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1. RESEARCH PROGRAM
Our research is within the subfield of multiagent systems

for evolutionary algorithms (EAs). More specifically, we are
interested in addressing two problems in multiagent-based
EAs where agents (referred to as candidate solutions in EAs)
are able to select services (i.e. pairs of evolutionary opera-
tors and their control parameters) to produce the high qual-
ity solutions for complex optimization problems:

• Automatically select evolutionary operators without
prior knowledge;

• Adjust control parameters in uncertain environments.

To explain, candidate solutions to problems in EAs [1]
play the role of individuals in a population. They pro-
duce offsprings by taking evolutionary operators (such as
crossover and mutation) with user-specific control parame-
ters. However, evolutionary operators and control parame-
ters may vary for different problems. It is time-consuming
to determine the operators and parameters by the trial-and-
error procedure. In addition, the competency of operators
may vary with generations. For example, crossover is often
powerful in the earlier stage of EAs, but mutation is effective
when the solutions are similar with each other in the later
stage of EAs. The challenge of EAs is thus how to effectively
select evolutionary operators and adjust control parameters
from generation to generation and on different problems.

2. PROGRESS TO DATE
As the first step to tackle the above mentioned research

problems, we look for a framework that reformulates the
classical EAs as a multiagent system so as to take advantages
of the developed multiagent technologies by the multiagent
community. More specifically, we propose a novel multiagent
evolutionary framework based on trust where each solution
is represented as an intelligent agent, and the pairs of evo-
lutionary operators and control parameters are represented
as services. In our framework, the agents model the trust-
worthiness of the services, based on whether the agents’ off-
springs produced by using the services survive to the next
generations, which represents the dynamic competency or
suitability of the services from generation to generation and
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on particular optimization problems. The agents will then
select the services with the probabilities correlated to the
trustworthiness of the services.

We begin with a novel insight that the intelligent agents
are able to measure the dynamic competence of services and
make decision autonomously in the process of EAs. The idea
is inspired from the work of Jøsang et al. [3]. They define the
trust concept and treat it as a dynamic value based on a col-
lection of opinions that other agents hold about the service.
We use the Beta distribution to measure the reputation score
of each service on particular problems. In each generation,
an agent selects a service to produce a new offspring agent,
which is also a solution. The new offspring agent competes
with other agents in the environment. If the offspring agent
can survive to the next generation, it means that the service
provides a positive outcome, otherwise, the service provides
a negative outcome. The trustworthiness of services can be
used to represent the competency of the services in produc-
ing positive outcomes. The larger number of outcomes a
service can produce, the more suitable the service is to solve
the given problem. Thus, agents in our framework model
the trustworthiness of the services based on the number of
positive and negative outcomes provided by the services in
the past generations. The modeling results will be used by
the agents to make decisions on which services to consume.

To date, we have defined the trust model for representing
the dynamic competence of service. Assume s is the num-
ber of positive outcomes and f is the number of negative
outcomes provided by a service S, formulated as follows:{

s = s+ 1 if u⃗i,g → Xg+1

f = f + 1 otherwise
(1)

where u⃗i,g → Xg+1 means that the offspring u⃗i,g produced
in the generation g by the service can survive to the next
generation g+1. Whether u⃗i,g → Xg+1 is determined based
on different methods in MOEAs [1]. The trustworthiness of
S is then the probability expectation value of the Beta dis-
tribution, which represents the relative frequency of positive
outcomes in future events [3].

T (S) =
α

α+ β
, where α = s+ 1, β = f + 1 (2)

A service is a tuple of a evolutionary operator and a set
of segments for corresponding control parameters. The evo-
lutionary operator can be any operator from a list of oper-
ators O = {O1, O2, . . . , O|O|} proposed in EAs, where |O|
is the number of available evolutionary operators. Given
a specific operator Ok ∈ O in the service, there will be a
set of control parameters Ck = {Ck

l |l = 1, . . . , |Ck|} asso-



ciated with the operator Ok, where |Ck| is the number of
control parameters. Assume that a parameter Ck

l takes a
continuous value in the range as Ck

l ∈ [0, 1]. In order to
effectively learn the performance of a control parameter, we
divide the range [0, 1] into a set of q disjoint segments as
L = {[0, 1

q
), [ 1

q
, 2
q
), · · · , [ q−1

q
, 1]}. Thus, a service can be for-

mally defined as a tuple (Ok, C
k) where Ck = {Ck

l |Ck
l =

L(Ck
l ), l = 1, . . . , |Ck|} and L(Ck

l ) is one of the segments in
L for the parameter Ck

l .
We have developed a specified model to calculate the trust-

worthiness of evolutionary operators. In general, one opera-
tor is suitable for some specific types of problems, but may
not work well for other types. Even for the same problem,
the competency of the operator may vary in different genera-
tions. For example, the operator “DE/ran/1/bin” is suitable
to multi-modal problems, which has slow convergency in the
earlier stage but exhibits strong exploration in the later stage
of EAs. Based on this phenomenon, the trustworthiness of
the operator needs to reflect the varying competency of the
operator under the condition where trust is hard to build
up, but easy to lose.
The following function is used to combine the history in-

formation and current rating{
sg = (1− Tg−1) · sg−1 + Tg−1 ·Ng,s

fg = (1− Tg−1) · fg−1 + Tg−1 ·Ng,f
(3)

where Ok is dropped out for clarity and Tg−1 is the trust-
worthiness of operator Ok in generation g − 1. Equation 3
has two important advantages. It does not have predefined
parameters. Equation 3 also satisfies the above mentioned
condition. When the trustworthiness of the operator in the
last generation g − 1, Tg−1(Ok) is low, the operator needs
more positive outcomes Ng,s(Ok) to build up its trust in the
current generation g. When Tg−1(Ok) is high, 1−Tg−1(Ok)
is low, meaning that the less consideration will be given to
historical information. The trustworthiness of the operator
Tg(Ok) will be easy to decline when the number of negative
outcomes in the current generation Ng,f (Ok) is large.
The trustworthiness of control parameter Ck

l associated
with evolutionary operator Ok in the current generation g,
denoted as Tg(C

k
l |Ok), can be calculated in the similar way

as calculating the trustworthiness of the operator Ok (Equa-
tion 3), by counting the numbers of positive and negative
outcomes produced by the operator Ok with the parameter
Ck

l , which are Ng,s(C
k
l |Ok) and Ng,f (C

k
l |Ok) respectively.

After having the trustworthiness of the evolutionary op-
erator Ok, which is Tg(Ok), and each control parameter Ck

l

given Ok, which is Tg(C
k
l |Ok), we can then compute the

trustworthiness of the service (Ok, C
k) by assuming the con-

trol parameters are independent, as follows:

Tg(Ok, C
k) = Tg(Ok) ·

|Ck|∏
l=1

Tg(C
k
l |Ok) (4)

In our framework, agents select services based on the com-
puted trust results of the services. In order to balance be-
tween exploitation and exploration, services are selected in
a probabilistic manner where the probability for a service
to be selected is proportional to its trust. More formally,

there are
∑|O|

k |Ck| · m services in total because there are
|O| evolutionary operators, each operator Ok is associated
with |Ck| control parameters, and each parameter is repre-
sented by one of the q value range segments. The probability

for service (Ok, C
k) with the trust Tg(Ok, C

k) in the current
generation g to be selected in the next generation g + 1 is:

p(Ok, C
k) =

Tg(Ok, C
k)∑∑|O|

k
|Ck|·m Tg(Ok, Ck)

(5)

To demonstrate the effectiveness of the proposed multi-
agent framework, we select the multiobjective optimization
problems (MOPs) as a case study. Experiments carried out
on 35 benchmark MOPs confirm that our framework signif-
icantly improves the performance of the classic multiobjec-
tive evolutionary algorithms (MOEAs), including NSGAII,
SPEA2 and MOEA/D, and outperforms the other three
adaptive evolutionary approaches, including CMA-ES [2],
SaDE [4] and CoDE [5]).

3. FUTURE RESEARCH
Our current research has two major contributions. The

fist one is a multiagent-based evolutionary framework to re-
formulate EAs. In such a framework, a novel trust model is
proposed to effectively select evolutionary operators and ad-
just control parameters (represented as services), for solving
complex optimization problems (such as MOPs).

For future research, we will examine our framework in a
distributed setting where only partial (local and neighbor-
ing) information about the outcomes of services is known to
agents, towards the development of a distributed multiagent
framework. The purpose of doing so is to adapt to the en-
vironments of the real world problems that are often very
large and involve much uncertainty.

We will also explore the emerging application areas where
our multiagent evolutionary framework can be applied to.
Particularly, we will look into the problems in vehicular
ad-hoc networks where vehicles represented by autonomous
agents can communicate and share real-time traffic condi-
tion information so as to effectively navigate through the
traffic. One such problem is the optimization of multiple
objectives such as travel length and travel time. The com-
plexity of the problem lies in its dynamic and large-scale
properties. Another problem is related to message propa-
gation among vehicular agents in the networks. Reliability
of relaying nodes and the scalability of message propagation
are the major concerns. By investigating these problems, the
multiagent evolutionary framework will also be improved.
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