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ABSTRACT
In real electronic markets, each bidder arrives and departs
over time. Thus, such a mechanism that must make deci-
sions dynamically without knowledge of the future is called
an online mechanism. In an online mechanism, it is very
unlikely that the mechanism designer knows the number
of bidders beforehand or can verify the identity of all of
them. Thus, a bidder can easily submit multiple bids (false-
name bids) using different identifiers (e.g., different e-mail
addresses). In this paper, we formalize false-name manipu-
lations in online mechanisms and identify a simple property
called (value, time, identifier)-monotonicity that character-
izes the allocation rules of false-name-proof online auction
mechanisms. To the best of our knowledge, this is the first
work on false-name-proof online mechanisms. Furthermore,
we develop a new false-name-proof online auction mecha-
nism for k identical items. When k = 1, this mechanism
corresponds to the optimal stopping rule of the secretary
problem where the number of candidates is unknown. We
show that the competitive ratio of this mechanism for effi-
ciency is 4 and independent from k by assuming that only
the distribution of bidders’ arrival times is known and that
the bidders are impatient.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multi-agent systems; J.4 [Social and Behavioral
Sciences]: Economics

General Terms
Algorithms, Economics, Theory

Keywords
Auctions, mechanism design, game theory, online algorithms

1. INTRODUCTION
Auctions have become an integral part of electronic com-

merce and a promising application field of game theory and
mechanism design theory. Traditionally, mechanism design
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of auctions has mainly considered static (offline) environ-
ments where all bidders arrive and depart simultaneously
and the mechanism makes a decision only one time. In
real electronic markets, however, each bidder may arrive
and depart over time, so a mechanism must make deci-
sions dynamically without knowledge of the future. This
uncertainty often makes traditional works inapplicable to
such online environments. Therefore, designing mechanisms
for dynamic environments (i.e., online mechanism design)
has lately attracted considerable attention in the algorith-
mic game-theory field [14].

One desirable characteristic of a mechanism is strategy-
proofness. A mechanism is strategy-proof if for each bid-
der, truthfully reporting her type (private information) is a
dominant strategy. Unlike traditional mechanism design en-
vironments, in online mechanisms, the private information
of each bidder consists not only of his valuation but also
of her arrival/departure times, and bidders can misreport
them to maximize their utility. For these reasons, design-
ing a strategy-proof mechanism is much more challenging in
online environments than in traditional static environments.

Designing a strategy-proof online mechanism is strongly
connected to the optimal stopping theory, in particular, the
secretary problem. In fact, from the perspective of this the-
ory, Hajiaghayi et al. [9] developed an online mechanism for
a single item where an auction with a single item is held
in finite periods. Hereafter, we refer to it as Mechanism 1.
Consider there are n bidders. Each bidder i ∈ N values the
item at ri and stays in the auction at interval [ai, di].

Mechanism 1. Let n denote the number of bidders and
a∗ be the arrival time of bn/ec-th bidder, where e is the base
of the natural logarithm.

1. (learning phase): At period a∗, let r(1), r(2) be the first
and second highest bidding values received so far.

2. (transition): If a bidder whose bidding value is r(1)

remains present at period a∗, then sell an item to that
bidder (breaking ties deterministically, e.g., based on
the lexicographic order of the identifiers) at price r(2).

3. (accepting phase): Otherwise, sell an item to the next
bidder whose bidding value is at least r(1) (breaking ties
deterministically) at price r(1).

Mechanism 1 is strategy-proof assuming no bidder can be
present longer than her true stay. A winner cannot decrease
her payment by making her stay shorter or by misreporting
her valuation. A loser cannot win unless she pays more than
her true valuation or stays longer.



Table 1: False-name-proofness fails in Mechanism 1.
ai, di, and ri indicate arrival period, departure pe-
riod, and the valuation of bidder i.

ai di ri ai di ri

bidder 1 1 3 6 bidder 4 (later) 7
bidder 2 4 5 2 bidder 5 (later) 4
bidder 3 4 4 8 bidder 6 (later) 1

However, untruthfully declaring private information is only
one way to manipulate the outcome. Another way is for one
bidder to pretend to be multiple bidders. Such false-name
bids [16], i.e., bids submitted under fictitious names such
as multiple e-mail addresses, are especially feasible in Inter-
net auctions due to their relative anonymity. Unfortunately,
Mechanism 1 is not false-name-proof; a bidder can profit by
pretending to be multiple bidders.

Example 1. Consider a single item online auction with
six bidders, each of whom has a preference, as shown in Ta-
ble 1. Since n = 6, the mechanism waits for the second
bidder (b6/ec = 2). When each bidder reports truthfully,
the item is not sold until arrival period 4 of bidder 2. In
this case, bidder 1 cannot win even if her bidding value is
very high, because she is not present when the winner is de-
termined. Next, consider the case when bidder 1 uses two
identifiers, 1′ and 1′′. Identifier 1′ keeps her bid, and iden-
tifier 1′′ reports (2, 2, ε). In this case, the transition to the
accepting phase occurs after b7/ec = 2 bids. Bidder 1 wins
at period 2 and pays ε.

The example shows that false-name bids are profitable for
bidder 1. In fact, bidder 1 can also win if she once departs
from the auction at period 2 and arrives again at period 3
using another identifier 1′′.

Furthermore, in such environments where bidders can use
multiple identifiers, the number of participating bidders (iden-
tifiers) n depends on the strategies of the bidders. This
means that a mechanism cannot observe correct informa-
tion about the number of participating bidders; it can only
observe the number of identifiers used by the bidders. Thus,
it is impractical to design an online mechanism that is based
on the fact that the mechanism knows the number of par-
ticipating identifiers n in advance. This difficulty was also
pointed out by [10].

Readers might think that if a market can use some per-
sonal identification method (e.g., checking the participant’s
credit card number or social security number), the problem
resulting from false-name bids disappears. Introducing such
a method can indeed slightly increase the cost of using false-
name bids, but it cannot completely solve the problem. A
person can ask his/her family, friends, or employers to sub-
mit bids on her/his behalf. False-name manipulations can be
considered as a very restricted subclass of collusions, where
a person can only collude with other participants when they
were initially not interested in participating in the mecha-
nism, but they agree to work on behalf of the person by
obtaining a small side-payment. Such manipulations cannot
be prevented by a simple personal identification method.
Conitzer and Yokoo [4] provided a more detailed discussion
why false-name-proof mechanisms matter.

Our Results.
To the best of our knowledge, this is the first work that

deals with false-name manipulations in online mechanisms.
This paper formalizes false-name manipulations in online
mechanisms and proposes a simple property called (value,
time, identifier)-monotonicity, which characterizes false-name-
proof online auction mechanisms in single-valued domains.
Then it introduces two non-trivial false-name-proof mecha-
nisms for k identical items. Furthermore, the competitive
analysis revealed that for sufficiently large k, one of them is
4-competitive for efficiency by introducing a different adver-
sarial model from the traditional one under the assumption
that all bidders are impatient. We assume here that a mech-
anism has no information about the number of bidders; it
does know the distribution of their arrival times, since it is
quite natural that their real number is unknown and unpre-
dictable in situations where false-name bids are possible.

Related Work.
Lavi and Nisan [12] was the first work on mechanism

design of auctions in dynamic environments. Hajiaghayi
et al. [9] proposed a strategy-proof online mechanism in
limited-supply environments, based on the optimal stopping
rule of the secretary problem. Hajiaghayi et al. [8] proposed
a strategy-proof online mechanism for selling expiring items.
In Hajiaghayi et al. [10], a technique called automated mech-
anism design was applied to construct online auction mecha-
nisms. Furthermore, Parkes [14] showed that the revelation
principle can fail in online mechanisms when the no-early
arrival, no-late departure property does not hold. Gerding
et al. [5] introduced two procedures for item burning into
online mechanisms to achieve truthfulness.

Yokoo et al. [16] pointed out the effects of false-name
manipulations in combinatorial auctions and showed that
even the Vickrey-Clarke-Groves (VCG) mechanism is vul-
nerable against false-name manipulations. Besides combi-
natorial auctions, the notion of false-name-proofness have
been discussed in other application fields of game theory,
such as resource allocation [7] and coalitional games [1].

Myerson [13] proposed the monotonicity property of al-
location rules, which characterizes strategy-proof auction
mechanisms in single-parameter settings. Bikhchandani et
al. [2] extended the property to such multi-dimensional set-
tings as combinatorial auctions and proposed a property
called weak-monotonicity that characterizes strategy-proof
mechanisms. Todo et al. [15] proposed the sub-additivity
property as a full characterization of false-name-proof com-
binatorial auction mechanisms. For online auction mech-
anisms, Hajiaghayi et al. [8] and Parkes [14] introduced a
property called monotonicity 1 and showed that it charac-
terizes strategy-proof online auction mechanisms.

2. PRELIMINARIES
Let N = {1, 2, . . . n} denote a set of bidders and T =

{1, . . . , T} a set of finite and discrete time periods in which
an auction is held. Each bidder i ∈ N has private informa-
tion, or a type, θi = (ai, di, ri) drawn from Θi. The type of
bidder defines its value for the allocations of an online mech-
anism. Θi is a type space, or a domain of types, defined as

1To distinguish this property from the original monotonicity
introduced by Myerson [13], we refer to it as (value, time)-
monotonicity.



Θi = T × T × R≥0. Let ai and di be arrival and departure
times. In the interval of ai and di, a bidder has a valuation
ri on the auctioned item. Define x = (x1, . . . , xT ) ∈ X as a
possible allocation in a mechanism. Each xt = (xt

1, . . . , x
t
n)

represents the allocation at period t ∈ T, where xt
i is the

allocation to bidder i at period t; if bidder i is allocated an
item at period t, then xt

i = 1 holds; otherwise xt
i = 0. We

represent the gross utility of bidder i whose type is θi for an
allocation x as v(θi, x).

We restrict the domain of types Θi to single-valued do-
mains [14], in which each θi ∈ Θi is defined as a triple
(ai, di, ri), where the gross utility of bidder i whose type
is θi is defined as follows:

v(θi, x) =



ri if xt
i = 1 holds for some t ∈ [ai, di]

0 otherwise.

We also assume a quasi-linear utility; the net utility of bidder
i who obtains at least one item during her stay and pays p
is represented as v(θi, x) − p = ri − p.

An online mechanism M(f, p) consists of an allocation
rule f and a payment rule p. An allocation rule f is defined
as f = {f t|t ∈ T}. Here, θ = (θ1, . . . , θn) denotes a type
profile reported by a set of bidders N , and Θ = ×i∈NΘi

denotes a set of possible type profiles. Each f t : Θ → {0, 1}n

is a mapping from a set of reported type profiles to a set of
possible allocations. Let fi(θi, θ−i) denote the allocation to
bidder i where θi is the declared type of bidder i and θ−i is
the declared type profile of other bidders. A payment rule
p is defined as p = (p1, . . . , pn). Each pi : Θ → R≥0 is a
mapping from a set of type profiles to a set of non-negative
real numbers. Notice that bidder i’s reported type θ′

i =
(a′

i.d
′
i, r

′
i) is not necessarily the same as her true type θi =

(ai, di, ri). However, we assume no bidder can be present
longer than her true stay, i.e., the no-early arrival, no-late
departure property holds; a reported type θ′

i satisfies a′
i ≥ ai

and d′
i ≤ di.

In this paper, we restrict our attention to direct-revelation,
deterministic online mechanisms. Also, we assume that a
mechanism is almost anonymous and individually rational.
A mechanism is almost anonymous if the obtained results
are invariant under the permutation of identifiers, except
for ties where several bidders have an identical type but
their allocations are different (e.g., only one winner). We
assume the net utilities of bidders involved in tie-breaking
must be the same. Individual rationality means that no
participant suffers any loss in a dominant strategy equilib-
rium; i.e., the payment never exceeds the gross utility of the
allocated items. Thus, a mechanism does not collect any
payment from losers.

Now, let us define strategy-proofness.

Definition 1 (Strategy-proofness). An online mech-
anism M(f, p) is strategy-proof if ∀i, θ−i, θi, θ

′
i,

v(θi, fi(θi, θ−i))−pi(θi, θ−i) ≥ v(θi, fi(θ
′
i, θ−i))−pi(θ

′
i, θ−i).

A strategy-proof allocation rule is fully characterized by
a simple property called (value, time)-monotonicity in the
single-valued domain [8]. To define the monotonicity prop-
erty, let us first introduce a concept of critical value, which
plays an important role for guaranteeing strategy-proofness.
In words, a critical value cv is the minimal (threshold) value
for a bidder to be a winner.

cv(ai, di, θ−i) =



inf ri s.t. fi((ai, di, ri), θ−i) = 1
∞, if no such ri exists.

(1)

Definition 2 ((value, time)-monotonicity). An al-
location rule f is (value, time)-monotonic if ∀i, θ−i, θi =
(ai, di, ri), θ′

i = (a′
i, d

′
i, r

′
i), the following condition holds:

if fi(θ
′
i, θ−i) = 1 ∧ r′i > cv(a′

i, d
′
i, θ−i)

∧ ai ≤ a′
i ≤ d′

i ≤ di ∧ ri ≥ r′i
then fi(θi, θ−i) = 1.

Note that the condition r′i > cv(a′
i, d

′
i, θ−i) is necessary to

prevent inconsistent allocations due to tie-breaking, e.g.,
bidder i and j have the same type. If valuation ri is strictly
greater than r′i, we do not need this condition.

Hajiaghayi et al. [8] proved that if and only if an allocation
rule is (value, time)-monotonic, we can find an appropriate
payment rule that truthfully implements it in a dominant
strategy equilibrium. In addition, it is straightforward to
derive such an appropriate payment rule so that an online
mechanism M(f, p) is strategy-proof:

pi(θi, θ−i) =



cv(ai, di, θ−i), if fi(θi, θ−i) = 1
0, otherwise.

When bidder i reports a shorter stay, her payment does not
decrease, since bidder i’s critical value does not decrease if
an allocation rule is (value, time)-monotonic.

In this paper, we focus on a worst-case analysis (compet-
itive analysis) to consider the performance of mechanisms.
Such analysis is commonly used in recent mechanism de-
sign literature, especially by computer scientists. Let us de-
fine the competitive ratios for efficiency and revenue. Here,
z ∈ Z denotes the set of inputs available to the adversary
and θz the corresponding type profile.

Definition 3 (Competitive Ratio for Efficiency).
An online mechanism M(f, p) is c-competitive for efficiency
if for some constant c,

min
z∈Z

E{Val(f(θz))/V ∗(θz)} ≥ 1/c.

For efficiency, Val(f(θz)) indicates the social surplus of the
decision made by an allocation rule f given input θz. V ∗(θz)
indicates the surplus of the best possible allocation obtained
by an offline mechanism. This expectation is taken with
respect to the random choice derived from the model of an
adversary.

Definition 4 (Competitive Ratio for Revenue). An
online mechanism M(X, p) is c-competitive for revenue if
for some constant c,

min
z∈Z

E{Rev(p(θz))/R∗(θz)} ≥ 1/c.

For revenue, R∗(θz) indicates the revenue achieved by F (2,k)

auction with k items [6]. The revenue as a benchmark is used
in [8]. Here, if k ≥ 2, R∗(θz) = max2≤m≤k m · r(m), where
r(m) denotes the m-th highest value among all bidders. If
k = 1, we use VCG revenue of r(2) as the benchmark.

Next, we introduce several notations for discussing false-
name-proofness in online auction mechanisms. Let φi denote
the set of identifiers owned by bidder i. Let N denote a set
of identifiers, i.e., N =

S

i∈N φi, where N denotes a set of
real bidders. Let us re-define θ as the type profile reported
by all identifiers. Here, 0 indicates that the identifier is
not used by its owner. Furthermore, let θφi denote a type
profile reported by a set of identifiers φi and θ−φi a type
profile reported by identifiers except for φi. Using these



notations, the allocation to an identifier j when the set of
identifiers φi reports θφi and the other identifiers reports
θ−φi is represented as fj(θφi , θ−φi).

Definition 5 (False-name-proofness). An online mech-
anism M(f, p) is false-name-proof if ∀i, φi, θ−φi , θi, θφi ,
the following inequality holds:

v(θi, fi((θi,0, . . . ,0), θ−φi)) − pi((θi,0, . . . ,0), θ−φi)
≥ v(θi,

P

j∈φi
fj(θφi , θ−φi)) −

P

j∈φi
pj(θφi , θ−φi)

A mechanism is false-name-proof if it is a dominant strat-
egy for each bidder to report her true type using a single
identifier (although the bidder can use multiple identifiers).
When |φi| = 1, this definition is identical to Definition 1.

3. CHARACTERIZATION OF FALSE-NAME-
PROOFNESS

In this section, we propose a simple property called (value,
time, identifier)-monotonicity that characterizes false-name-
proof allocation rules in online auction mechanisms.

Definition 6 ((value, time, identifier)-monotonicity).
An allocation rule f is (value, time, identifier)-monotonic if
for any i, φi, θi, θ−φi , θφi , the following holds:

if ∃j′ ∈ φi s.t.,
`

fj′(θφi , θ−φi) = 1 ∧ rj′ > cv(aj′ , dj′ , θφi\{j′} ∪ θ−φi)
´

∧
`

∀j ∈ φi, ai ≤ aj ≤ dj ≤ di

´

∧ ri ≥
P

j′∈φi:j′ wins rj′

then fi((θi,0, . . . ,0), θ−φi) = 1.
(2)

Note that θφi\{j′} denote the type profile by the set of
identifiers φi \ {j′}. Thus, cv(aj′ , dj′ , θφi\{j′} ∪ θ−φi) indi-
cates the critical value of a bidder that stays [aj′ , dj′ ] when
the other identifiers reports θφi\{j′} ∪ θ−φi .

Now let us provide an illustrative example of an allocation
rule that satisfies Def. 6. Assume that the set of identifiers φi

surrounded by the dashed rectangle in Fig. 1 (a) is owned by
bidder i and that the identifier j′ with value rj′ wins an item.
If θφi in Fig. 1 (a) is replaced by one type θi = (ai, di, rj′ +ε)
in Fig. 1 (b), then the allocation rule that satisfies (value,
time, identifier)-monotonicity must choose θi as a winner, as
long as θi satisfies the following conditions: (i) the interval
[ai, di] includes [aj , dj ] for all j ∈ φi, (ii) the value rj′ + ε
exceeds the winner’s value rj′ .

Intuitively, in the inequality ri ≥
P

j′∈φi:j′ wins rj′ in Def. 6,
each term rj′ on the right-hand side corresponds to a pay-
ment of each winning identifier j′ that may be owned by i.
To avoid false-name manipulations, bidder i with value ri

that exceeds the sum of rj′ must win an item. Otherwise,
bidder i has an incentive to manipulate using the set of iden-
tifiers φi. We remark that this property is inspired by two
characterizations: (value, time)-monotonicity by Hajiaghayi
et al. and sub-additivity by Todo et al. In fact, the prop-
erty becomes equivalent to (value, time)-monotonicity when
|φi| = 1 for all i and to sub-additivity when T = 1, i.e., in
offline auction settings.

Before showing our characterization theorem, let us pro-
vide the following lemma:

Lemma 1. Given an allocation rule that satisfies (value,
time, identifier)-monotonicity, the critical value of bidder i
is independent of her valuation ri and weakly increasing in
shorter stay and more identifiers.

Proof. In Parkes [14], it was shown that the critical
value is weakly increasing in shorter stay. Then we can show
that the critical value is weakly increasing in a larger number
of rivals. Now assume that there exists an additional iden-
tifier θi′ = (ai′ , di′ , ri′) such that ai ≤ ai′ ≤ di′ ≤ di and
cv(ai, di, θ−i) > cv(ai, di, θ−i∪θi′) to derive a contradiction.

Here, modify the valuation of type θi such that ri =
cv(ai, di, θ−i∪θi′). Then, from the definition of cv when the
other bidders (identifiers) report θ−i ∪ θi′ , fi(θi, θ−i ∪ θi′) =
1. Also, from the definition of cv when the other bidders
(identifiers) report θ−i, fi(θi, θ−i) = 0. Thus, by setting
θφi = {θi, θi′}, θ−φi = θ−i and θj′ = θi, we have

∃j′ ∈ φi s.t.,
`

fj′(θφi , θ−φi) = 1 ∧ rj′ > cv(aj′ , dj′ , θφi\{j′} ∪ θ−φi)
´

∧
`

∀j ∈ φi, ai ≤ aj ≤ dj ≤ di

´

∧ ri ≥
P

j′∈φi:j′ wins rj′

and fi((θi,0, . . . ,0), θ−φi) = 0,

which violates (value, time, identifier)-monotonicity.

Theorem 1. On a single-valued domain, there always ex-
ists an appropriate payment rule p so that an online mecha-
nism M(f, p) is false-name-proof if and only if the allocation
rule f satisfies (value, time, identifier)-monotonicity.

Proof. (only if part) We first prove that if an on-
line mechanism M(f, p) is false-name-proof, then the allo-
cation rule f satisfies (value, time, identifier)-monotonicity.
Parkes [14] proved that if M is strategy-proof, then f satis-
fies (value, time)-monotonicity. Since the definition of false-
name-proofness is a generalization of strategy-proofness, if
M is false-name-proof, then it is also strategy-proof. Thus,
we can assume that f satisfies (value, time)-monotonicity
and that p is determined based on the critical values in Eq. 1.

We derive a contradiction by assuming that the allocation
rule f does not satisfy (value, time, identifier)-monotonicity.
More specifically, we assume for bidder i (with type θi), who
owns the set of identifiers φi, the following condition holds:

∃j′ ∈ φi s.t.,
`

fj′(θφi , θ−φi) = 1 ∧ rj′ > cv(aj′ , dj′ , θφi\{j′} ∪ θ−φi)
´

∧
`

∀j ∈ φi, ai ≤ aj ≤ dj ≤ di

´

∧ ri ≥
P

j′∈φi:j′ wins rj′

and fi((θi,0, . . . ,0), θ−φi) = 0.
(3)

When Eq. 3 holds, bidder i with type θi cannot win the
item by truthfully reporting her type. Thus,

v(θi, fi((θi,0, . . . ,0), θ−φi)) − pi((θi,0, . . . ,0), θ−φi) = 0.

Also, Eq. 3 implies that if bidder i reports θφi using false
identifiers, she wins at least one item. Note that since
there exists at least one winning identifier j′ in φi such that
rj′ > cv(aj′ , dj′ , θφi\{j′}∪θ−φi), we have

P

j′∈φi:j′ wins rj′ >
P

j′∈φi:j′ wins pj′(θφi , θ−φi). Thus,

v(θi,
P

j∈φi
fj(θφi , θ−φi)) −

P

j∈φi
pj(θφi , θ−φi)

> ri −
P

j′∈φi:j′ wins rj′ ≥ 0.

This bidder can increase her utility by using false identifiers,
contradicting the assumption of false-name-proofness.

(if part) Next we prove that if an allocation rule f satis-
fies (value, time, identifier)-monotonicity, then there exists
an appropriate payment rule p such that M(f, p) is false-
name-proof. We derive a contradiction by assuming that

∀p, ∃θi, θφi ,
v(θi, fi((θi,0, . . . ,0), θ−φi)) − pi((θi,0, . . . ,0), θ−φi)
< v(θi,

P

j∈φi
fj(θφi , θ−φi)) −

P

j∈φi
pj(θφi , θ−φi)

(4)



Figure 1: Example of allocation rule that satisfies
(value, time, identifier)-monotonicity

holds. More specifically, we show that if a payment rule p
is defined by a critical value (as Eq. 1), Eq. 4 does not hold
in the following two cases: (I) bidder i is winning when she
reports truthfully, and (II) bidder i is losing.

Case I: fi((θi,0, . . . ,0), θ−φi) = 1 holds. Since we as-
sume a single-valued domain, the two terms v(θi, ·) in Eq. 4
are equivalent. Thus, from Eq. 4, pi((θi,0, . . . ,0), θ−φi) >
P

j∈φi
pj(θφi , θ−φi). Furthermore, since we assume the mech-

anism does not collect payments from losers, we obtain

pi((θi,0, . . . ,0), θ−φi) >
X

j′∈φi:j′ wins

pj′(θφi , θ−φi). (5)

On the other hand, from Lemma 1, the critical value
of bidder i with stay [ai, di] weakly increases in shorter
stay and more identifiers. Thus, for all winners j′ ∈ φi,
cv(ai, di, θ−φi) ≤ cv(aj′ , dj′ , θφi\{j′} ∪ θ−φi), and therefore

cv(ai, di, θ−φi) ≤
X

j′∈φi:j′ wins

cv(aj′ , dj′ , θφi\{j′} ∪ θ−φi).

(6)
Thus, with a payment rule p defined by Eq. 1, we obtain

pi((θi,0, . . . ,0), θ−φi) ≤
X

j′∈φi:j′ wins

pj′(θφi , θ−φi), (7)

and this contradicts Eq. 5.
Case II: fi((θi,0, . . . ,0), θ−φi) = 0 holds. Assume that

bidder i, whose true type is θi = (ai, di, ri), cannot win
when she reports truthfully. That is, ri < cv(ai, di, θ−φi),
and when she reports truthfully her utility is zero.

Here, applying the same argument as in Eq. 6, we have

ri <
X

j′∈φi:j′ wins

cv(aj′ , dj′ , θφi\{j′} ∪ θ−φi).

The right-hand side corresponds to the total payment of
bidder i when she uses false identifiers θφi . This implies
that her utility with this manipulation is negative. Thus,

v(θi, fi((θi,0, . . . ,0), θ−φi)) − pi((θi,0, . . . ,0), θ−φi)
= 0 > v(θi,

P

j∈φi
fj(θφi , θ−φi)) −

P

j∈φi
pj(θφi , θ−φi)

holds, which contradicts Eq. 5.

To show that the allocation rule of Mechanism 1 does
not satisfy (value, time, identifier)-monotonicity, consider
Example 1 again. When bidder 1 uses two identifiers, 1′

and 1′′, seven identifiers participate in the auction (n = 7).
Since Mechanism 1 waits for the second bidder, identifier
1′ with (1, 3, 6) obtains the item using identifier 1′′ with

(2, 2, ε). However, when bidder 1 uses only one identifier, six
identifiers participate in the auction (n = 6). In this case,
the situation becomes identical to Table 1 and bidder 1 no
longer obtains the item. Thus, this allocation rule does not
satisfy (value, time, identifier)-monotonicity.

Note that our characterization is constructed on a single-
valued domain and thus can be applied to any environ-
ment on the domain. For example, (value, time, identifier)-
monotonicity is applicable to expiring-item environments,
where a mechanism allocates a single indivisible item to a
bidder in each period, e.g., the right to use a shared com-
puter or a network resource. We then show a representative
strategy-proof mechanism for expiring-item environments,
called greedy auction, and verify whether the allocation rule
satisfies (value, time, identifier)-monotonicity.

Mechanism 2 (Greedy Auction [14]). In each period
t ∈ T, allocate the item to a bidder who has the highest value
at t and who has not been assigned an item yet (breaking ties
deterministically). Every allocated bidder pays its critical
value, which is collected upon its reported departure.

Claim 1. The allocation rule of Mechanism 2 satisfies
(value, time, identifier)-monotonicity.

Proof. Let us describe the allocation rule f t
i for bidder

i at period t when θ−i is fixed:

f t
i (θi, θ−i) =

8

>

>

<

>

>

:

1 if ai ≤ t ≤ di and unallocated in t′ < t
and ri ≥ rl ∀l(∈ N \ {i}) s.t.
al ≤ t ≤ dl and unallocated in t′ < t

0 otherwise.

We derive a contradiction by assuming that, when there
exist at least one winner j′ in φi for some φi, θ−φi , θφi , there
also exists type θi that satisfies Eq. (3).

Choose winner j′ ∈ φi whose arrival period aj′ is the
earliest among the identifiers in φi. Let tj′ denote the period
in which j′ wins. At period tj′ , θi is present, since ai ≤ aj′ ≤
dj′ ≤ di holds from Eq. (3). The bid rj′ is the highest one at
tj′ in the presence of φi. Consider the absence of φi. Since
φi is replaced with 0, the highest bid changes from rj′ to ri

at tj′ . ri ≥ rl for all l ∈ N \ φi such that bidder l is present
at tj′ (al ≤ tj′ ≤ dl) and is unallocated in t′ < tj′ . Thus,
bidder i with type θi is chosen as a winner at period tj′ (or
before tj′) if θφi is replaced with (θi,0, . . . ,0). Accordingly,
this contradicts the assumption.

We can easily verify that the payment rule of Mechanism 2
is defined appropriately such that the mechanism is false-
name-proof. We omit the proof due to space limitation.

4. NON-TRIVIAL FALSE-NAME-PROOF
MECHANISMS

In this section, we present two non-trivial false-name-
proof online mechanisms for k identical items. Before in-
troducing them, we recall the intuitive reason why Mech-
anism 1 is not false-name-proof. The number of bidders,
probably including false identifiers, determines when Mech-
anism 1 transits to the accepting phase. More precisely, a
bidder can manipulate the transition period a∗, since it is set
as the arrival period of the bn/ec-th bidder. To avoid such
a manipulation, we must determine the transition period
independently from the the number of bidders. The basic
idea of our mechanisms is that they transit in a predefined
constant period τ . The following is our first mechanism.



Mechanism 3. Let k be the number of items for sale and
τ be a predefined period s.t. 0 ≤ τ ≤ T .

1. (learning phase): At period τ , sort the bidding values
observed so far in descending order and denote them
as r(1), r(2), . . . , r(k), r(k+1), . . .. If there exist only k′(<
k + 1) bids, we assume r(k′+1), . . . are 0.

2. (transition): If any bidder who bids r(1), . . . , r(k) is still
present at period τ , then sell to that bidder at price
r(k+1).

3. (accepting phase): As long as there exists a remaining
item, sell to the next bidder whose bid is at least r(k)

at price r(k).

When k = 1, Mechanism 3 can be considered an application
of the optimal stopping rule for a class of secretary problems,
where the number of candidates n is unknown [3].

Example 2. Now let us describe the behavior of Mecha-
nism 3 based on Table 1, assuming τ = 3 and k = 1. First,
consider the case where bidder 1 reports truthfully. From
the definition, Mechanism 3 does not allocate the item to
any bidder until period 3. At period 3, it allocates the item
to bidder 1 at price 0. Next, consider another case where
she uses two identifiers, 1′ and 1′′, and reports (1, 3, 6) and
(2, 2, ε), respectively. Again, the mechanism does not allo-
cate the item to any bidder until period 3. At period 3, it
allocates the item to identifier 1′ at price ε. Clearly that
bidder 1 cannot increase her utility even if she uses false
identifiers in Mechanism 3. Furthermore, losing bidders 2-6
cannot be winners even if they use false identifiers, since we
assume the no-early arrival, no-late departure property.

Although Mechanism 3 is false-name-proof, it requires a
predefined transition period. In general, it is difficult to
determine an appropriate transition period with respect to
efficiency and revenue. However, we show the competitive
ratio below in this section, assuming the mechanism knows
the distribution of bidder arrival times.

On the other hand, one might think that the bidders who
depart before the transition period do not have an incentive
to join the auction, since they know that they have no chance
to win. One possible remedy is to keep the information
about the transition period τ private by not announcing
it beforehand. Another remedy is to use a random timing
device to determine the transition period. It can ring with
small enough probability in each period before the default
transition period τ and must ring in τ at the latest.

Utilizing our characterization, we show the next theorem.

Theorem 2. Mechanism 3 is false-name-proof.

Proof. We first prove that the allocation rule of this
mechanism satisfies (value, time, identifier)-monotonicity and
then show that the payment rule is defined by critical val-
ues. When θ−i is fixed, the allocation rule fi for bidder i can
be described as follows. We denote the k-th highest value
observed until τ except i’s bid as r−i

(k).

fi(θi, θ−i) =

8

>

>

>

>

<

>

>

>

>

:

1 if either (i) ai ≤ τ ∧ di ≥ τ ∧ ri ≥ r−i
(k),

or (ii) ai > τ ∧ ri ≥ r−i
(k) ∧ |W | < k,

where W = {w | w 6= i ∧ aw ≤ ai

∧dw ≥ τ ∧ rw ≥ r−i
(k)}

0 otherwise.

We are going to derive a contradiction by assuming that
the allocation rule does not satisfy (value, time, identifier)-
monotonicity. More specifically, we assume that when at
least one winner l exists in φi, for some φi, θ−φi , θφi , there
exists type θi = (ai, di, ri) such that

`

∀j ∈ φi, ai ≤ aj ≤ dj ≤ di

´

∧ ri ≥
P

j′∈φi:j′ wins rj′

and fi((θi,0, . . . ,0), θ−φi) = 0.

Choose j′ as the winner in φi and its arrival period aj′ is
earliest. Note that j′ is a false identifier owned by i.

First, consider the case where ai ≤ τ . Since j′ is a winner,
regardless whether aj′ is before or after τ , dj′ ≥ τ and rj′ ≥
r−j′

(k) . Also, r−i
(k) ≤ r−j′

(k) . This is because r−i
(k) is the k-th

highest valuation observed until τ except the bid of i, and

r−j′

(k) is the k-th highest valuation observed until τ , including

φi except j′. >From the assumption, ai ≤ aj′ ≤ τ , di ≥
dj′ ≥ τ , and ri ≥ rj′ . Thus, we obtain ri ≥ r−j′

(k) ≥ r−i
(k), and

condition (i) of the allocation rule holds. This contradicts
the assumption that fi((θi,0, . . . ,0), θ−φi) = 0.

Next, consider the case where ai > τ . For all j ∈ φi,
ai ≤ aj holds; no bidder in φi arrives before τ . Thus,

r−i
(k) = r−j′

(k) holds. Since j′ is the winner, rj′ ≥ r−j′

(k) also

holds. From the assumption, ri ≥ rj′ holds. Thus, we ob-
tain ri ≥ r−i

(k). Also, since j′ is the winner in φi and its

arrival period is the earliest. Thus, for Wj′ = {w | w ∈
N \ {j′} and aw ≤ aj′ and dw ≥ τ and rw ≥ r−j′

(k) } and

Wi = {w | w ∈ N \ φi and aw ≤ ai and dw ≥ τ and rw ≥
r−i
(k)}, since ai ≤ aj′ , Wi ⊆ Wj′ holds. Thus, |Wi| ≤ |Wj′ |

holds. Since j′ is a winner, |Wj′ | < k holds. Thus, |Wi| < k
holds. Therefore, condition (ii) of the allocation rule holds,
but this contradicts the assumption.

Critical value cv of bidder i is defined as follows:

cv(ai, di, θ−i) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

r−i
(k) if either (i) ai ≤ τ ∧ di ≥ τ,

or (ii) ai > τ ∧ |W | < k,
where W = {w | w 6= i

∧ aw ≤ ai ∧ dw ≥ τ
∧ rw ≥ r−i

(k)}
∞ otherwise.

Also, the appropriate payment rule p is derived as follows:

pi(θi, θ−i) =



cv(ai, di, θ−i) if fi(θi, θ−i) = 1
0 otherwise.

This payment rule is identical to Mechanism 1.

Competitive analysis for online mechanisms requires to
assume an adversarial model as well as the optimal stop-
ping theory. A representative model is the random-ordering
model used in [9], which requires a mechanism to observe
the exact number of bidders beforehand. Therefore, we can-
not apply the model to our situation where a mechanism
can not certainly observe the number of real bidders. Thus,
we introduce another adversarial model from [3]. Unlike the
random-ordering model, the model requires mechanisms to
observe only the distribution of arrival times of bidders. It
is quite natural that a mechanism has knowledge about the
distribution of arrival times in such real-world economic en-
vironments as Internet auctions. For example, an auctioneer
can usually obtain trends about the density of bids, e.g., the
number of bids on weekends exceeds those in the daytime



on weekdays. Focusing on the model where only the distri-
bution of bidder arrival times is known, we apply Bruss’s
adversarial model to our competitive analysis. Notice that
Hajiaghayi et al. [10] deal with a situation where the number
of bidders is unknown to a mechanism. Instead, although
they assume that the distribution of valuations of bidders is
known, we will investigate this model in future work.

In our model, the auction is performed within finite con-
tinuous interval [0, T ] and all bidders are impatient; ∀i ∈ N ,
ai = di. This continuous model makes the analysis much
simpler; in a discrete time interval model, there might be no
transition period τ s.t. G(τ) = 1

2
in Theorem 3. We assume

that for n bidders, an adversary specifies its valuations. We
also restrict our attention to cases where all valuations are
unique to ignore ties. In addition, we let a mechanism know
a distribution function G, from which bidder arrival times
are drawn i.i.d. However, the mechanism has neither infor-
mation about the number of bidders n nor their valuations.

For k = 1, our model becomes almost identical to that
of the secretary problem discussed in [3]. Thus, we can
easily see that for any distribution G, Mechanism 3 is e-
competitive for efficiency by defining τ = G−1(e−1). Al-
though we strongly believe this stopping rule is optimal for
efficiency, we cannot directly use the result in [3], since the
mechanism can observe richer information, i.e., the bids of
bidders, than for the secretary problem. However, as dis-
cussed in [9], it is very unlikely that a mechanism can cap-
italize on this numerical information, since we are making
absolutely no assumptions about the distribution of bids.

We now show a more general result for arbitrary k. The
next theorem shows that the competitive ratio of Mecha-
nism 3 for efficiency is independent of the number of items
k, if the transition period τ satisfies F (τ) = 1

2
.

Theorem 3. In our model, Mechanism 3 with constant
stopping time τ1/2 such that G(τ1/2) = 1

2
is 4-competitive

for efficiency as n → ∞ when k is sufficiently large and all
bidders are impatient in finite continuous interval [0, T ].

Proof (sketch). In the worst case, each of the top k
bidders has a high value (e.g., 1) and the others have a low
value (e.g., 0). The probability that k-th highest bidder, who
arrives before τ1/2, is k + s + 1-st highest overall, is given as
`

k+s
k−1

´

· ( 1
2
)k+s+1. Possible winners are bidders 1, . . . , k + s.

A winner must arrive after τ1/2 and before k items are sold
out. The actual value of efficiency (i.e., the expected number
of winners 1, . . . , k) is given as SS =

P∞
s=0 g(s) · min(s +

1, k), where g(s) =
`

k+s
k−1

´

· ( 1
2
)k+s+1 · k

k+s
. Clearly, this is

smaller than SS′ =
P∞

s=0 g(s) ·k, which equals k2

k−1
( 1
2
− 1

2k )
by multinomial coefficient. Thus, for sufficiently larger k,
SS′ > k/2 holds. Furthermore, we can prove that SS′ ≤
2SS holds; SS′ is an over-estimation of SS but SS′ is at
most twice as large as SS. More specifically, the amount
of over-estimation, i.e., SS′ − SS is given as

Pk−2
s=0 g(s) ·

(k − s − 1). We can show that this is smaller than SS, i.e.,
SS′ − SS ≤ SS holds, since g(s) is basically an increasing
function of s (where s is smaller than k−2). Thus, SS > k/4
holds. Since the optimal social surplus is k, we obtain the
competitive ratio of 4.

In contrast to efficiency, the competitive ratio of Mech-
anism 3 for revenue is 0, which occurs in the same valua-
tions above. To achieve better revenue, we introduce an-
other mechanism.

Mechanism 4. Let k be the number of items for sale and
τ1, . . . , τk (τ1 < . . . < τk) be a sequence of predefined periods.

1. (learning phase): At period τm (1 ≤ m ≤ k), sort
bidding values observed so far in descending order and
denote them as rm

(1), r
m
(2), . . .. If there exist no bids, we

assume rm
(1), r

m
(2), . . . are 0.

2. (transition): If the bidder of rm
(1) is still present at pe-

riod τm, then sell to him at price rm
(2).

3. (accepting phase): As long as the item remains and
current time t satisfies t < τm+1, sell to the next bidder
whose bid is at least rm

(1) at price rm
(1).

Intuitively, Mechanism 4 is false-name-proof, since the
prices at transition periods τ1, . . . , τk never decrease, and an
unsold item will not be carried forward to the next period.

Theorem 4. In our model, Mechanism 4 with a sequence
of stopping times τ1, . . . , τk s.t., G(τm) = mT

k+1
∀m ∈ {1, . . . , k}

is k
log k

-competitive for revenue as n → ∞ when k is suffi-
ciently large and all bidders are impatient in finite continu-
ous interval [0, T ].

Proof. An adversary chooses a set of valuations so that
all bidders i ∈ {1, . . . , k} have 1 − i · ε and all other n − k
bidders i ∈ k + 1, . . . , n have (n− i+1) · ε as the worst case.

The probability that a particular pair of bidders arrives
within the same period is 1

k
. For sufficiently large k, the

probability becomes small enough to be ignored. The prob-
ability that bidder 1 wins an item and pays a high value
is given by the summation of the probabilities that bidder
1 arrives (a) after bidder 2, (b) before bidder 2 and after
bidder 3, (c) before bidders 2 and 3 and after bidder 4,

. . ., i.e., 1
2

+ 1
3!

+ 2!
4!

+ · · · + (k−2)!
k!

= 1 − 1
k
. In general,

the probability that bidder i wins and pays a high value is
(i−1)!
(i+1)!

+ · · · + (k−2)!
k!

= 1
i
− 1

k
. Thus, the expected revenue

is calculated as
Pk−1

i=1
1
i
− k−1

k
. Since the first term

Pk−1
i=1

1
i

is a harmonic series, we have
Pk−1

i=1
1
i
− k−1

k
≥ log k − k−1

k

and for large k, Mechanism 4 is k
log k

-competitive.

Using a similar argument to the above proof, we can also
show that Mechanism 4 is k

log(k+1)
-competitive for efficiency.

The competitive ratios shown in Theorems 4 and 5 are
not tight since, we have not yet obtained theoretical lower
bounds. However, even in one-shot mechanisms, there have
been very few results on the competitive ratios of false-name-
proof mechanisms, except for those by [11, 7]. Thus, we
believe the results in this paper are an important first step
to clarify the bounds in online false-name-proof mechanisms.

5. EXPERIMENTAL ANALYSIS
In addition to the worst-case analysis in Section 4, we

experimentally evaluated Mechanism 3 when k = 1. We
set discrete time periods {1, . . . , 20} (T = 20), varying the
number of bidders from 10 to 100 by 10. Each bidder’s type
θi = (ai, di, ri) is generated as follows. The valuation ri is
drawn from a uniform distribution over [0, r̄]. The arrival
time ai is drawn from a uniform distribution over [0, T ], and
the departure time di is drawn from a uniform distribution
over [ai, T ]. Notice that, although we run our simulation
with a variety of values r̄, the performance does not depend
on r̄. Thus, we show the results in the case of r̄ = 100. We
set the stopping strategy τ of Mechanism 3 to bT/ec = 7.
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Figure 2: Efficiency ratios in average case with re-
spect to Offline Optimal Mechanism
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Figure 3: Revenue ratios in average case with re-
spect to Offline Optimal Mechanism

From Theorem 3, this is the stopping strategy to achieve a
competitive ratio of e for efficiency if the bidders are impa-
tient. We then averaged the ratios of efficiency and revenue,
generating 10000 instances for each number of bidders.

Figures 2 and 3 illustrate the average ratios of efficiency
and revenue, respectively, achieved by Mechanism 1 and
Mechanism 3, varying the number of bidders. Note that the
result of Mechanism 1 is provided to show an ideal ratio,
where the mechanism can set the optimal learning period
by knowing the number of bidders n beforehand, and bid-
ders do not use false-name bids. In Fig. 2, we can see that in
terms of efficiency, Mechanism 3 achieves 93% of the offline
optimal mechanism as the number of bidders grows and it
is slightly outperformed by Mechanism 1. Furthermore, in
terms of revenue, Fig. 3 shows that Mechanism 3 performs
almost equivalently to Mechanism 1.

6. CONCLUSIONS AND FUTURE WORKS
In this paper, we characterized false-name-proof online

mechanisms and proposed two non-trivial ones for k identi-
cal items. When k = 1, Mechanism 3 corresponds to the op-
timal stopping rule of a class of secretary problems [3], where
the number of candidates n is unknown to the employer who
only knows the distribution of the candidate arrival times.
We further revealed that Mechanism 3 is 4-competitive for
efficiency, which is independent on the number of items k.
Also, Mechanism 4 is k

log k
-competitive for revenue.

One open problem is obtaining a lower bound of the com-
petitive ratio of false-name-proof online mechanisms for effi-
ciency and revenue. For efficiency, we strongly believe that
the lower bound is e when k = 1, although it remains un-

proved. We would like to relax several assumptions we intro-
duced for competitive analysis, e.g., impatient bidders. Fur-
thermore, we would like to extend our results beyond single-
valued domains (e.g., dynamic multi-unit auctions [5]). Con-
sidering the case that a bidder can only use a limited number
of fake identifiers might also be interesting. This restriction
would weaken bidders in the market, and help us design
false-name-proof mechanisms.
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