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ABSTRACT
This article presents a population-based cognitive hierarchy
model that can be used to estimate the reasoning depth
and sophistication of a collection of opponents’ strategies
from observed behavior in repeated games. This framework
provides a compact representation of a distribution of com-
plicated strategies by reducing them to a small number of
parameters. This estimated population model can be then
used to compute a best response to the observed distribu-
tion over these parameters. As such, it provides a basis for
building improved strategies given a history of observations
of the community of agents. Results show that this model
predicts and explains the winning strategies in the recent
2011 Lemonade Stand Game competition, where eight algo-
rithms were pitted against each other. The Lemonade Stand
Game is a three-player game with simple rules that includes
both cooperative and competitive elements. Despite its ap-
parent simplicity, the fact that success depends crucially on
what other players do gives rise to complex interaction pat-
terns, which our new framework captures well.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence

Keywords
Iterated Reasoning, Learning in populations, Multiagent Learn-
ing

1. INTRODUCTION
The essential problem in multiagent learning has been to

apply lessons and techniques from the well-developed field
of machine learning to dynamic environments where other
decision makers are present. In addition to the obvious chal-
lenges of non-stationarity and adversarial adaptation, we
might also consider worlds where agents remain anonymous,
for one reason or another, such that we may not know at
any given moment who we are playing against. This objec-
tive, which can be found in such diverse settings as financial
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markets and politics, raises questions like how to encode a
group of complicated strategies compactly so that we may
know how to preempt them when a new situation arises. To
put the problem in a machine-learning context, we would
like to assemble the right feature set to support learning.

Game theory has been built around the concept of Nash
equilibria. On the one hand, some games have no unique
equilibrium and in many others it is not efficiently com-
putable. On the other hand, if an agent’s success primarily
depends on others’ actions, equilibria may be ubiquitous and
completely lose their interpretation as a solution concept.
As a result, researchers have developed an alternative the-
ory which has subsequently been proven relevant to human
behavior empirically by a wide array of behavioral experi-
ments. This new class of models goes by many names, but
the basic idea is that strategies can be classified according
to a cognitive hierarchy (CH) with non-reasoning behavior
at the bottom and progressively more strategic reasoning at
higher levels [4, 5]. There are several hypothesis why this
phenomenon occurs. Perhaps people wish to put a minimal
amount of effort to the task, or are limited in capabilities.
Maybe everyday experience gives them a reasonably good
model of what to expect, and this model leads to the behav-
ior. The important thing to note is that this finding appears
to be universal, across different cultures and personal back-
grounds and over many different games [3].

This paper utilizes and extends an approach that has been
applied successfully to behavioral game theory data in the
single-shot case [13]. The contribution of this line of previ-
ous work was to evalutate a range of models by determining
how well they predicted unseen behaviors in matrix-game ex-
periments played by people. This work parallels and builds
upon the prior frameworks in several ways but diverges in
others. First, we are aligned in our goal of predicting be-
havior given a data set of obervations, rather than merely
explaining the observed behavior. Another shared focus is
on the quantal level-k model which has the same properties
we would expect to see in our case. While we are primarily
interested in repeated settings, unlike the earlier work, there
are still similarities to the single-shot case that motivate this
approach. For instance, the initial action selection problem
can be viewed as a single-shot game given that there is no
history, especially if the start to a game significantly influ-
ences the course of the succeeding actions. We propose that
certain games, like the example case we examine in detail,
consist of a series of state-based decisions that closely re-
semble single-shot games. One of our main contributions is



to develop novel statistical methods that can be applied to
sequential decisions. While we are studying games played
by software agents rather than humans, we maintain that
reasoning agents - both programs and humans - are driven
by the same behavioral interaction patterns and conclusions
of our experiments transfer to human behavior. One benefit
to analyzing simulations is the ease, speed, and low cost of
running experiments to assemble massive amounts of repro-
ducable data.

To make the investigation more concrete, our game of
choice is the Lemonade-stand Game (LSG), which consists
of simple rules that illustrate an inherent tension between
cooperation and competition [15]. This game is composed
of three “lemonade vendors” who compete to serve the most
customers in their vicinity, knowing that their competitors
are looking to do the same. It is therefore a special case
of a Hotelling game, which has been well studied in the
economics literature [7, 10]. From a practical standpoint,
location games like the LSG have obvious applications for
retail establishments in a physical space, but they can also
be applied in abstract spaces like on the web or social net-
works. Hotelling games have another interesting property,
which is that they have a price of anarchy equal to (2n−2)/n
where n is the number of players and the social optimum is
considered to be the minimum score of the n players [1].
Therefore, if many Nash equilibria exist, the resulting pay-
offs of an equilibrium can severely disadvantage any given
player, which makes it all the more urgent for individuals
to act according to an accurate population model in these
settings.

In previous iterations of the tournament, the customers
were spread evenly around the circular beach that functions
as the environment and action set. This past year featured a
new twist where the thirsty lemonade seekers are distributed
unevenly, which creates a new payoff function and strategic
challenge every time the game is played. One advantage of
using this game as a testbed for studying new multiagent
learning methods is that an annual tournament of submit-
ted agents has been run in tandem with the Trading Agent
Competition for the past two years. Because of this tour-
nament, there is now a runnable library of agents that can
be used for data collection, analysis, and model-building.
The upcoming competition adds yet another twist, where
the agents will be given the opportunity to learn over many
matches (whereas before, the memory ended after one match
of 100 rounds). Therefore, we would like a framework that
prepares for this lifelong learning problem, while keeping
data management to a minimum. This paper will present
the CH model as one way to approach such a topic, which
has led to an agent that won the 2011 LSG competition [15].
The results of this competition are given in Table 1.

The next section will discuss some of the most popular
non-equilibrium focused behavioral models and gives details
about the philosophy behind level-based reasoning. Sec-
tion 3 presents a new framework for generating levels of
reasoning in multiplayer games and learning the parameters
of this model from observations. In Section 4, we present
the Generalized Lemonade-stand Game, which has several
properties that make it an intriguing test case for our ex-
tended model, and, using actual submitted agents from a
LSG tournament, we perform experimental analysis in Sec-
tion 5. Finally, we close with a discussion in Section 6.

Place Agent Score Std. Dev.
1 Rutgers (our agent) 50.397 ± 0.022
2 Harvard 48.995 ± 0.020
3 Alberta 48.815 ± 0.022
4 Brown 48.760 ± 0.023
5 Pujara 47.883 ± 0.020
6 BMJoe 47.242 ± 0.021
7 Chapman 45.943 ± 0.019
8 GATech 45.271 ± 0.021

Table 1: Official results of the 2011 Lemonade-stand
Game Tournament. Our agent from Rutgers em-
ploys a version of the state-based Iterated Best Re-
sponse (IBR) and won with a significant margin.

2. BACKGROUND
Here, we present the models of behavior that inform our

extended model. We should note that some of these models
were developed primarily for two-player single-shot games in
mind, and therefore need some adaptation for games with
more players or that are played repeatedly.

2.1 Quantal Response
One proposed model takes into account the observation

that decision makers choose actions according to some func-
tion of their value, as opposed to picking the best one. Un-
der this procedure, agents’ actions are seen to include some
amount of error that can be quantified by the specified func-
tion. The most popular function goes by many names,
including softmax, exponential weighting, Boltzmann ex-
ploration (in the reinforcement-learning literature) or logit
quantal response (in game theory).

The quantal decision rule is as follows: A logit quantal
action for an estimated utility function ui of agent i’s action
ai results in mixed strategy πi given by

π(ai) =
eλui(ai)∑
a′i
eλui(a

′
i)

where λ is defined as the exponential weighting parameter
that decides how much error is expected depending on the
relative action values.

In games, the utilities depend on opponent strategies,
which are not specified by this model. The precision λ is
not specified either, and must be set or fit by the model
designer. The quantal response mechanism does provide a
convenient way to map values into actions that can be used
to respond to opposing strategies.

2.2 Level-k
The basis for iterated reasoning models is the idea that

agents perform various degrees of strategic reasoning. In
this model, dubbed the level-k model, strategies are formed
in response to prior strategies known to implement some
fixed reasoning capacity [5]. To be specific, an agent act-
ing at level k picks the best response to the strategy at the
previous level. In the base case of level 0, the strategy is
typically defined as a uniform random action, to provide the
reasoning a base that does not perform any reasoning at all.
This assumption can be justified by saying that if strategies
resulting from this method cannot outperform random ac-
tion selection, then they are probably not good in any real
sense.



Given a set of actions A, Kronecker delta function δ :
A × A → {0, 1} and utility function U : Ai × A¬i → R
mapping both agent i’s action and the strategies of rest of
the population ¬i to real values, the noiseless level-k strategy
πki of agent i is

π0
i (ai) =

1

|A|
πki (ai) = δ(ai, arg max

a
u(ai, π

k−1
¬i )).

2.3 Quantal Level-k
This model combines the behaviors of the previous two

models to arrive at a strategy calculation that incorporates
the recursive best response of level-k with the error robust-
ness of quantal response. The quantal action selection op-
erates on the values derived from the level-k model at the
desired setting of k:

π0
i (ai) =

1

|A|

πki (ai) =
eλu(ai,π

k−1
¬i )∑

a′i
eλu(a

′
i,π

k−1
¬i )

.

2.4 Cognitive Hierarchy
We mention this alternative model to address a possible

criticism of the level-k model, which is that the best response
step essentially ignores levels lower than k− 1. This crucial
point can lead to unwelcome phenomena such as repeating
the mistakes of the past. For this reason the cognitive hi-
erarchy model aims to respond to a distribution over previ-
ous strategies. Of course, model designers then face a new
problem of how to identify the cumulative distribution over
levels. The going standard for researchers is the Poisson
distribution, which has the elegant property of derivation
from a single parameter, τ , that happens to coincide with
the average level in the population [4].

If P represents the Poisson function for some τ , then let
us define the Poisson-based Cognitive Hierarchy as

π0
i (ai) =

1

|A|

πki (ai) = δ

(
ai, arg max

a

(
k−1∑
κ=0

P (κ)u(a¬i, π
κ−1
i (a¬i))

))
.

2.5 Algorithms for Modeling Agents
The recursive modeling framework has also had a big im-

pact on the intersection between artificial intelligence and
game theory. Recent formal models of reasoning paired with
statistical inference include networks of multiagent influence
diagrams [8] and interactive Partially Observable Markov
Decision Processes [9]. These direct modeling algorithms
work best and most efficiently against a single opponent, and
can be used in repeated settings. Adding more players to
the model adds a great deal of computational complexity, as
the interactions proliferate and cris-crossing recursions ap-
pear. In contrast, the simpler behavioral economics models
are well suited to groups of agents, where specific opponent
modeling is not possible. The next section illuminates a pro-

Swerve Straight
Swerve 3, 3 1, 4

Straight 4, 1 0, 0

Table 2: The game of Chicken.

cess for adapting the idea of Iterated Best Response (IBR)
for repeated games against more than a single agent.

3. A STATE-BASED IBR FRAMEWORK
Consider the game of Chicken, for which the payoff bi-

matrix is given in Table 2. The payoffs of the game are such
that a player is rewarded for playing the same action again
and again because doing so encourages others to change their
behavior to the fixed player’s benefit (although the converse
is also true). In such situations, the actions played by the
participants take on the appearance of state, in which the
players view the game both as a static environment in which
reward must be maximized as well as a Chicken-like scenario
where they might prefer to wait for others to back down.
The initial positioning of the agents is often of supreme im-
portance in these cases. We will use position or location
and action interchangeably given the semi-fixed nature of
the actions and for other reasons that will become clear as
we develop the concrete example.

We next propose a model for repeated play that addresses
these dual goals from the level-based perspective described
previously. The decision-making process contains two phases:
the initial action-selection problem, resembling a single-shot
game with no history, and a state-based decision phase,
which begins on the second round and continues until the
end. The two phases resemble each other in significant ways,
but differ in others. The first round is a special case of the
state-based decision because there is no state information
that exists; hence it is natural to use the typical assumption
that others play randomly so that there is a way to initial-
ize the strategic element. Because the initial action sets the
stage for the remainder of the game, choosing a good start
should not be ignored. The relationship between first and
subsequent rounds is key to successfully identifying good
opening moves.

3.1 Initial Action Levels
Although the approach we outline here parallels the one

taken by previous game-theoretic models of behavior, we
will diverge somewhat to handle cases with more than two
agents. The level-k model is successful in cases with only
two players, call them Alex and Bill, because if Alex knows
that Bill is playing level k− 1, then of course it makes sense
to respond with level k. However, what happens when Carla
enters the game? Should the level-k computation be opti-
mized against two level k − 1 players, or perhaps one level
k− 1 and one level 0 or something else entirely? We do not
attempt to answer such questions here, but we would like to
make a point about a certain class of games.

Consider a simple one-shot game with three players (Alex,
Bill, and Carla) and three actions (1, 2, and 3) on a number
line, so that 2 is connected to 1 and 3, but 1 is not connected
to 3. The utilties of such a game for player i are defined as

U(ai) = I(ai)/#(ai) + d(ai, a¬i)

where I is the identity function, #(ai) is the number of



agents playing action ai, and d is a distance function that
returns the minimum distance to the “closest” player in the
action space identified by the numbers (i.e. d(ai, a¬i) =
minj|j 6=i(|ai − aj |)). If Carla were to calculate a strategy
using level-based reasoning starting at random L0, she would
find that L1 should play 3. At L2, the action choice depends
on how Carla picks the likely population of Alex and Bill. If
Carla believes there are two L1s playing action 3, then she
has no preference over action 1 or 2 as they both get utility
3, as long as she does not pick 3 with a guaranteed score of 1.
However, if she believes that Alex is an L1 but Bill is an L0,
then she has a different choice. In this case, action 1 is worth
(0.5+2+3)/3 = 11/6, action 2 is worth (3+1+3)/3 = 7/3,
and action 3 is worth (1.5 + 1.5 + 1)/3 = 4/3. In either
case, action 2 is optimal (for level 2). In the first case, the
double L1 assumption caused Carla to completely misread
the structure of the game, and ignore the crucial difference
between action 1 and action 2, which is that action 2 has a
higher base score.

Games like this one, such as certain location games, can
mislead players into dismissing such differences if the lower
strategies overlap too much. Therefore, caution dictates
that diversity should trump purity when it comes to selecting
the lower levels to optimize over. Sometimes it might work
to use a distribution over these potential outcomes, but in
other instances it may not be computationally possible to do
so. In these cases, a mix of previous level and sub-previous
level seems to balance out these concerns. Notice that this
weakness is adequately addressed by modeling the popula-
tion as a cognitive hierarchy distribution, but the problem
of selecting a correct distribution leads to a multitude of
possible responses. Using a cognitive hierarchy model raises
computational difficulties, especially in repeated games.

3.2 State-based Levels
Once initial actions have been chosen and played, the po-

sition of others is known and the game takes on a state
element. Now iterated reasoning separates into two paths.
One is the opponent strategy given that our reasoner stays
in place, and the other is the expected strategy once our
reasoner changes its action. The resulting strategies will
be useful in deciding whether or not a new action will ex-
ceed the existing cost of inaction. We make the distinction
between the current action and a new action due to our real-
ization that others are operating under the assumption that
the existing state will likely persist in the future, and the
reasoning process is thus continuing even though nothing
has necessarily changed yet.

Another way of posing this problem is as the interaction
between learning and teaching [11]. The two phenomena
are linked because while it is beneficial for agents to learn a
better course of action in regards to other agents, they must
also understand how to influence the behavior of others.

It is in this context that the concept of regret will be
useful to us. An algorithm’s total regret is defined as the
sum of differences of the total reward of the best strategy
that can be adopted and the performance of the algorithm
being evalutated up to the current point in time. It has been
shown that certain adaptive algorithms have asymptotically
no regret over a history of play [2], which suggests that no
better strategy can be found. In our present model we would
like to focus on a more limited definition of short-term regret
as a way to balance the immediate realized sub-optimal past

with a hoped-for improved future. Let S denote the state,
which is the set of actions chosen by each player. Let us
define short-term regret of agent i playing action ai in state
S as follows:

RSi = max
a∈A

T∑
t=tS

(u(a)− u(ai)),

where T is the current time and tS is the first timestep where
the game was in the current state.

While an agent can easily minimize this regret by choos-
ing its best response, it also needs to anticipate the reactions
of its opponents, which is the purpose of the level-k model.
The current state provides a basis for the level computation
if we assume that level 0 remains fixed with some unknown
probability and otherwise acts randomly. In effect, this as-
sumption leads to the maximizing best response to current
state as level 1 as this response is the optimal move unless
L0 happens to randomize. If we expect others to execute
level 1 in a hypothetical changed state, this expected reac-
tion allows a level 2 agent to compute the action that best
prepares for that eventuality. At L2, agents act in a way
that maximizes utility when the others eventually best re-
spond. If this expectation is for some reason not met, it may
result in inferior performance in the meantime.

A more sophistictated strategy type will aim to limit its
vulnerability to this kind of outmaneuvering, in a way that
is qualitatively different from simple best response. As such
we will take the third level of reasoning to mean an equi-
librium strategy. Putting a ceiling on the reasoning process
is consistent with the earliest versions of recursive reasoning
models which equate L3 with Nash behavior [12]. Reaching
the final heights of the level-based action-selection does not
necessarily complete a model for repeated games, however.
In many games, there are no unique equilibrium strategies
or outcomes, and players may wish to bring about better
ones. In a wide class of games, this path takes the form of
teaching other agents through a consistency of play in order
to guide them towards desirable ends.

Suppose we are engaged in a repeated game of Chicken
(see Table 2) with both players Driving Straight at each
other. This situation is clearly sub-optimal for both: the
regret-minimizing action, in a pure strategy sense, is for ei-
ther player to Swerve. However, the reward-maximizing op-
tion is for only the opponent to Swerve so that we may enjoy
the high reward. At any given moment, the choice comes
down to this dilemma: do I try to wait out my opponent,
in the hopes of getting the high score? Or do I succumb
to the present urge to fold and take the smaller short-term
gain? The only reason to wait in this scenario is due to the
long-term summation of projected rewards contingent on the
other player backing down. By discounting future rewards,
the present value is finite regardless of how long the game
continues. According to standard theory, the equation for
current value V of future fixed rewards rt = r received over
an infinite time period and discounted by γ per time period
can be defined as

V =
r

1− γ .

There comes a point where the regret overtakes this value
for any given discount value γ. For a value-maximizing
agent, this point marks the balance between maintaining
a low utility position in hopes that another player will re-



lent and relenting oneself. It is reasonable to expect that
the current state of the game will persist for as long as it
already has, due to the 50% principle, which states that the
most likely temporal location for a random length occurence
is halfway through the duration. The present accumulated
regret serves to estimate the likely value lost during the up-
coming time period, traded off against some optimistic fu-
ture returns once that period ends. At that point the ben-
efits of outwaiting the opponent are no longer as favorable
as myopically choosing an action with higher utility than
is currently received. From an observer’s perspective, once
an agent moves, the discount factor for that agent can be
computed. One can also use previous observations to learn
an ideal setting of the discount for optimal action.

In games like Prisoner’s Dilemma, this waiting dilemma
does not exist as there is no short-term gain for choosing
to cooperate, nor is there a long-term cost for not doing
so. Notice also that in this Chicken example the value γ
takes on a meta-game connotation. Denote the two players
W and L. Assume w.l.o.g. that γW > γL. Notice that
W gains a higher score, but the higher the value of γL, the
worse both players perform. We can quantify this game by
saying that, subtracting out the regret, the net value for
the ultimate winner is 4

1−γW
− 4

1−γL
whereas the loser gets

1
1−γL

− 4
1−γL

= − 3
1−γL

at the moment the loser backs down.

Therefore, we propose the following method for discov-
ering the ideal value of γ given repeated observations of a
population of agents in a game of this type. First, calculate
Rs, the total regret experienced in the agent’s previous state
s, as the difference between expected experienced utility and
potential utility in a new state s′. Next, calculate Ûs, the
projected alternative score advantage received if it stays in
state s assuming the model prediction for the other agents
holds. We can then set up this inequality to represent the
tradeoff between known regret and potential gains at time
t = τ , which yields a condition on γ where if this condition
is broken, a different action should be taken.

Rs ≥
∞∑
t=τ

γtÛs

Rs

Ûs
≥ γτ +

∞∑
t=τ+1

γt

Rs

Ûs
≥ γτ + γ

∞∑
t=τ+1

γt+1

Rs

Ûs
≥ γτ + γ

∞∑
u=τ

γu

Rs

Ûs
≥ γτ + γ

Rs

Ûs

γτ

1− γ ≤ Ûs
Rs

In practice, the discount factor can be interpreted as any-
thing from model uncertainty to probability of events. These
elements, once accurately learned, combine to form a model
that can be effectively used to simulate behavior in previ-
ously unseen payoff settings over many rounds, prior to the
first round of an interaction. This powerful predictive tool
allows a user to identify the most advantageous position to
stake out before others without this capability.

4. THE GENERALIZED LEMONADE-STAND
GAME

The Lemonade Stand Game is a three-player game with
simple rules, yet it gives rise to complex interaction patterns
with cooperative as well as competitive elements. Imagine a
sunny island with twelve beaches arranged like the numbers
on a clock. Early in the morning three lemonade vendors
set up their lemonade stand on one of the beaches in the
dark (simultaneously) without knowing where the others will
sell on that day. Their profit depends on the number of
customers they attract, and each customer simply goes to
the nearest lemonade stand (in case of a tie it goes to each
nearest stand with equal probability).

Martin Zinkevich hosts a competition on an approximately
annually basis, where he allows any participating team to
submit a single agent [15]. These submissions make up the
population of players in the competition. Each triplet plays
the game and submissions are scored according to their aver-
age performance. The 2009 and 2010 competition featured a
uniform customer distribution over the beach locations. In
the most recent 2011 competition, agents competed in the
Generalized Lemonade Stand Game, where each beach has
one, two or three customers with equal probability. Each
customer yields a profit of 6 for the stand that attracts
it. In expectation, there is 144 cumulative payoff, and the
lemonade stand positions decide how this is divided among
the three lemonade vendors. This game is repeated for 100
days with the same customer distribution. An example draw
with 150 cumulated payoff is given in Figure 1. Based on
such a distribution and observations from the days that have
passed, the three vendors need to choose their lemonade
stand position for the next day. In each of these competi-
tions, simple scripted strategies often outperform complex
state-of-the-art online learning algorithms. Note that learn-
ing is only allowed within each game and agents are required
to completely reset and purge all memory after every match.

4.1 Application of IBR
The Lemonade-Stand Game is a far richer environment

than the Chicken or 3-player game described previously, but
the same framework applies. This very game has been the
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Figure 1: The beaches on Lemonade Island are ar-
ranged like the numbers on the clock. Each beach
has 1, 2 or 3 customers with equal probability, and
each customer gives a profit of 6 (left, darker colors
represent higher values). Given lemonade stands ©,
� and ♦, the payoff to each can be computed (right,
colors show to which stand customers go).
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Figure 3: Expected payoffs for reasoning Level 2
(left) and 3 (right): darker colors represent higher
values. The � denotes the best reply to one L1
player © and one uniform random player (L0). The
♦ denotes the best available action against one L1
player © and one L2 player �.

subject of a few articles since the tournament began. Some
participants have taken a more general approach to the plan-
ning elements [6] while others have addressed the way that
iterative methods can produce the behaviors seen [14]. How-
ever, in the generalized version of the game, a richer model
is required to handle the multitude of cases and viable po-
tential strategies.

We assume an agent at Level 0 does not do any reasoning.
Thus, it will chose an arbitrary action at random. An agent
of the next reasoning level will assume its opponents both
use reasoning Level 0. Such a player of Level 1 can compute
its expected payoffs for all possible actions and choose the
best reply (see Figure 2).

At all higher levels, the player will compute a best reply
to opponents of the previous two levels. That is, a Level 2
player computes the expected payoffs against one Level 0
and one Level 1 opponent. Similarly, a Level 3 player com-
putes the best reply to one Level 1 and one Level 2 opponent
(see Figure 3 for an illustration). Structuring the iterative
model in this way is a design choice, which is motivated
both by the problems with overlapping strategies already
mentioned and by the success in capturing the three-player
interactions as presented in the following section.

5. EXPERIMENTS AND VALIDATION
The experimental data presented here is derived from the

submitted set of agents from the July 2011 Generalized LSG
tournament, which implements the LSG with varying cus-
tomer distributions. We have two goals in the following
analysis. First, to show that the features resulting from the
derived level-based model accurately predict performance in
the tournaments. This is confirmed by the more advanced
strategies under this definition being among the winners.
Second, to demonstrate how this level data can be utilized
to efficiently determine the distribution over types that are
present in an ongoing series of games, and subsequently out-
flank them. This goal is of interest for upcoming competi-
tions, where agents will have the chance to observe oppo-
nents in action over many games, albeit anonymously, and
respond as they wish. As a side point, it has been observed
that in LSG’s current form, there is not much opportunity
for modeling and responding to opponents within games, as
matches are often settled within a small number of moves.
Therefore any agent that possesses an accurate model of be-
haviors will have a great advantage when it comes to plan-
ning a strategy in matches with previously unseen density
functions.

5.1 Learning Distributions over Levels
The quantal level-k model (Section 2.3) provides a method

for producing the strategies at each level given a precision
value λ. To produce an estimate of the strategy executed by
an agent, observe its action and the probability that each
strategy would have selected it. Using this probability we
arrive via Bayes at the likelihood that this agent is acting
according to this strategy. The normalized likelihoods for
all strategies give an estimated model of this agent. As de-
scribed in the extended model 3, the two sets of observa-
tions that determine the distribution over levels are initial
actions and new actions. Because the number of these ob-
servations may tend to be small in a single instance of the
game at hand, we must gather data over many matches, with
many different payoff functions. There are several ways to
build models from this data. In the comprehensive survey
and analysis done with human data [13], the authors used a
maximum likelihood method to be able to make predictions
of future behaviors. For our purposes, this predictive abil-
ity may not be enough because we would like to be able to
generate strategies in response to a learned model. There-
fore, a compromise solution is to simply average together
the resulting likelihoods for every instance observed.

The mark of a successful model is to predict outcomes,
and the state-based multiplayer IBR framework presented
here is no exception. In this section we test the correlation
between the various model parameters and final competition
scores. Our results can be summarized in Figure 4. We took
the level distributions for each agent and found the average
estimated level for both initial action and state action in
this manner. Then we examined the history leading up to
a change in state and recorded the regrets of the participat-
ing agents, and thereby arrived at bounds on γ. This step
gives three total model parameters, including the discount
factor. All three are highly positively correlated with final
performance. If we combine all three values to predict the
score, we reach a 0.83 coefficient of correlation and over 0.9
for prediction of rankings. The initial action level has high-
est performance at L2, on account of other agents playing
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Figure 4: A comparison of the final competition score with the maximum likelihood level (R2 = 0.73), estimated
state-based level (R2 = 0.72) and estimated score (R2 = 0.83). (a) The best fit over the data points is a quadratic
function because most of the agents are L1 or less, which means that L3 does worse than an L2 strategy in
this population. (b) Average likelihoods of each level are computed and normalized, and then each level is
weighted by the corresponding likelihood. The Spearman’s rank coefficient is 0.93. (c) The estimated score is
output by the final model as a function of initial level, state-based level, and discount factor. The Spearman’s
rank coefficient is 0.9. The trendline shown is X=Y.

sub-L2 strategies. Recall that the level-k model prescribes
responding to the average degree of sophistication in the
population, and not necessarily the highest possible strat-
egy calculation with the most reasoning.

5.2 Building Strategies from a Learned Level-
based Model

Once the strategy distribution is in place, we turn to find-
ing optimal responses to the underlying population. The
process used to accomplish this task is basically the mirror
image of the learning mechanism. Given a new LSG in-
stance, we discover the initial action levels, up to the third.
In our case three is sufficient because the reasoning only
needs to handle three agents. It so happens that by choos-
ing one action from each of the three level strategies will
yield a very good approximation to the likely final state of
a series of best response steps, starting from any initial po-
sitions. In the event that the space cannot be divided in
this way, there are probably a high number of equally good
starting points distributed more or less evenly around the
circle. We have done analysis to confirm this point but can-
not show it for lack of room. We will suffice to call these
actions stable for lack of a better word.

Once these three candidate actions are chosen, we can
easily find the scores assuming that there is one agent at
each location, giving a ranking of these three, which will not
necessarily correspond to the level that first produced them.
(See Figures 4-6 for a visual example explanation.) It is un-
likely that the three players will end up picking a different
one of the three stable actions. More likely is that at least
one of our two opponents will choose the highest ranked ac-
tion, as all else equal it would be the best one. Fortunately
this situation is ideal for us to analyze using the regret-based
approach mentioned in Section 3. If we have an estimated
discount factor (γ) for our target population, then we know
how long to expect an opponent to wait before switching to
the lesser stable action, leaving our agent in command of
the best one. If γ is sufficiently low, it will be worth the
initial cost to be the lucky agent to collect the higher score.
However, if the population has demonstrated high γ and

therefore a lot of patience, then it may in fact be optimal to
take one of the lower ranked stable actions, and hope that
our opponents end up fighting over the highly ranked loca-
tion. The parameterized model accounts for these opposing
forces and combines them to compute the estimated values
for each of these stable points over an entire game, prior to
the game starting. Although we have described this process
in words here, an agent we have built is able to quantita-
tively discover this solution automatically, and thus fully
implement a model-based response.

In Table 3, we show the performance of our agent, the
Full-Model agent, against the top four challengers in the
latest tournament. The best submissions are used since
other strategies have been observed to emulate them af-
ter some time [16], and we would like our agent to perform
well against likely future competitors. This agent runs the
model to estimate the game-length values of the best start-
ing points, and selects the best of these accordingly. Once
the game has begun, it switches into state-based mode and
makes regret-informed decisions using an internal value of γ
that may be adjusted based on observations from the popu-
lation. Table 4 replicates the original tournament with the
addition of the Full-Model agent.

6. CONCLUSION
This article demonstrated a model synthesizing several

Table 3: Results of an internal experimental match-
up including the top four agents of the 2011 Tourna-
ment and an agent constructed using the full state-
based IBR. 100 repetitions of each match shown.

Ranking Agent Score Error
1 Full-Model 51.61 0.039
2 Rutgers 49.36 0.037
3 Alberta 47.63 0.039
4 Harvard 47.60 0.032
5 Brown 43.10 0.034



Table 4: Results of an internal experimental match-
up including all agents of the 2011 Tournament and
an agent constructed using the full state-based IBR.
100 repetitions of each match shown.

Ranking Agent Score Error
1 Full-Model 50.48 0.042
2 Rutgers 50.06 0.033
3 Harvard 49.21 0.035
4 Alberta 48.83 0.030
5 Brown 48.40 0.036
6 Pujara 47.27 0.039
7 BMJoe 46.95 0.037
8 Chapman 45.46 0.035
9 GATech 45.03 0.031

schools of thought regarding the modeling and prediction
of agent behavior, especially including level-based reason-
ing and regret minimization. We built upon established
methods for constructing a hierarchy of strategies through
the tried-and-true best response operation as pieces of a ro-
bust process and adapted them to operate in new domains.
Our present framework has a corresponding automated al-
gorithm that outputs the strategies at each level. Given a
data set of behavioral observations, the model infers the rel-
evant parameters and frequencies of the constructed strate-
gies. The final step is to translate the model into useable
strategies, as we show through the Lemonade-stand Game
example. The strength of our model is its compactness and
ability to pre-simulate the likely course of action before the
game is populated with agents, giving us a sizeable advan-
tage when learning is allowed over many periods. The LSG
tournament provides a case study for this model in action,
and its past and present success is credited to the power of
an automated procedure based on our framework.
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[6] E. M. de Côte, A. Chapman, A. M. Sykulski, and
N. R. Jennings. Automated planning in adversarial
repeated games. UAI, 2010.

[7] J. J. Gabszewicz and J.-F. Thisse. Location. Handbook
of Game Theory with Economic Applications, 1992.

[8] Y. Gal and A. Pfeffer. Networks of influence diagrams:
Reasoning about agents’ beliefs and decision-making

Algorithm 1 Model Pseudocode for LSG

Input: γ (estimated optimal population discount factor)
Input: P (estimated population level probabilities)
getAction()

if turn = 0 then
stable[0]← highest density location
stable[1]← 2nd highest density location
stable[2]← bestResponse(stable[0], stable[1])
max← maxUtil(stable[0], stable[1], stable[2])
potRgrt← utility of non-max locations
collideRwrd← utility if two players choose max
projRwrd← (max− collideRwrd)
futV al← projRwrd/(1− γ)
expRwrd← comb. of futV al and projRwrd under P
return stable action with highest expRwrd

else
/* Use State-Based IBR */
cumRgrt← cumRgrt+ utilDiff(bestAlt, curConfig)
projRwrd← utilDiff(curAction, newOppConfig)

if γturn

1−γ cumRgrt > projRwrd then
cumRgrt← 0
return bestAlt in bestAltConfig

else
return curAction

end if
end if

processes. Journal of Artificial Intelligence Research
(JAIR), 2008.

[9] P. Gmytrasiewicz and P. Doshi. A framework for
sequential planning in multiagent settings. Journal of
AI Research (JAIR), 24:49–79, 2005.

[10] H. Hotelling. Stability in competition. The Economic

Journal, 39:41Ű57, 1929.
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