, v′ and a temperature t.

Our team formation algorithm runs in O(|A|) time if n∗

is known. Otherwise, Algo. 1 is run for increasing n for
a total runtime of O(|A|2). A brute-force algorithm would

take O(
(|A|
n∗

)
) if n∗ is known, and O(2|A|) otherwise.

4. LEARNING SYNERGY GRAPHS
The previous section formalizes synergy and defines a syn-

ergy graph, which captures how members of a heterogeneous
team interact. In addition, an algorithm to find the opti-
mal team for a task was presented. However, in order to
quantify synergy within a team, we first need to learn a
synergy graph. In this section, we contribute an algorithm
that learns a synergy graph from observations of task per-
formance of groups of agents.

The value function F : 2A → X is unknown, but sam-
ples of F (A) can be obtained for A ⊆ A. F can be likened
to a black-box system, or the real world where the teams,
i.e., A ⊆ A, perform the task and the value of their perfor-
mance at each of the M sub-tasks is observed.

Definition 4. An observation oA is a list of M values
corresponding to an observed overall performance of mem-
bers A ⊆ A at the M sub-tasks, i.e., oA = F (A) for one
sample of F . An observation group OA =

⋃
oA is the set

of all observations of A at the task.

Each observation group OA contains all the observations
of a unique group A. We assume thatA, the set of all agents,
is known a priori. Otherwise, A =

⋃
OA

A. From these
observation groups OA, we define the observation set:

Definition 5. An observation set O is the set of all ob-
servation groups, i.e., O =

⋃
{OA}.

F

a1, a2 → (3, 2, 3)

a1, a2 → (4, 3, 4)

a1, a2, a3 → (5, 1, 1)
a1, a2, a3 → (5, 2, 3)

Observation set O

Sinitial Slearned

sample

learn capabilities

random graph structure

learn structure and capabilities

hidden

O{a1,a2}

O{a1,a2,a3}

a1, a2 → (5, 2, 3)

Figure 4: The process of learning from observations.
Each observation is a list of M numbers, correspond-
ing to each sub-task. The individual capabilities of
agents in the synergy graphs are not shown.

Algorithm 2 Create a Synergy Graph from observations

CreateSynergyGraph(O,A)

1: G← GenerateRandomGraph(A)
2: N ← EstimateCapability(O,G)
3: Sinitial ← {G,N}
4: Slearned ← Sinitial
5: l← CalculateLogLikelihood(O,S)
6: for k = 1 to kmax do
7: G′ ← RandomNeighbor(G)
8: N ′ ← EstimateCapability(O,G′)
9: S′ ← {G′, N ′}

10: l′ ← CalculateLogLikelihood(O,S′)
11: if P(l, l′, Temp(k, kmax)) > random() then
12: Slearned ← S′

13: l← l′

14: return Slearned

Fig. 4 illustrates the process of learning a synergy graph.
The function F is sampled to obtain observations, which
form the observation set O. An initial synergy graph Sinitial
is created from a random graph structure and learned capa-
bilities from the observation set. Subsequently an iterative
algorithm is used to learn the synergy graph structure that
best fits the observation set.

Algo. 2 explains this learning process in detail. First, Gen-
erateRandomGraph creates a random graph G from agents
A, such that G is a connected graph, i.e., all vertices are con-
nected through chains of edges. Next, EstimateCapability
estimates the individual agent capabilities N , using the ob-
servation set O and graph G. The initial synergy graph
S is then created from G and N , and the log-likelihood of
the observations given S is calculated using CalculateL-

ogLikelihood. Simulated annealing is then performed to
converge on a synergy graph, where P(l, l′, t) returns a value
between 0 and 1 given values log-likelihoods l, l′ and a tem-
perature t. The log-likelihood of the observation set given a
synergy graph is used as the maximizing criterion for simu-
lated annealing, as the goal is to find a synergy graph that
best matches the observations, i.e., is most likely to have
produced the observations given its graph structure and in-
dividual capabilities. RandomNeighbor(G) is a function that
takes an existing graph G, and either adds a new random

edge between two vertices, or removes an existing edge sub-
ject to the constraint that G remains a connected graph.

Algo. 3 estimates the individual agent capabilities, using
the observation set O and graph G. Matrices M and b are
created such that Mx = b, e.g., Mµ xµ = bµ, where
xµ = [µa1 , . . . , µa|A|]

T . Each row inM and b corresponds
to an observation group OA in O, using Eqns. 1 and 2. Each
column inM corresponds to an agent in A. A least squares
solver is run to find x, which corresponds to the means and
variances of the agent’s capabilities at the mth sub-task.

For example, suppose thatM = 1 andO{a1,a2} = {3, 4, 5},
i.e., the team {a1, a2} was sampled 3 times using F and re-
ceived value 3 for the first sample, 4 for the second, and
5 for the third. This observation group would form a row
[α, α, 0, . . .] in Mµ, and a row [α2, α2, 0, . . .] in Mσ2 , where
α = w(d(va1 , va2)). bµ and bσ2 would then have a row with
values 4 (the mean of the 3 observations) and 1 (the vari-
ance) respectively. Thus, each observation group creates a
row in the M and b matrices, and a least-squares solver is
used to solve for the means and variances of each agent.
CalculateLogLikelihood computed the log-likelihood of

the observations, given a synergy graph S. In order to
do so, for each observation group OA in O, the synergy
N (µA,m, σ

2
A,m) of the group A ⊆ A at the mth sub-task

is calculated using S. The log-likelihood of each observed
value in the observation OA is then computed, and summed
across all the observations and sub-tasks.

Overall, learning a synergy graph (Algo. 2) takes O(r3)
time, where r is the number of observation groups, due to
the least-squares solver in Algo. 3.

Algorithm 3 Estimate the individual agent capabilities

EstimateCapability(O,G)

1: Let A =
{
a1, . . . , a|A|

}
.

2: Let G = (VG, EG), and VG =
{
vaj : aj ∈ A

}
.

3: Let O = {OA1 , . . . , OAr}, where Ai ⊆ A.
4: Mµ ← 0r×|A|
5: Mσ2 ← 0r×|A|
6: bµ ← 0r×1

7: bσ2 ← 0r×1

8: for m = 1, . . . ,M do
9: for all OAi ∈ O do

10: for all aj ∈ Ai do

11: Mµ(i, j)← 1

(|Ai|
2)

∑
{aj ,a}∈Ai

w(d(vaj , va))

12: Mσ2(i, j)← 1

(|Ai|
2)

2

∑
{aj ,a}∈Ai

w(d(vaj , va))2

13: // o(m) is the mth component of observation o

14: bµ(i)← 1
|OAi

|

∑
o∈OAi

o(m)

15: bσ2(i)← 1
|OAi

|−1

∑
o∈OAi

(o(m)− bµ(i))2

16: means← LeastSquares(Mµ, bµ)
17: variances← LeastSquares(Mσ2 , bσ2)
18: for all aj ∈ A do
19: Naj ,m ∼ N (means(j), variances(j))
20: N ← {}
21: for all aj ∈ A do
22: N ← N ∪

{
(Naj ,1, . . . , Naj ,M)

}
23: return N

5. EXPERIMENTS AND RESULTS
In order to test the efficacy of our synergy graph model,

the learning algorithm to create synergy graphs from ob-
servations, and the performance of teams formed from the
learned models, we split our experiments into two phases.

In the first phase, the hidden function F is set to be a
synergy graph model, and our experiments are designed to
show that the learned synergy graph matches the hidden
synergy graph (in F) well. Further, we show that the teams
formed from the learned synergy graph performs effectively
compared to both the team formed from the hidden synergy
graph, as well as the optimal team found by brute force.

In the second phase of our experiments, we compare our
algorithms to the ASyMTRe algorithm [8]. The hidden func-
tion F follows the probabilistic model of robot capabilities
in [8], i.e., F does not return a Normal distribution, and
we learn a synergy graph model from observations of teams’
performances. We then show that the team found from our
learned synergy graph outperforms that of ASyMTRe.

5.1 F as a Synergy Graph
In order to create random synergy graphs for the func-

tion F , we first defined |A|, the number of agents, and
pedge ∈ (0, 1), the probability of an edge. We created
a graph G = (VG, EG) such that for each possible edge
e = {v1, v2}, e was added into EG if pedge was greater
than a random number uniformly generated in [0, 1]. Then,
we checked that all agents in the graph were connected, oth-
erwise the graph was discarded and re-generated. In our ex-
periments below, we iterated between values of pedge from
0.1, 0.2, . . . , 0.9 and collated the results across all pedge.

Then, the simulator generated the agents’ capabilities. In
our first set of experiments, M , the number of sub-tasks,
was set to 1. We generated Na ∼ N (µa, σ

2
a) ∈ NS such

that µa ∈ [−γ, γ] and σ2
a ∈ [0, γ], where γ is a multiply-

ing factor, which we describe below. To generate the ca-
pabilities in the second set of experiments where M > 1,
the M sub-tasks were first split among the agents, such

that d |A|
M
e agents were capable of performing each sub-task.

Then, when generating the Normal distributions, if an agent
a was capable of performing sub-task m ∈ [1,M], then
Na,m ∼ N (µa,m, σ

2
a,m), and Na,m ∈ Na ∈ NS such that

µa,m ∈ (γ
2
, 3γ

2
), and σ2

a,m ∈ (0, γ). Otherwise, the distri-
bution Na,m ∼ N (0, ε) for some small ε.

We created 2 weight functions w, wfrac(d) = 1
d

and

wdecay = exp(− d ln 2
h

), where d is the distance between 2
agents in the graph, and h is the half-life of the exponen-
tial decay function. The two weight functions were selected
to demonstrate that the algorithms’ performance is similar
regardless of the weight function, and because both wfrac
and wdecay were intuitive and easy to understand. For the
experiments in this paper, we set h = 3, since |A| was set to
be at most 10, so the weight between agents would have a
similar range for both functions.
γ, the multiplying factor, affects how the performance of

the agents are affected by the weight functions. For example,
a weight of 1

2
reduces a capability of 4 to 2 (a difference of 2

units), but reduces 40 to 20 (a much larger difference of 20),
which could have effects on the learning algorithm. Thus,
we varied γ in our learning experiments to study the effect
of the range of utilities on the performance of our algorithm.

Figure 5: The error in the learned graph with vary-
ing number of agents and both weight functions.

5.1.1 Learning Synergy Graphs from Observations
In Sec. 4, we described the algorithm used to learn a syn-

ergy graph from observations. We first generated a synergy
graph Strue using the method described above, and then
generated a training observation set Otrain, with sets of 2
and 3 agents, i.e., ∀ OA ∈ Otrain, 2 ≤ |A| ≤ 3. We gen-
erated 100 data points from each pair/triple, and modeled
a synergy graph Slearned from the data.

Then, to test how well our algorithm learns the synergy
graph, we generated a test observation set Otest using combi-
nations of 4 or greater agents, i.e., ∀ OA ∈ Otest, |A| ≥ 4,
that had 1000 observations in total. We then measured the
difference in log-likelihoods between the hidden and learned
synergy graphs, i.e., LL(Otest|Strue) − LL(Otest|Slearned),
where LL(O|S) = CalculateLogLikelihood(O,S). A low
log-likelihood difference indicates that the synergy graph is
as likely as the true graph to have produced the observa-
tions. We compared this difference in log-likelihood versus
the initial graph used in the learning algorithm, Sinitial, that
had random edges but learned agent capabilities, to observe
if the graph structure has an effect on the log-likelihoods.

We first ran experiments where there was a single task
(M = 1) and agents had heterogeneous levels of performance
with regards to the task. Fig. 5 shows the log-likelihood dif-
ferences of the learned synergy graphs with the 2 weight
functions compared to the hidden synergy graph, and vary-
ing the number of agents from 6 to 10. Varying the number
of agents does not affect the log-likelihood error much — the
weight function and the multiplier γ have greater effects.

Figs. 6 and 7 shows the log-likelihood difference of the
learned synergy graphs and the initial synergy graphs when
|A| = 10. The learned synergy graphs are much closer to
the true synergy graphs, i.e., the difference in log-likelihood
is close to 0 and orders of magnitude lower than the initial
synergy graphs. The error in log-likelihood increases as γ,
the multiplying factor, increases, especially for Sinitial, and
shows that γ affects the difficulty of the learning problem
(seen from the errors of Sinitial), but our learning algorithm
is capable of significantly reducing this error in Slearned.
Furthermore, the observation set used for learning only in-
cluded pairs and triples of agents, but the learned graph had
a low log-likelihood difference when testing against data of
teams comprising 4 or more agents, which shows that the
structure of the learned graph and the individual agent ca-
pabilities match the hidden synergy graph well.

The next set of experiments were run where the task was
composed of M > 1 sub-tasks, and each sub-task had a
number of agents that were capable of performing it. We

Figure 6: The error in the learned synergy graph
of 10 agents with heterogeneous task performance,
using the weight function wdecay(d) = exp(− d ln 2

3
),

compared with the initial graph used by the learning
algorithm, with random structure but learned agent
capabilities.

Figure 7: The errors in synergy graphs of 10 agents
with heterogeneous task performance, using the
weight function wfrac(d) = 1

d
.

used wdecay as the weight function, set |A| = 10, and varied
M from 2 to 5. Fig. 8 shows the log-likelihood differences
between the Slearned and the Strue, as compared to Sinitial
and Strue. The error in the learned graphs are half or less
than that of the initial graphs, which demonstrates the ef-
ficacy of our learning algorithm, using only data of 2 and 3
agents and being tested on larger groups of agents. However,
while the error in log-likelihood of Slearned remains mostly
flat compared to γ, the error increases as M increases, which
shows that an increase in the number of sub-tasks has a large
impact in the quality of the learned synergy graph. The ad-
vantage of wdecay over wfrac should be general, because the
decay function decreases less abruptly as distance increases.

5.1.2 Measuring Team Performance
The goal is to find the optimal team to perform the task,

and we use ApproxOptimalTeam (Algo. 1) on the learned
synergy graphs Slearned. The performance of this set of
agents is then computed with F in the hidden synergy graph
Strue, and compared against the best and worst possible
combinations of agents. For example, if the set of agents A′

is selected from Slearned, then the value of A′ is computed
on Strue.

We did two sets of experiments: when M = 1 and when
M > 1. In the first set, we varied |A|, the number of agents
in the synergy graph, from 6 to 10, and the algorithm picked
the best 5 agents. In the second set, we fixed |A| to 10 and
varied M , the number of sub-tasks, from 2 to 5. In both
cases, γ = 1, and ρ = 0.75. Tables. 1 and 2 show the score of
the picked agents on a scale of 0 to 100 (where 0 denotes the
worst possible combination, and 100 is the optimal team),
and the performance of the selected team on the hidden

Figure 8: The error in the initial and learned syn-
ergy graphs of 6 agents where some sub-tasks could
only be completed by some agents, using the weight
function wdecay.

Learned Graph Hidden Graph
6 agents 99.90± 0.73 100.00± 0
7 agents 99.89± 0.45 100.00± 0.05
8 agents 99.94± 0.32 100.00± 0
9 agents 99.96± 0.28 100.00± 0
10 agents 99.95± 0.36 99.99± 0.12

Table 1: Score (%) of agents with 1 sub-task.

Learned Graph Hidden Graph
2 sub-tasks 99.64± 0.77 99.96± 0.40
3 sub-tasks 99.57± 3.43 99.97± 0.47
4 sub-tasks 98.79± 9.95 99.97± 0.38
5 sub-tasks 89.65± 30.26 99.97± 0.25

Table 2: Score (%) of agents: 10 agents with varying
number of sub-tasks.

graph Strue. The worst and optimal teams were discovered
by iterating through all possible combinations of agents and
computing their value. It is remarkable that our algorithm
finds a team that obtains a score of at least 89.65%, and
has a similar score when the algorithm is run on the hidden
graph, and thus shows that the learned synergy graphs are
in fact very close to hidden synergy graphs that were used to
generate the observation sets, and that ApproxOptimalTeam
can be used to find effective teams.

5.2 F as a Probabilistic Function
In this section, F was no longer a hidden synergy graph

model. Instead, we used the robot capability model of Parker
and Tang [8], where every robot has a subset of actions that
it can perform, each with a probability of success. These ac-
tions are then chained across robots to produce the desired
output, again with some probability of success. Fig. 9 shows
the capabilities of 3 agents and how the actions are chained
together to produce the desired outcome. Since each agent
has a subset of the actions, different subsets of agents will
have different results. In our experiments, we varied the
number of agents from 4 to 10 and randomly picked their
capabilities in each trial — each agent had a 0.7 chance of
being able to perform each action, and the probability of
success of the action was uniformly sampled from [0.1, 0.9].
F , the function of the performance of a team of agents,

was calculated based on the cost of executing the actions and
the reward achieved by generating the output. The cost of
attempting actions 1, 2 and 3 were 30, 10 and 15 respec-

Action 1

Action 2

Action 3

Desired Output

0.8

0.9

a1

a2

a3

0.3

0.7

0.6

0.9

...
Figure 9: The model of robot capabilities introduced
by Parker and Tang [8]. The numbers indicate prob-
abilities of success, and the dashed lines out of ac-
tions 2 and 3 indicate that both are required to trig-
ger the desired output.

Synergy

ASyMTRe

F
exposed

F
hidden

learn select
team

select team

F

F

value

value

Figure 10: The experimental process to compare our
synergy algorithm against the ASyMTRe algorithm.

tively, and the cost of attempting to generate the output
from action 1 was 10 and 15 from the combination of ac-
tion 2 and 3. When the output was achieved successfully,
a reward of 100 was given. The values of costs and reward
were arbitrarily chosen, but further experiments with differ-
ent values yielded similar results, so we present these results
in this paper. In each trial, every agent would attempt to ex-
ecute its actions, and if they were successful, the output was
also attempted to be generated. Thus, F had a probability
density function (pdf) that depended on the agent capabili-
ties — this pdf was not Normally distributed in general. We
were interested to find out how accurately we could learn a
synergy graph to model F even in such a situation.

Fig. 10 shows the experimental process. The hidden func-
tion F was used to generate observations of subsets of 2
and 3 agents, and then a synergy graph model is learned
(Algo. 2). A team is then selected using the learned synergy
graph (Algo. 1), and the value of the team is computed us-
ing F . To attain results for ASyMTRe [8], the probabilities
of success and costs of actions in F were exposed, and the
heuristic to rank teams in [8] was used. The ASyMTRe al-
gorithm is an anytime algorithm, but for our experiments,
we ran it to completion so that the optimal team with re-
spect to the authors’ heuristic was chosen. The values of the
selected teams were then compared to the maximum and
minimum team values, which were attained by performing a
brute-force search of all possible combinations of agents in
F , and thus scaling the results of the synergy and ASyMTRe
algorithms to be between 0 and 1.

The ranking heuristic in the ASyMTRe algorithm has a
factor p ∈ [0, 1] that balances between the probability
of success of performing an action versus the cost of the
action. For our experiments, we varied p from 0 to 1 at 0.1
intervals, and collated the results. Similarly, the synergy
algorithm uses the risk factor ρ ∈ (0, 1); we varied ρ from 0.1

of agents Synergy ASyMTRe
4 95± 17 64± 34
5 95± 14 64± 33
6 96± 10 63± 31
7 97± 8 60± 29
8 93± 7 59± 27
9 97± 7 59± 25
10 96± 8 63± 27

Table 3: Score (%) of teams composed by our syn-
ergy algorithm versus the ASyMTRe algorithm.

to 0.9 at 0.1 intervals and collated the results. The results
were collated across p and ρ since the values were consistent
and had little effect on the performance of the algorithms in
general. We varied |A|, the number of agents, from 4 to 10,
and picked teams of sizes 2 to |A| − 1. For a given size of
|A|, we performed 30 trials for each team size.

Table 3 shows the scores of the two algorithms. Across
all number of agents, our synergy algorithm outperforms
the ASyMTRe algorithm in terms of the performance of the
team selected, even though the function F is hidden to the
synergy algorithm but exposed for the ASyMTRe algorithm.
The ASyMTRe algorithm finds teams that score around 60%
of the optimal while the synergy algorithm forms teams that
score above 90%. This significant difference is due to a num-
ber of reasons: firstly, the ASyMTRe algorithm was designed
to also plan the agents’ actions, i.e., which actions each agent
should perform in order to complete the task. Secondly,
the ASyMTRe typically plans for a set number of outputs
(e.g., find a team to produce 2 outputs), but in our exper-
iments the heuristic was used to find a team that produces
as much output as possible. We compared our synergy al-
gorithm to ASyMTRe as it is a well-known algorithm for
multi-robot team formation and coordination that exploits
heterogeneity in the agents to maximize task performance.

6. CONCLUSIONS
We are interested in team formation, where heterogeneous

agents of varying capabilities are put together to complete
a task. The interactions between these agents are initially
unknown, and the goal is to select a subset of these agents
such that the task performance is maximized.

We formally defined a synergy graph, where an agent’s
capability is represented by a list of Normal distributions,
and the task-based relationship between agents are modeled
by the distance between them in a graph. We then formally
defined how pairwise synergy can be computed using a syn-
ergy graph, and extended the definition of synergy to include
groups of any number of agents. We then presented an al-
gorithm to approximate the optimal team given a synergy
graph. Next, we contributed an algorithm that learns a syn-
ergy graph from observations of the performance of groups
of agents, without any prior information about the agents’
capabilities or the interactions among them. While we used
simulated annealing in our team formation and learning al-
gorithms, we believe that other approximation techniques
would have similar performance.

In our experiments, we used 2 weight functions to weight
the synergy of agents based on their distance in the graph.
Using only observations of pairs and triples of agents, we
showed that our learning algorithm is capable of learning
the structure of task-based interactions and the capabilities

of the agents as compared to the initial synergy graph where
the observations were generated from, using both weight
functions. This is a significant contribution as it shows that
our learning algorithm does not need to observe all combi-
nations of agent interactions in order to learn the synergy
model, and is robust to different weight functions. Further-
more, we used a probabilistic model of agent capabilities
to determine task performance, and compared our synergy
algorithm with the ASyMTRe algorithm, and showed that
even though the hidden model was not Normally distributed,
and our algorithm does not have a priori knowledge of the
agents’ capabilities and probabilities of success of their ac-
tions while ASyMTRe has full knowledge, we are able to
form teams that perform much better.

Acknowledgments
This work was partially supported by the Air Force Re-
search Laboratory under grant no. FA87501020165, and the
Agency for Science, Technology, and Research (A*STAR),
Singapore. The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted
as representing the official policies, either expressed or im-
plied, of any sponsoring institution, the U.S. government or
any other entity.

7. REFERENCES
[1] B. Banerjee and L. Kraemer. Coalition structure

generation in multi-agent systems with mixed
externalities. In Proc. 10th Int. Conf. Autonomous
Agents and Multiagent Systems, pages 175–182, 2010.

[2] C. Dorn and S. Dustdar. Composing near-optimal
expert teams: A trade-off between skills and
connectivity. In Proc. Int. Conf. Cooperative
Information Systems, pages 472–489, 2010.

[3] B. P. Gerkey and M. J. Mataric. A formal analysis and
taxonomy of task allocation in multi-robot systems.
Int. J. Robotics Research, 23(9):939–954, 2004.

[4] C. Guttmann. Making allocations collectively:
Iterative group decision making under uncertainty. In
Proc. 6th German Conf. Multiagent System
Technologies, pages 73–85, 2008.

[5] L. He and T. R. Ioerger. A quantitative model of
capabilities in multi-agent systems. In Proc. Int. Conf.
Artificial Intelligence, pages 730–736, 2003.

[6] T. Lappas, K. Liu, and E. Terzi. Finding a Team of
Experts in Social Networks. In Proc. Int. Conf.
Knowledge Discovery and Data Mining, pages
467–476, 2009.

[7] S. Liemhetcharat and M. Veloso. Mutual state
capability-based role assignment model (extended
abstract). In Proc. 9th Int. Conf. Autonomous Agents
and Multiagent Systems, pages 1509–1510, 2010.

[8] L. Parker and F. Tang. Building multirobot coalitions
through automated task solution synthesis. Proc.
IEEE, 94(7):1289–1305, 2006.

[9] T. Sandholm, K. Larson, M. Andersson, O. Shehory,
and F. Tohme. Coalition structure generation with
worst case guarantees. Artificial Intelligence,
111:209–238, 1999.

[10] T. Service and J. Adams. Coalition formation for task
allocation: theory and algorithms. Autonomous Agents
and Multi-Agent Systems, 22:225–248, 2011.

